Relatives Schätzen: Von T-Shirt Größen zu Fibonacci-Werten

Im Projektmanagement wird an vielen Stellen geschätzt. Beim Plangetriebenen Projektmanagement wird absolut geschätzt, beispielsweise in Tagen (Dauer) oder auch in Personentagen (Aufwand). Beim Agilen Projektmanagement geht es darum, relativ zu schätzen. Es geht immer um den Bezug auf etwas.

Anforderungen werden hier oft als User Story formuliert, dabei wird oft bei der Schätzung des Aufwands mit T-Shirt Größen gearbeitet. Dazu wird eine Referenz benötigt. Nehmen wir einmal an, die User Story mit der ID=9 wird mit einer T-Shirt Größe “S”, geschätzt, dann werden alle anderen User Stories relativ dazu geschätzt.

Manche fragen an dieser Stelle, warum man nicht gleich Zahlen, z.B. die Fibonacci-Werte, verwendet. Dazu habe ich folgende Erläuterung gefunden:

“Wir verzichten darauf, die Fibonacci-Werte von Beginn an zu nutzen, weil wir möchten, dass das Team sich komplett vom Denken in Zahlen löst. Zahlen werden unbewusst immer wieder miteinander oder mit Tagen oder Stunden verglichen. Wir möchten erreichen, dass sich das Team auf »größer, gleich, kleiner« konzentriert und die Stories nur relativ zueinander schätzt” (Röpstorff/Wiedmann 2016).

Dennoch wird es irgendwann dazu kommen, dass man sich von den T-Shirt Größen löst und Zahlen nutzen möchte. Dazu werden für User Stories Zahlen aus der angepassten Fibonacci-Reihe genutzt, und als Story Points bezeichnet. Dabei kann folgende Gegenüberstellung nützlich sein:

T-Shirt GrößenStory Points
XS1
S2
M3
L5
XL8
XXL13
Quelle: Röpstorff/Wiedmann 2016

User Stories mit Story Points größer als 13 sollten noch einmal analysiert werden, denn es könnte sein, dass der Aufwand für einen Sprint zu groß ist, und es sich somit um ein Epic handelt.

Siehe dazu auch Planning Poker beim relativen Schätzen nutzen – analog oder auch online.

Innovationen: Blue Ocean Strategie im Zeitalter Künstlicher Intelligenz

Image by Elias from Pixabay

Es ist für Unternehmen heute nicht leicht, eine geeignete Strategie für Innovationen zu entwickeln. Dabei können inkrementelle oder auch disruptive Innovationen im Fokus stehen. Kleine, inkrementelle Verbesserungen sind möglicherweise in Zeiten von Künstlicher Intelligenz (Artificial Intelligence) nicht mehr ausreichend. An dieser Stelle kommt die Blue-Ocean-Strategie ins Spiel:

“Die Blue-Ocean-Strategie beschäftigt sich mit disruptiven Verbesserungen von Produkten bzw. Produktideen. Disruption (= zerstören, unterbrechen) beschreibt einen Prozess, bei dem ein bestehendes Geschäftsmodell oder ein Markt von Innovationen abgelöst bzw. verdrängt wird. Die Blue-Ocean-Strategie unterteilt Märkte in sogenannte Red Oceans und Blue Oceans. Blue Oceans umfassen zukünftige, noch zu schaffende Markträume, in denen Wettbewerb eine Zeit lang wenig Relevanz hat. Der Fokus von Unternehmen liegt auf dem Aufbau von Nutzeninnovationen für die Kundschaft in neuen Markträumen. Dadurch erreichen Blue-Ocean-Produkte eine Differenzierung (Alleinstellungsmerkmale); sie sind zunächst wettbewerbsarm und erlauben höhere Gewinne (vgl. Kim/ Mauborgne 2015). Red Oceans umfassen hingegen die Gesamtheit des bereits bestehenden Wettbewerbs. Es gilt die existierende Nachfrage zu nutzen und zu steigern, um sich im bestehenden Wettbewerb zu behaupten” (RKW 2018).

