Warum verfehlen viele öffentliche Projekte die ursprünglich geschätzten Kosten?

Quelle: Prudix, D. (2017), in projektmanagementaktuell 3/2017, nach Brand Eins Ausgabe 11/2015

Um die Frage aus der Überschrift des Beitrags aufzunehmen, schauen wir uns zunächst einmal die Tabelle an (Abbildung). Darin sind verschiedene öffentliche Projekte zu sehen, deren voraussichtlichen Kosten geschätzt wurden (Ursprünglich geschätzt in Mio. Euro). Die Realität zeigt jedoch, gravierende Abweichungen (aktuell geschätzte Kosten in Mio. Euro). Wie in der Quelle erwähnt, stammen die Beträge aus dem Jahr 2015.

Dennoch werfen die Unterschiede – teilweise um den Faktor 10 – Fragen auf. Großprojekte der Öffentlichen Verwaltungen stehen oft unter politischen Druck und werden dadurch teilweise “schön gerechnet”. Weiterhin fehlt es der Öffentlichen Hand an der Professionalisierung im Projektmanagement. Da hat sich in den letzten Jahren allerdings sehr viel positiv entwickelt.

Nicht zuletzt sollten wir uns auch klar machen, dass es solche Fehlplanungen nicht nur bei der Öffentlichen Hand, sondern auch bei wirtschaftlich ausgerichteten Organisationen gibt. Wir regen uns allerdings besonders – und berechtigt – darüber auf, wenn Projekte mit Hilfe von Steuergeldern nicht professionell laufen. Diese Verschwendungen im Projektmanagement im öffentlichen Sektor müssen und können reduziert werden.

Der Aspekt der Professionalisierung im Projektmanagement bei der Öffentlichen Hand (Plangetrieben – Hybrid – Agil) kann ein wichtiger Ansatz sein, die gesamte Organisation der Öffentlichen Verwaltung zu modernisieren: Organisationsentwicklung durch mehr projektorientiertes Arbeiten.

Eine moderne und wirtschaftliche Öffentliche Verwaltung mit immerhin mehr als 5 Millionen Mitarbeitern ist aktuell immer noch ein Hemmschuh bei der Lösung der vielen gesellschaftlichen Aufgaben.

Öffentliche Verwaltungen: Die S-O-S-Methode© für Großprojekte

Gegenüberstellung: Öffentliche Verwaltung und Erfolgsfaktoren von Projekten

Öffentliche Projekte: Welche wesentlichen Probleme gibt es im Projektverlauf?

Können öffentliche Infrastrukturprojekte nicht besser durchgeführt werden?

Stärkere Projektorientierung um den Ineffizienzkreislauf bei öffentlichen Verwaltungen zu durchbrechen

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

AI Agents: Langflow (Open Source) auf unserem Server installiert

Das nächste große Ding in der KI-Entwicklung ist der Einsatz von KI-Agenten (AI Agents). Wie schon in vielen Blogbeiträgen erwähnt, gehen wir auch hier den Weg dafür Open Source zu verwenden. Bei der Suche nach entsprechenden Möglichkeiten bin ich recht schnell auf Langflow gestoßen. Die Vorteile lagen aus meiner Sicht auf der Hand:

(1) Komponenten können per Drag&Drop zusammengestellt werden.
(2) Langflow ist Open Source und kann auf unserem eigenen Server installiert werden. Alle Daten bleiben somit auf unserem Server.

Die Abbildung zeigt einen Screenshot von Langflow – installiert auf unserem Server.

Auf der linken Seite der Abbildung sind viele verschiedene Komponenten zu sehen, die in den grau hinterlegten Bereich hineingezogen werden können. Per Drag&Drop können INPUT-Komponenten und OUTPUT-Format für ein KI-Modell zusammengestellt – konfiguriert – werden. Wie weiterhin zu erkennen, ist standardmäßig OpenAI als KI-Modell hinterlegt. Für die Nutzung wird der entsprechende API-Schlüssel eingegeben.

