In dem Blogbeitrag Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century hatte ich darauf hingewiesen, dass es falsch ist zu behaupten, dass die USA innovativ sind, und die Europäische Union nur reguliert. Diese Plattitüde wird immer wieder von den Tech-Giganten aus den USA verwendet – allerdings wird die Aussage dadurch nicht richtiger.
Auch Japan (Society 5.0) oder Indien (IndiaAI) gehen dazu über, Künstliche Intelligenz in einer Form zu regulieren, dass die Gesellschaft die Vorteile nutzen kann, und die Nachteile reduziert werden. Doch nicht nur die EU und diese beiden Länder sind in Sachen Künstlicher Intelligenz aktiv. Stellt man die Aktivitäten weltweit zusammen, ist es erstaunlich zu sehen, wie vielfältig mit Künstlicher Intelligenz umgegangen wird.
In diesem Zusammenhang ist die Website Regulations.AI interessant, da dort die Informationen zum jeweiligen Stand in einer Region oder in einem Land übersichtlich zusammengefasst sind. Die Website wird von dem schweizer Unternehmen Smittek GmbH betrieben: Terms of Use.
Alles ist heute mit allem irgendwie vernetzt, sodass auf allen Ebenen Entgrenzung stattfindet, die wiederum zu Komplexität in allen Bereichen einer Gesellschaft führt. Dabei sollten wir die eher „technische“ Komplexität von der sozialen Komplexität unterscheiden.
Es ist in dem Zusammenhang interessant, dass „Geistes- und Sozialwissenschaften besonders gut geeignet sind, (1) die Entwicklung sozialer Komplexität zu beschreiben und (2) das gesellschaftliche Schema, innerhalb dessen die Sinngebung erfolgt, neu zu gestalten“ (Blogbeitrag).
Dabei stellt sich sofort die Frage: Wie kann soziale Komplexität bewältigt werden? Dazu habe ich bei bei John Erpenbeck folgendes gefunden:
„Ein besonderer Anstoß für mich war Hermann Hakens Artikel „Synergetik und Sozialwissenschaften“ in der Zeitschrift Ethik und Sozialwissenschaften (Haken / Wunderlin 2014). Er legte nahe, Werte als – von ihm so genannte – „Ordner“ sozialer Komplexität zu verstehen. Ohne solche Ordner wird Komplexität nicht beherrschbar. Sie sind zugleich zufällig und notwendig. Sie haben ihre Wirklichkeit jedoch nur, wenn sie durch Einzelne verinnerlicht und gelebt werden. Werte sind damit stets Ordner individueller oder kollektiver, physischer oder geistiger menschlicher Selbstorganisation. Kurz: Werte sind Ordner menschlicher Selbstorganisation (Haken 1996). Nicht alle Ordner sind Werte, aber alle Werte sind Ordner im Sinne von Haken (1983)“ (Erpenbeck, J. (2024): Werte als Inseln zeitlicher Stabilität im Fluss selbstorganisierter sozialer Entwicklungen, in Störl (Hrsg.) (2024): Zeit als Existenzform der Materie).
Es wundert daher nicht, dass Werte in allen möglichen Zusammenhängen thematisiert werden. Aktuell geht es beispielsweise bei der Nutzung der Künstlicher Intelligenz darum zu klären, ob wir die Werte der amerikanischen Tech-Konzerne, die Werte der chinesischen Politik oder unsere europäischen Werte als Ordner für soziale Komplexität nutzen wollen.
In unserem Blog habe ich schon oft über die notwendige Digitale Souveränität von einzelnen Personen, Organisationen und Länder geschrieben. Es wird dabei immer deutlicher, dass wir in Europa Modelle benötigen, die nicht vom Mindset amerikanischer Tech-Konzernen oder vom Mindset chinesischer Politik dominiert werden, und auf Open Source Basis zur Verfügung stehen.
So etwas soll nun mit SOOFI (Sovereign Open Source Foundation Models) entwickelt werden. In der Abbildung ist der prinzipielle Aufbau zu erkennen. Auf Basis geeigneter Daten können Foundation Models an die jeweiligen Bedürfnisse ganzer Branchen angepasst werden. Darauf aufbauend, schließen sich u.a. auch AI Agenten an.
„Ein wichtiger Schritt für die europäische KI-Souveränität: Unter SOOFI arbeiten zukünftig Wissenschaftlerinnen und Wissenschaftler aus 6 führenden deutschen Forschungseinrichtungen zusammen, um souveräne europäische Alternativen zu KI Technologien aus den USA und China bereitzustellen. Der Fokus liegt darin, mit den Modellen einen Beitrag für die industrielle Nutzung von KI zu leisten“ (Quelle: Pressemitteilung | PDF).