Was hat das nun mit Künstlicher Intelligenz zu tun? Wie ich in dem Beitrag Warum wird GESCHÄFTSMODELL + AI nicht ausreichen? erläutert habe, ist es in Zukunft nicht mehr ausreichend, einfach zu den bestehenden Innovationsprozessen Künstliche Intelligenz hinzuzunehmen. Es kommt eher darauf an, die Möglichkeiten von Künstlicher Intelligenz (Artificial Intelligence) für ganz neue/neuartige Produkte und Dienstleistungen zu nutzen. Ganz im Sinne von AI +. Mit AI meine ich dabei immer Open Source AI.

Projektmanagement: Das geeignete Vorgehensmodell finden

Quelle: Timinger, H.; Seel, C. (2016) nach Boehm und Turner

Im Projektmanagement gibt es in der Zwischenzeit die Erkenntnis, dass es zwischen den beiden Polen “Plangetriebenes Projektmanagement” und Agiles Projektmanagement” sehr viele Möglichkeiten für geeignete Vorgehensmodelle gibt.

Diese für seine Projekte zu analysieren (manchmal auch mehrmals während des Projektverlaufs) ist in Zukunft eine wichtige Aufgabe in Organisationen. Dafür stehen in der Zwischenzeit mehrere Optionen zur Verfügung. Siehe dazu DAS Projektmanagement-Kontinuum in der Übersicht, die für das eigene Projekt anhand verschiedener Kriterien ausgewählt werden können.

Zunächst einmal kann das mit der allseits bekannten Stacey-Matrix erfolgen, die eine einfache Möglichkeit bietet, schnell einen Überblick zu erhalten.

Cinefin wiederum nutzt eher die Wissensperspektive und zu analysieren, welches Vorgehensmodell geeignet erscheint.

Boehm und Turner schlagen vor, ein Projekt nach insgesamt 5 Dimensionen zu charakterisieren (siehe Abbildung): Menschen, Stabile Anforderungen, Kultur, Projektgröße und Gefährdungspotenzial.

Timinger wiederum hat in seinen Veröffentlichungen eine umfangreiche Liste an Kriterien zusammengestellt, die eine noch differenziertere Beurteilung ermöglicht. Siehe dazu Projektmanagement: Einfaches Tool zur Analyse des angemessenen Vorgehensmodells – Planbasiert, Hybrid, Agil.

Überlegen Sie, welche Instrumente für Ihre Organisation genutzt werden sollten. Möglicherweise entwickeln Sie aus den genannten Optionen ein eigenes Analysetool, für Projekte, Programme und Portfolios.

Management 1.0 bis 4.0 und das Agile Manifest

Eigene Darstellung. Quelle: Oswald (2016); GPM-Workshop “Agiles Projekt Management 4.0

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Ähnlich kann auch für das Management argumentiert werden (siehe Abbildung), das sich von einem Management 1.0 (Command and Control, wissenschaftlich) zum Management 2.0 (Markt-Strategien, add on Tools) weiterentwickelt hat, und über das Management 3.0 Komplexität, wissenschaftliche Analogien) zu Management 4.0 (Komplexität als Geschenk, vernetzte Modelle) weiterentwickelt hat. Dabei ist zu beachten, dass in Organisationen oftmals Arbeit 1.0-4.0 und Management 1.0-4.0 vorhanden sind.

Wie in der Abbildung weiterhin zu erkennen ist, stellt das Agile Manifest (Manifest für agile Softwareentwicklung) aus dem Jahr 2001 einen Vorschlag dar, besser mit Komplexität umzugehen. Daraus ist wiederum das Framework Scrum entstanden, wobei der Begriff Scrum in einem Paper aus dem Jahr 1986 geprägt wurde.

Siehe dazu auch Agiles Projektmanagement und das Agile Manifest – passt das wirklich zusammen?