Mein Anspruch an KI-Agenten ist allerdings, dass ich nicht OpenAI mit ChatGPT nutzen kann, sondern auf unserem Server verfügbare Trainingsdaten von Large Language Models (LLM) oder Small Language Models (SML), die selbst auch Open Source AI sind. Genau diesen Knackpunkt haben wir auch gelöst. Weitere Informationen dazu gibt es in einem der nächsten Blogbeiträge. Siehe in der Zwischenzeit auch

Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Digitale Souveränität: Europa, USA und China im Vergleich

Innovationsprojekte: Überwindung von Barrieren durch Promotoren und Gatekeeper

Innovationen zeichnen sich dadurch aus, dass es sich dabei um etwas Neues handelt. Auf dem Weg zu einer Innovation hat ein entsprechendes Projekt (Innovationsprojekt) Widerstände und Barrieren zu überwinden. In diesem Prozess hat es sich bewährt, Promotoren auszumachen, die helfen, diese Barrieren zu überwinden. Das Promotorenmodell von Witte ist hier eine oft erwähnte Hilfestellung. Zusammen mit der Rolle eines Gatekeepers ergeben sich somit die folgenden Schlüsselrollen mit den jeweils typischen Leistungsbeiträgen.

SchlüsselpersonenTypische Leistungsbeiträge
MachtpromotorÜberwinden von „Barriere des Nicht-Wollens“
– Zieldefinition,
– Ressourcenbereitstellung,
– Schutz vor Opponenten,
– Prozesssteuerung
FachpromotorÜberwinden von „Barriere des Nicht-Könnens“, „Barriere des Nicht-Wissens“
– Ideengenerierung,
– Alternativenentwicklung,
– Konzeptevaluierung,
– Implementierung
ProzesspromotorÜberwinden von „Barriere des Nicht-Dürfens“
– Zusammenführung,
– Vermittlung,
– Konfliktmanagement,
– Prozesssteuerung,
– Koordination
BeziehungspromotorÜberwinden von „Barriere des Nicht-Miteinander-Könnens und Nicht-Miteinander-Wollens“
– Informationsaustausch,
– Finden und Zusammenbringen von Interaktionspartnern,
– Koordination,
– Planung und Steuerung von Austauschprozessen,
– Konfliktmanagement
Gatekeeper– Suchen nach und Sammeln von Informationen,
– Filtern von Informationen zur Aufnahme und Ausgabe,
– Informationsaufnahme und -ausgabe,
– Schutz der Organisation vor Informationsüberfluss und externem Druck
Typische Schlüsselpersonen in Innovationsprojekten (Hochbrügge et al 2017, in projektmanagementaktuell 4/2017, verändert nach Gemünden/Hölzle/Lettl (2006)

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

CAIRNE: Non-Profit Organisation mit einer europäischen Perspektive auf Künstliche Intelligenz

Screenshot von der Website https://cairne.eu/

Die viele Informationen zu Künstlicher Intelligenz (KI, AI: Artificial Intelligence) sollen in den meisten Fällen eine bestimmte Blickrichtung auf das Thema herausstellen. In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich werden beispielsweise die drei großen Perspektiven auf die digitale Souveränität dargestellt.

In Europa scheint es einen – im Vergleich zu den USA und China – etwas anderen Ansatz zu geben, der einerseits die Rechte einzelner Bürger und auch von Organisationen berücksichtigt, und nicht so sehr technologiezentriert, sondern human-centred ist. Die europäische Non-Profit Organisationen CAIRNE (Confederation of Laboratories for Artificial Intelligence Research in Europe) möchte mit ihrer Arbeit folgende Punkte erreichen:

> “bring widespread and significant benefits to citizens, industry and society, in the form of alignment with shared values and of the global competitiveness of our economies;
> make major contributions to solving the grand challenges of our time, notably climate change, health and inequality;
> bring into existence AI systems that satisfy the seven trustworthiness criteria defined by the European Union;
> bring critical technology and infrastructure under European democratic control”
CAIRNE and euROBOTICS (2023): Moonshot in Artificial Intelligence: Trustworthy, Multicultural Generative AI Systems for Safe Physical Interaction with the Real World | PDF.

Den oben erwähnten Human-Centered-Ansatz wird nicht nur in Europa immer stärker favorisiert. Auch Japan hat in seiner Vision Society 5.0 auf diesen Schwerpunkt bei der Entwicklung von KI-Systemen hingewiesen:

“By comparison, Society 5.0 is A human-centered society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Ist die Verwendung von Persona das Gegenteil von Mass Customization?

Gerade im Agilen Projektmanagement werden Anforderungen häufig für Persona formuliert. Diese sind nach dem IREB (International Requirements Engineering Board) fiktive Charaktere, mit deren Hilfe Werte für die User geschaffen werden sollen. Dieses Vorgehen erinnert an eine Art Segmentierung aus dem traditionellen Marketing.

