Künstliche Intelligenz und Projektmanagement

Laroque, C. et al. (2019): Potenziale erschließen durch Künstliche Intelligenz im Projektmanagement: In: projektmanagementaktuell 3/2019

Die Digitalisierung wirkt sich in allen Bereichen der Gesellschaft aus – natürlich auch im Projektmanagement. Viele Projektmanagement-Tätigkeiten werden schon lange durch verschiedene digitale Tolls unterstützt. Wir kennen die einfachen Möglichkeiten, die z.B. das Office-Paket mit Word, Excel, Power Point. MS Project, Planner, SharePoint, MS Teams usw. bieten. Ähnliche Möglichkeiten gibt es als Open Source Lösungen wie Open Office, BigBlueButton, Nextcloud, OpenProject usw. Dabei geht der Trend von einfacher Software und Social Media Anwendungen mit Schnittstellen zu den bekannten ERP-Anwendungen zu ganzen Kollaborationsplattformen. Zu diesen Zusammenhängen finden Sie in unserem Blog viele Beiträge (Bitte die Suchfunktion nutzen).

Die ganze Entwicklung geht allerdings dynamisch weiter, da der Trend “Künstliche Intelligenz” auch vor dem Projektmanagement nicht halt macht. Projektmanagement wird dabei in verschiedenen Normen, Standards und Vorgehensmodellen (Plangetrieben – Hybrid – Agil) beschrieben. Gehen wir von dem IPMA-Standard aus, so kann aufgrund der PM-Phasen und der funktionalen Gliederung des Projektmanagements systematisch analysiert werden, wie KI das Projektmanagement unterstützen kann. Laroque, C. et al. (2019) haben das in ihrem Beitrag “Potenziale erschließen durch Künstliche Intelligenz im Projektmanagement: In: projektmanagementaktuell 3/2019” ausführlich dargestellt. Hier ein Auszug:

“Bereits in der Vorbereitungsphase tauchen hier wichtige Aktivitäten auf, die durch intelligente Methoden bereichert werden können. Dazu gehört ganz klar die Förderung von Kreativität und Innovation, u. a. für die Findung von Projektideen, beispielsweise durch kognitive Systeme. Auch das Erstellen des eigentlichen Projektantrages kann durch KI vereinfacht werden, indem ein lernendes System die inhaltlich relevanten Fakten aus vorhandenen Datenbeständen filtert und zusammenstellt, einen Stand der Forschung erhebt, die formalen Anforderungen des Projektantrages erfüllt sowie Zuständigkeiten und Ziele klärt.” (ebd.)

An dieser Stelle möchte ich auf meinen Vortrag (Special Keynote) auf der Weltkonferenz MVPC 2015 in Montreal (Kanada) verweisen, in dem ich den Einfluss von Künstlicher Intelligenz auf das Innovationsmanagement (Open Innovation) aufgezeigt habe. Veröffentlicht wurde der Beitrag ein Jahr später bei Springer in den Conference Proceedings.

Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

HR Performance 2/2016: Wie verändert Cognitive Computing die HR-Landschaft? (Blogbeitrag mit PDF).

In dem von uns entwickelten Blended Learning Lehrgang Projektmanager/in Agil (IHK) gehen wir auch auf solche Zusammenhänge ein. Weitere Informationen finden Sie auf unserer Lernplattform.

Hybrid Intelligence: Menschliche und künstliche Intelligenz

Der Begriff “Intelligenz” wird sehr oft und in verschiedenen Zusammenhängen verwendet. Es geht einerseits um die menschliche Intelligenz (Human Intelligence) und andererseits auch um Künstliche Intelligenz (KI) oder Artificial Intelligence (AI). Dabei werden immer wieder (dumme Fragen) zum Entweder-Oder gestellt – also in dem Sinne: Was ist besser, menschliche Intelligenz oder Künstliche Intelligenz?

Wir leben in einer Zeit der reflexiven Modernisierung, bei der es zu Entgrenzung und Kontingenz in allen Bereichen kommt – auch bei dem Konstrukt “Intelligenz”. Es ist daher nicht erstaunlich, dass sich das Center for Hybrid Intelligence gerade damit befasst, wie menschliche und künstliche Intelligenz in einer hybriden Form betrachtet werden können. Auf der Website wird darauf hingewiesen, dass divergentes und konvergentes Denken für kreative Prozesse wichtig sind. Neben dem Begriff der “Intelligenz” kommt somit noch der Begriff “Kreativität” hinzu. Geht man davon aus, dass diese Begriffe ineinander spielen, vom jeweiligen Kontext abhängig sind, und auf verschiedenen Ebenen wie Individuum, Gruppe, Organisation und Netzwerk wirksam werden können wird deutlich, wie umfangreich der Forschungsgegenstand ist.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer und Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk. Dissertation, Verlag Dr. Kovac.

Zukunftsbilder für Arbeit in Büros und Produktion

In den verschiedenen wissenschaftlichen Diskussionen geht es einerseits um die Digitalisierungsstrategie und andererseits um die Aufgabenkomplexität. Die folgende Übersicht zeigt beispielhaft, welche Zukunftsbilder sich daraus für Büros und Produktion ergeben.