Zwischen >potemkinschem< Lean und empowertem Team

Eigene Darstellung. Quelle: Boes et al. (2018)

Die Abbildung zeigt verschiedene Entwicklungsszenarien von Teams in Organisationen. In einer bürokratischen Kultur wird sich zunächst bürokratisches Team bilden, mit den genannten Eigenschaften und den entsprechenden Vorgaben der Führung.

Die Entwicklung zu einem formalen Lean ergibt die Möglichkeit, in eine agile Kultur überzugehen. An dieser Stelle kann es allerdings auch sein, dass ein potemkinsches Lean entsteht, das wiederum zu einem verbrannten Team führt.

In einer agilen Kultur kann sich ein empowertes Kollektivteam später in Richtung Nachhaltigkeit auf allen Ebenen entwickeln.

Schauen Sie sich die jeweiligen Merkmale an. Finden Sie sich mit Ihrem Team an einer Stelle wieder?

Überraschend: Für ein Auto werden 100 Millionen, und für ein Flugzeug nur 14 Millionen Lines of Code benötigt

Image by ????? from Pixabay

Die etablierten Automobilhersteller haben seit ca. 100 Jahren ein Selbstverständnis (Mindset), das sich hauptsächlich auf die herausragende Hardware eines Autos fokussiert (Stichwort: Spaltmaß). Software war hier ein nützliches Zusatzprodukt. Es ging prinzipiell um

HARDWARE + Software

In den letzten Jahrzehnten wird immer klarer, dass Daten und Informationen, und damit Software, in dem Ökosystem Mobilität eine immer wichtigere Rolle spielen. Viele der etablierten Autohersteller haben daher versucht, den Softwarebereich immer weiter auszubauen, um letztendlich konkurrenzfähige Software im Vergleich zu den Tech-Giganten aus dem Silicon Valley anzubieten.

Viele der Initiativen sind krachend gescheitert. Ein Konzern, der Jahrzehnte lang das Mantra der Hardware propagiert hat, kann Softwareentwicklung scheinbar nicht – zumindest nicht marktgerecht. Doch es gibt auch ein gegenteiliges Beispiel: Der Vergleich der Lines of Code für eine Autos für ein viel größere Flugzeugs (Hardware) führt zu einem überraschenden Resultat:

“Consider this: today’s cars run on about 100 million lines of code—and to put that into perspective, a Boeing 787 Dreamliner runs on just 14 million lines of code. (We know, it shocked us too.) It’s obvious that a physical car defect requires a recall, but software code defects are super costly—especially in the auto industry” (Thomas et al. 2025).

Natürlich stellt sich hier die Frage, warum in einem Auto ca. 7x mehr (im Vergleich zu einem Flugzeug) Lines of Code nötig sind. Liegt es an dem Mindset aus der Hardwareentwicklung, die Softwareentwicklung einfach zu komplex werden lässt?

Es wird weiterhin deutlich, warum sich neue Marktteilnehmer (z.B. aus China) auf Software konzentrieren und die Hardware auf ein modernes Design abstimmen. Daraus entstehen konkurrenzfähige Produkte, die den heutigen Anforderungen (Preis und Leistung) entsprechen. Diese Vorgehensweise folgt der Logik

SOFTWARE + Hardware

Es ist spannend zu beobachten, wie sich die etablierten Automobilkonzerne auf die Herausforderer einstellen, denn diese brauchen keine alten Strukturen abzubauen/umzubauen.

Organisation und Lernen – ein immer noch schwieriges Thema. Warum eigentlich?

Image by Gerd Altmann from Pixabay

Veränderungen in unserem Umfeld bedeuten, dass sich Gesellschaften, Organisationen und einzelne Personen anpassen müssen. Die lieb gewonnenen Routinen auf verschiedenen Ebenen verlieren immer öfter ihre Berechtigung und werden ersetzt. Anpassung bedeutet, dass wir Neues lernen müssen. Siehe dazu auch Reskilling 2030 des World Economic Forum.