Mass Customization auf der anderen Seite ist eine hybride Wettbewerbsstrategie, die individuelle Produkte und Dienstleistungen für jeden Abnehmer – also massenhaft – anbietet, bei Preisen, die denen der massenhaft produzierten Standardprodukten ähneln. Dabei ist der Konfigurator ein wichtiges Element, das passende Produkt in einem Fixed Solution Space (Definierter Lösungsraum) zu erstellen. Die dahinterliegende Idee eines “Market of One” passt nicht so recht mit der Persona-Idee zusammen. Dazu habe ich folgendes gefunden:

“In many ways, a persona is the opposite of mass customization. It’s more traditional marketing thinking about how to deal with a larger number of segments. A “persona of one” is turning the persona idea to its opposite” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

In Zeiten von Künstlicher Intelligenz wird es immer mehr Möglichkeiten geben, Produkte und Dienstleistungen massenhaft zu individualisieren und zu personalisieren. Ob die Verwendung von Persona in solchen eher agil durchzuführenden Projekten dann noch angemessen ist, scheint fraglich zu sein. Siehe dazu auch 

Society 5.0 und Mass Customization

Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

Wir sind dabei: 20 Jahre MCP-CE vom 24.-27.09.2024

Projektmanager/in (IHK) startet am 19.02.2025 bei der IHK Rhein-Neckar in Mannheim

Der von uns entwickelte Blended Learning Lehrgang Projektmanager/in (IHK) startet ab dem 19.02.2025 bei der IHK Rhein-Neckar in Mannheim:

Projektmanager/in (IHK) – Blended Learning Lehrgang (FlyerIHK-Website) 19.02.-26.03.2025, IHK Rhein-Neckar, Mannheim, Ansprechpartnerin: Frau Maibach, Telefon: 0621 1709-852, E-Mail: lisa.maibach@rhein-neckar.ihk24.de  

An den Präsenztagen erarbeiten wir gemeinsam die verschiedenen Themen des Projektmanagements. Der Transfer auf eine Fallstudie findet dann in Projektteams statt. In den Onlinephasen werden die Inhalte vertieft (Online- und Einsendeaufgaben) und die Projektdokumentation weiter in den Projektteams bearbeitet.

Am Ende des Lehrgangs findet der Zertifikatsworkshop statt. Dabei schreiben die Teilnehmer einen Test, geben ihre gemeinsam erarbeitete Projektdokumentation ab und stellen die Ergebnisse in einer Präsentation vor. Dabei gibt es noch die eine oder andere Frage zum Thema.

Informationen zu unseren Lehrgängen, und zu aktuellen Terminen auch an anderen Standorten, finden Sie auf unserer Lernplattform.

LocalAI: KI-Modelle und eigene Daten kombinieren

NEXTCLOUD ASSISTENT – Eigener Screenshot

Wenn Sie die bekannten Trainingsmodelle (LLM: Large Language Modells) bei ChatGPT (OpenAI), Gemini (Google) usw. nutzen, werden Sie sich irgendwann als Privatperson, oder auch als Organisation Fragen, was mit ihren eingegebenen Texten (Prompts) oder auch Dateien, Datenbanken usw. bei der Verarbeitung Ihrer Anfragen und Aufgaben passiert.

Antwort: Das weiß keiner so genau, da die KI-Modelle nicht offen und transparent sind.

Ein wirklich offenes und transparentes KI-Modell orientiert sich an den Vorgaben für solche Modelle, die in der Zwischenzeit veröffentlicht wurden. Siehe dazu beispielsweise Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Um die eigene Souveränität über unsere Daten zu erlangen, haben wir seit einiger Zeit angefangen, uns Stück für Stück von kommerziellen Anwendungen zu lösen. Angefangen haben wir mit NEXTCLOUD, das auf unserem eigenen Server läuft. NEXTCLOUD Hub 9 bietet die Möglichkeiten, die wir alle von Microsoft kennen.

Dazu kommt in der Zwischenzeit auch ein NEXTCLOUD-Assistent, mit dem wir auch KI-Modelle nutzen können, die auf unserem Serverlaufen. Dieses Konzept einer LOCALAI – also einer lokal angewendeten KI – ist deshalb sehr interessant, da wir nicht nur große LLM hinterlegen, sondern auch fast beliebig viele spezialisierte kleinere Trainingsmodelle (SML: Small Language Models) nutzen können. Siehe dazu Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet.

In dem Blogbeitrag LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten haben wir dargestellt, wie im NEXTCLOUD Assistenten mit einer lokalen KI gearbeitet werden kann.