PolarisierungUpgrading
AssistenzAngelerntenarbeitFach- und Wissensarbeit
SubstitutionVollautomatisierungProzessbetreuung
Quelle: Korge et al. 2016, zitiert in Korge, A.; Marrenbach, D. (2018:9)

“Ausgangspunkt für die Konzeption der Zukunftsbilder sind zwei aktuelle, wissenschaftliche Diskussionen. Die erste Diskussion betrachtet die Digitalisierungsstrategie. Sie unterscheidet, ob die Digitalisierung eine Ersetzung (Substitution) menschlicher Arbeit oder eine Unterstützung des arbeitenden Menschen (Assistenz) anstrebt. Die zweite Diskussion behandelt die Entwicklung von Aufgabenkomplexität und Qualifikationen bei den Beschäftigten. Unterschieden wird zwischen Aufwertung (Upgrading) und Aufspaltung (Polarisierung)” (Korge/Marrenbach 2018:9).

Interessant dabei ist, dass die einzelnen Zukunftsbilder gut voneinander abgrenzbar sind, und zu verschiedenen Anforderungen an die Mitarbeiter und an die Organisation führen. Weiterhin ist davon auszugehen, dass Unternehmen oftmals ein Mix der verschiedenen Arbeitsfelder zu bewältigen haben, was zu einer ambidexteren Organisation führt. Siehe dazu auch Projektmanagement: Agil, hybrid, klassisch?

Was sind eigentlich mögliche Aufgabengebiete der Künstlichen Intelligenz?

Group of people with devices in hands working together as symbol of networking and communication

Die Geburtsstunde von “Künstlicher Intelligenz” geht auf einen Konferenzbeitrag von McCarthy im Jahr 1955 zurück. In der Zwischenzeit gibt es durch die vielen neuen technischen Möglichkeiten zwar immer wieder Definitionsversuche, doch immer noch keine einheitliche und anerkannte Definition. Was allerdings klar erscheint sind die verschiedenen Aufgabengebiete, die für eine Künstliche Intelligenz geeignet erscheinen. Russell und Norvig unterscheiden hier acht Aufgabengebiete (vgl. Russell und Norvig 2012; Peissner et al. 2019), zitiert in Fraunhofer IAO 2020:11-12):

  • Lernen
  • Problemlösung durch Suchen
  • Planen
  • Robotik
  • Entscheidung
  • Wissensrepräsentation
  • Wahrnehmung
  • Spracherkennung

Anhand dieser Auflistung wird deutlich, dass Künstliche Intelligenz viele Tätigkeiten in unserem gesellschaftlichen und wirtschaftlichen Leben beeinflussen kann. Es geht hier allerdings nicht immer um komplette Jobs, die infrage gestellt werden, sondern auch um Tätigkeitsportfolios, die in einzelnen Jobs oder in Prozessketten von KI profitieren können. Hier ein Beispiel:

Populär wurden in jüngster Zeit Anwendungen wie beispielsweise KI-gestützte »Chatbots«. Dies sind Programme, die eine Konversation mit Nutzern führen können. Social Chatbots agieren in sozialen Netzwerken wie Facebook und Twitter (vgl. Edwards 2016). Anwendungsgebiete sind u.a. Bestellungen (z.B. Pizza-Service), Antworten auf Kundenanfragen zu Prozessen (Paketdienste) und Bearbeitung von Beschwerden (Fraunhofer IAO 2020:13).

Intelligente Organisation oder Organisationale Intelligenz? Was soll das sein?

Image by Gerd Altmann from Pixabay

Wenn wir über Intelligenz oder Dummheit sprechen, geht es oft einerseits um intelligente Menschen und anderseits um intelligente maschinelle Systeme wie maschinelles Lernen oder Künstliche Intelligenz. In Unternehmen/Organisationen oder weiter gefasst, in Systemen geht es allerdings auch darum, die verschiedenen Facetten der Intelligenz zu fördern und für Werte zu nutzen. Bei Organisationen kommen die beiden Perspektiven “Intelligent Organization” und “Organizational Intelligence” ins Spiel.

Within this field two major research communities can be found. The first on has been established around the annual Hawai International Conference on System Sciences (HICSS), starting from a tutorial on “Intelligent Organizations” presented by G. P. Huber in 1987. The second has its roots in Japan, where T. Matsuda is developing towards a holistic approach of what he calls “Organizational Intelligence” (…). In contrast of others he [Matsuda 1988, 1991, 1992] stresses that machine learning is an integral part of the intelligence of an organization (vgl. Kirn 1996:141).

Die Organisationale Intelligence nach Matsuda integriert menschliche Intelligenz und (heute) Künstliche Intelligenz. Ich würde dabei noch ergänzen, dass dies nicht nur auf der organisationalen Ebene, sondern auch auf der individuellen Ebene, bei Teams und in Netzwerken außerhalb der Organisation eine Rolle spielt. In Meinem Buch Freund, R. (2011): das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk habe ich diesen Ansatz auch mit Hilfe der Theorie der Multiplen Intelligenzen beschrieben.

Ist Wissensmanagement 4.0 ein hybrides Wissensmanagement?