Bei dem Wort “Lernen” denken viele an Schule oder Universitäten usw., doch ist Lernen eher als lebenslanger Prozess zu sehen. – auch in (Lernenden) Organisationen. Weiterhin haben sich die Schwerpunkte des Lernens in der letzten Zeit verschoben, denn in Zukunft kommt dem selbstorganisierten Lernen – auch mit Hilfe von Künstlicher Intelligenz – eine bedeutende Rolle zu.

Es ist für mich daher immer noch erstaunlich, wie wenig Organisationen über das Lernen von Mitarbeitern, von Teams, der gesamten Organisation und im Netzwerk wissen. Bezeichnend ist hier, dass das Lernen im beruflichen Kontext oftmals nur als reiner Kostenfaktor gesehen wird (Merkmal der klassischen industriellen Kosten- und Leistungsrechnung).

“In a 2020 BCG study of the learning capabilities of 120 large global companies, only 15% said they granted corporate learning the high priority it deserves. Skills are not linked to corporate strategy. The same BCG study shows that less than 15% of leaders believe that learning constitutes a core part of their company’s overall business strategy” (Quelle).

Das Corporate Learning sollte sich bewusst machen, dass Lernen, Kompetenzentwicklung und Erfolg einer Organisation zusammenhängen. Siehe dazu auch meinen Beitrag Wettbewerbsfähigkeit, Lernen, Kompetenz und Intelligenz hängen zusammen – aber wie?, den ich schon 2013 geschrieben hatte.

Warum wird in den Organisationen darauf zu wenig geachtet, obwohl doch viele Studien und Veröffentlichungen immer dringender auf diese Zusammenhänge hinweisen?

Meines Erachtens liegt es daran, dass viele Führungskräfte nichts von Lernen verstehen und auch keine entsprechende Kompetenzen entwickelt haben. Wie wäre es, wenn Führungskräfte einen Masterabschluss im Bereich Erwachsenenbildung nachweisen müssten? Ich habe meinen Masterabschluss im Bereich der Erwachsenenbildung beispielsweise an der TU Kaiserslautern erfolgreich abgeschlossen. Siehe dazu auch

Lernende Organisation oder Organisationales Lernen?

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Modernes Design sollte User Experience (UX) und Agent Experience (AX) beachten

Der Begriff User Experience (UX) spielt bei der Entwicklung von Produkten und Dienstleistungen eine große Rolle. Etwas kurz ausgedrückt, geht es bei UX um das “Benutzererlebnis” oder auch “Nutzererlebnis”. Dabei wird davon ausgegangen, dass es sich bei dem User um Menschen (Human) handelt.

In Zukunft wird es neben der Interaktion zwischen Technologien und Menschen auch immer mehr Interaktionen zwischen Technologien selbst stattfinden. Am Beispiel von KI-Agenten lässt sich das ganz gut nachvollziehen, denn hier muss das Design auf einen oder mehrere Agenten abgestimmt sein (Agentic Experience: AX). Der folgende Text unterstreicht das noch einmal:

“The designs of tomorrow will have to consider two kinds of users: humans and agents. The agent experience (AX) will be using APIs to compose workflows but now includes desktop interactions” (Thomas et al. 2025).

Ich bin gespannt, wie die UX-Community auf diese Entwicklung reagiert.

Von der Market Economy zur Self-organized Gift Economy

(c) Dr. Robert Freund; Quelle: vgl. Kuhnhenn et al. (2024)

In den verschiedenen gesellschaftlichen Diskussionen geht es oft um den “Markt” mit der entsprechenden Market Economy. Solche Beschreibungen suggerieren eine Homogenität, die es in “dem Markt” nicht gibt. Unternehmen, gerade große Konzerne, möchten allerings gerne, dass die im Markt üblichen unterschiedlichen Wissensströme kontrollierbar und nutzbar sind. Im einfachsten Fall bedeutet das dann: Der Markt ist das Ziel, um Gewinne zu erzielen.