Wie in der Abbildung zu sehen, können wir mit dem NEXTCLOUD Assistenten auch Funktionen nutzen, und auch eigene Dateien hochladen. Dabei werden die Dateien auch mit Hilfe von dem jeweils lokal verknüpften lokalen KI-Modell bearbeitet. Alle Daten bleiben dabei auf unserem Server – ein unschätzbarer Vorteil.

Die Kombination von LOCALAI mit eigenen Daten auf dem eigenen Server macht dieses Konzept gerade für Kleine und Mittlere Unternehmen (KMU) interessant.

Nutzen- und Kostenentstehung bei klassischen und agilen Vorgehensmodellen

Vergleich der Nutzenfeststellung und Kostenentstehung klassischer und agiler Methoden ((Müller/Hüsselmann 2017, in projektmanagementaktuell 2/2017

Klassische und agile Vorgehensmodelle im Projektmanagement unterscheiden sich bei verschiedenen Kriterien. In der Abbildung ist beispielsweise zu sehen, dass bei agilen Vorgehensmodellen, wie z.B. bei Scrum, der Projektnutzen stufenweise ansteigt. Bei Scrum ist das beispielsweise der Fall, da nach jedem Sprint ein Increment vorgestellt wird, das für den User einen Wert (Value) darstellt. Der nächste Sprint baut darauf auf, usw.

Bei klassischen, eher plangetriebenen Vorgehensmodellen steigt der Nutzen erst relativ spät, und eher “drastisch” an. Das geschieht oft in der Umsetzungsphase (Steuerungsphase). Dabei entstehen hier auch die meisten Kosten.

Siehe dazu auch Projektmanagement: Risikobewertung bei klassischen und agilen Vorgehensmodellen.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban?

In unsicheren, turbulenten Zeiten kommen plangetriebene Projekte an ihre Grenzen, da sich Anforderungen und Vorgehensweisen (Methoden/Techniken) oft ändern. Das bisher übliche eher langfristige planen über über mehrere Monate, Quartale und Jahre kommt an seine Grenzen.

Ein eher iteratives Vorgehen in eher kürzeren Zyklen bietet sich gerade bei Entwicklungsprojekten und hier besonders bei der Softwareentwicklung an. Das Agile Manifest und das Scrum-Framework sind entsprechende Antworten auf diese Entwicklungen. Im Vergleich zum plangetrieben Vorgehen, schlägt der Scrum-Guide vor, Produkte (Increments) maximal in einem Monat zu entwickeln. Die Praxis zeigt, dass Organisationen sogar zu 14-tägigen Zyklen tendieren.

In Zeiten von Künstlicher Intelligenz (KI) können allerdings gerade Software-Produkte immer schneller entwickelt und als Produkt (Increment) vorgestellt werden. das kann schon in wenigen Tagen, ja in wenigen Minuten erfolgen.

Was bedeutet das für das Scrum-Framework?

Gehen wir von dem Gedanken aus, dass Künstliche Intelligenz in immer schnelleren und kürzeren Zyklen Produkte generieren kann, wird der Scrum-Zyklus eher zu einem permanenten Fluss an Produkten – und somit eher zu einem Vorgehen, das wir aus Kanban kennen.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Projektmanagement: Risikobewertung bei klassischen und agilen Vorgehensmodellen

Vergleich der Projektrisikobewertung klassischer und agiler Methoden (Müller/Hüsselmann (2017), in projektmanagementaktuell 2/2017, in Anlehnung an Komus 2016)

In der Abbildung sehen Sie auf der Y-Achse das Projektrisiko abgebildet, das zu Beginn eines klassischen Projekts relativ hoch ist, und sich dann bei den verschiedenen Zeitpunkten der Risikobewertung reduzieren sollte. Es wird bei der Darstellung deutlich, dass das Projektrisiko zunächst langsam sinkt und dann rapide abnimmt, je mehr alle Projektbeteiligten über das Projekt Wissen. Siehe dazu auch Cone of Uncertainty.

Bei agilen Vorgehen haben wir über die Zeit eine stufenweise Abnahme des Projektrisikos von Beginn an. Durch die iterative Arbeitsweise, z.B. in Sprints, reduziert sich das Projektrisiko in “kleinen Häppchen”, an den verschiedenen Zeitpunkten – beispielsweise durch das Review am Ende eines jeden Sprints. Es wird auch hier deutlich, dass agile Vorgehensweisen Vorteile haben, wenn es um innovative Projekte geht, bei denen oft das Wissen über das Produkt und die Methoden unklar sind.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.