Group of people with devices in hands working together as symbol of networking and communication

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Weiterhin gehen die Autoren davon aus, dass ein Wissensmanagement 4.0 operativ und strategisch unterstützend – und somit ambidexter – sein sollte.

Dem Konzept der „Beidhändigkeit“ (Ambidexterity, Tushman und O’Reilly 1996) folgend muss das Wissensmanagement sowohl aus operativer Perspektive die optimale Nutzung von Wissen für das aktuelle Geschäft sicherstellen („Exploitation“) als auch aus strategischer Perspektive das Wissen und die Lernfähigkeit für das zukünftige Geschäft entwickeln („Exploration“) (North/Maier 2018).

Dieses ambidextere Element von Wissensmanagement 4.0 erinnert stark an andere hybride Vorgehensweisen, die immer stärker in den Fokus rücken. Es handelt sich dabei beispielsweise um die hybride Wettbewerbsstrategie Mass Customization oder aber um das hybride Projektmanagement.

Abschließend würde ich noch folgende Punkte ergänzen:

  • Künstliche Intelligenz und Wissensmanagement.
  • Erweiterung der drei genannten Ebenen Individuum, Gruppe Organisation um die Ebene Netzwerk.
  • Bewertung des Wissenssystems mit Hilfe der Wissensbilanz – Made in Germany.
  • Abgrenzung zu einem Kompetenzmanagement auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – siehe dazu Freund (2011).

Künstliche Intelligenz einfach erklärt

In der Veröffentlichung BMBF (2020): Künstliche Intelligenz (PDF) wird auf relativ einfache weise erläutert, um was es bei dem Begriff “KI” geht. Interessant ist, dass der Begriff schon 1956 von John McCarthy kreiert wurde, und in der Zwischenzeit folgende Bedeutung hat:

Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie erforscht Mechanismen, die intelligentes menschliches Verhalten simulieren können. Das beinhaltet zum Beispiel, eigenständig Schlussfolgerungen zu ziehen, angemessen auf Situationen zu reagieren
oder aus Erfahrungen zu lernen (S. 4).

Der Bezug zu einem intelligenten menschlichen Verhalten wirft bei mir die Frage auf, was darunter, und unter menschlicher Intelligenz zu verstehen ist. Ist es der ´berühmt-berüchtigte´Intelligenz-Quotient (IQ), der als Gegenpol zur Künstlichen Intelligenz (KI) gesehen wird, oder sind es auch die verschiedenen Facetten einer Emotionalen Intelligenz (EQ), oder sogar Multiple Intelligenzen (nach Howard Gardner). Der Intelligenz-Begriff war schon in der Vergangenheit wichtig, und scheint in komplexen Settings immer wichtiger zu werden. 

Maschinelles Lernen: Aktueller Stand (Fraunhofer-Studie)

Die Veröffentlichung Fraunhofer (2018): Maschinelles Lernen: Kompetenzen, Forschung, Anwendung (PDF) zeigt den aktuellen Stand der Diskussion, die manchmal von Laien tendenziell beeinflusst wird, um Stimmung (Für und Wider) zu machen. Hilfreich ist auch das umfangreiche Glossar, das die wichtigsten Begriffe (Konstrukte) beschreibt. Beispielhaft ist hier die Definition für Maschinelles Lernen genannt, die auch für das Wissensmanagement eine immer wichtigere Rolle spielt:

Maschinelles Lernen bezweckt die Generierung von Wissen aus Erfahrung, indem Lernalgorithmen aus Beispielen ein komplexes Modell entwickeln. Das Modell kann anschließend auf neue, potenziell unbekannte Daten der selben Art angewendet werden. Damit kommt das Maschinelle Lernen ohne manuelle Wissenseingabe oder explizite Programmierung eines Lösungswegs aus (S. 44).

Künstliche Intelligenz treibt Innovationen

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Studie: Künstliche Intelligenz und die Zukunft der Arbeit

künstliche-Intelligenz

Die Studie IIT (2017): Wie sieht die Zukunft der Arbeit aus? (PDF, November 2017) befasst sich mit den Auswirkungen der Künstlichen Intelligenz. Die Veröffentlichung zeigt, welche Chancen und Risiken zu erwarten sind. Es kommt – wie immer – darauf an, was wir daraus machen (S.23):

Künstliche Intelligenz kann vielfältige Rollen und Funktionen im Arbeitsprozess übernehmen. Darunter sind eher positiv besetzte Rollen der Unterstützung, Beratung und Information, und
eher negativ besetzte Rollen wie zum Beispiel die der Kontrolle, Überwachung und Bevormundung. Die Frage, die wir uns daher stellen müssen lautet: Wie müssen KI-Systeme und ihre Einsatzszenarien aussehen, damit die künftige Arbeitswelt menschengerecht und gesellschaftlich akzeptabel gestaltet werden kann?

Siehe dazu auch Welche Veränderung erfährt Wissensarbeit durch neue Technologien? In den von uns entwickelten Blended Learning Lehrgängen gehen wir auch auf diese Themen ein. Weitere Informationen finden Sie auf unserer Lernplattform.