Wie in dem Beitrag Von “Märkte als Ziele” zu “Märkte als Foren” erläutert, gibt es durch die vielschichtigen Vernetzungen der Marktteilnehmer untereinander eine hohe Komplexität und entsprechende Rückkopplungen. Märkte im ersten Schritt eher als Foren zu sehen, könnte hier eine angemessene Perspektive sein.

Wie in der Abbildung zu erkennen ist, ist die heute (2024) übliche Verteilung zwischen Universal Public Services, Market Economy und einer Self-organized Gift Economy deutlich: Die Market Economy dominiert alles, und das eben nicht zum Wohle aller, sondern zum Wohle weniger Personengruppen mit diffusen Vorstellungen davon, wie die “anderen” (Menschen) gefälligst leben sollen.

Demgegenüber gibt es in der Gesellschaft durchaus Bestrebungen, viele Produkte und Dienstleistungen zu entwickeln und anzubieten, die nicht den üblichen “Marktgesetzen” folgen, und eher selbst-organisiert sind. Die von Eric von Hippel seit vielen Jahren veröffentlichten Studien zeigen das beispielsweise bei Innovationen (Open User Innovationen) deutlich auf – und dieser Anteil wird immer größer!

Die von mehreren Autoren veröffentlichte Projektion in das Jahr 2048 zeigt eine deutliche Verschiebung der aktuellen Verteilung zu Gunsten einer Self-organized Gift Economy. Es wundert allerdings nicht, dass die Profiteure der Market Economy sich massiv gegen diese Entwicklung stemmen – mit allen demokratischen, allerdings auch mit nicht-demokratischen Mitteln.

Kuhnhenn et al. (2024): Future for All. A vision for 2048. Just • Ecological • Achievable | PDF

Am Beispiel der Künstlichen Intelligenz ist zu erkennen, dass die Profiteure der Market Economy mit immer neuen KI-Anwendungen Menschen, Organisationen und Nationen vor sich hertreiben und letztendlich abhängig machen wollen. Auf der anderen Seite bietet Künstliche Intelligenz vielen Menschen, Organisationen und Nationen heute die Chance, selbst-organisiert die neuen KI-Möglichkeiten zu nutzen.

Das allerdings nur, wenn Künstliche Intelligenz transparent, offen und demokratisiert zur Verfügung steht. Genau das bietet Open Source AI. Bitte beachten Sie, dass nicht alles, was Open Source AI genannt wird, auch Open Source AI ist! Siehe dazu beispielsweise

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Qualitätsnetzwerk zur Analyse für mögliche Verbesserungen

Qualitätsnetzwerk zur Analyse für mögliche Verbesserungen

Es gibt möglicherweise nichts, oder sehr wenig, was nicht verbessert werden kann. Diese Überlegung mündet in den allseits bekannten Kontinuierlichen Verbesserungsprozess (KVP, oder japanisch Kaizen). Die Frage, die in dem Zusammenhang gleich auftaucht lautet:

Wie kann diese kontinuierliche Verbesserung systematischer gestaltet werden?

Die Abbildung zeigt Ihnen dazu ein geeignetes Netzwerk, in dem die Dimensionen des Ishikawa-Diagramms und des Magischen Dreiecks (Qualität, Zeit und Kosten) in einer Matrix gegenübergestellt werden.

Suchen Sie sich zunächst einen Geschäftsprozess, oder einen Teilprozess aus, und formulieren Sie für die Schnittstellen, die mit den Nummern 1-15 gekennzeichnet sind, geeignete Fragen. Dadurch entsteht eine Art Leitfaden oder auch Checkliste, abgestimmt auf Ihre Organisation.

Wenn Sie “nur” zu jeder Schnittstelle 3-5 Fragen formulieren, kommen Sie dabei schon auf insgesamt 45-75 Möglichkeiten für Verbesserungen.

Probieren Sie es doch einfach einmal aus!