Es ist schon manchmal zum Volkssport geworden, Europa für alles verantwortlich zu machen, was nicht so gut läuft. Dabei wird oft übersehen, dass wir gerade in Deutschland von unseren europäischen Partnern abhängig sind, und nur mit ihnen gemeinsam die großen Herausforderungen bewältigen können. Dabei steht Europa zwischen den USA und China,
Gerade wenn es um die technologischen Entwicklungen geht, werden wir in Europa oft mit den USA und China verglichen. Dabei kommt heraus, dass wir „weit hinter“ den beiden Großmächten liegen. Es ist immer leicht, sich einen Teil des gesellschaftlichen Lebens herauszufiltern und diesen dann zu bewerten, ohne die Zusammenhänge zu betrachten. Neben den technologischen Entwicklungen geht es auch die sozialen Zusammenhänge in Gesellschaften. Alles ist eben mit allem vernetzt.
„While the world often focuses on the rivalry between the U.S. and China, Europe has steadily built a different path: one defined by high living standards, strong public institutions, universal healthcare, and a commitment to sustainability and human rights. Its cities lead in quality of life, its democracies remain among the most robust, and its cultural and regulatory influence—exemplified by GDPR, climate policy, and social protections—extends globally.
In contrast, the United States, though still dominant in innovation, faces mounting internal challenges: political dysfunction, social fragmentation, inequality, and mistrust in institutions. The dynamism of Silicon Valley and Wall Street has come at the cost of social cohesion and civic faith“ (Bris 2025).
Ist es wirklich so erstrebenswert den Elons Musks, Sam Altmans, Donald Trumps, Peter Thiels, usw. usw. hinterherzurennen? Manche, die das relativ blind machen, sollten kurz innehalten und nachdenken.
Immer mehr Privatpersonen, Organisationen, Verwaltungen usw. überlegen, wie sie die Möglichkeiten der Künstlichen Intelligenz nutzen können. Dabei gibt es weltweit drei grundsätzlich unterschiedliche Richtungen: Der US-amerikanische Ansatz (Profit für wenige Unternehmen), der chinesische Ansatz (KI für die politische Partei) und den europäischen Ansatz, der auf etwas Regulierung setzt, ohne Innovationen zu verhindern. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.
Es freut mich daher sehr, dass es in Europa immer mehr Initiativen gibt, die Künstliche Intelligenz zum Wohle von Bürgern und der gesamte Gesellschaft anbieten möchten – alles Open Source. Das in 2023 gegründete Unternehmen Mistral AI hat so einen Ansatz, der jetzt in der Initiative AI for Citizens eine weitere Dynamik bekommt, und einen Gegenentwurf zu den Angeboten der bekannten Tech-Giganten darstellt:
„Empowering countries to use AI to transform public action and catalyze innovation for the benefit of their citizens“ (Quelle).
Dabei listet die Website noch einmal ausführlich die Nachteile der „One size fits all AI“ auf, die vielen immer noch nicht bewusst sind.
Informieren Sie sich über die vielen Chancen, Künstliche Intelligenz offen und transparent zu nutzen und minimieren Sie die Risiken von KI-Anwendungen, indem Sie offene und transparente Trainingsmodelle (Large Language Models; Small Language Models) und KI-Agenten nutzen. Siehe dazu auch
Wir sind uns alle einig, dass Daten eine bedeutende Ressource für einzelne Personen, Unternehmen, Organisationen und ganze Gesellschaften darstellen. Einerseits müssen Daten offen verfügbar sein, andererseits allerdings auch geschützt werden. Insofern macht es Sinn, verschiedene Kategorien für Daten zu unterscheiden:
„Open data: data that is freely accessible, usable and shareable without restrictions, typically under an open license or in the Public Domain36 (for example, OpenStreetMap data); Public data: data that is accessible to anyone without authentication or special permissions (for example, Common Crawl data). Note that this data can degrade as web content becomes unavailable; Obtainable data: data that can be obtained or acquired through specific actions, such as licensing deals, subscriptions or permissions (for example, ImageNet data); Unshareable non-public data: data that is confidential or protected by privacy laws, agreements or proprietary rights and cannot be legally shared or publicly distributed“ (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).
Es zeigt sich, dass es viele frei verfügbare Daten gibt, doch auch Daten, die geschützt werden sollten.
Die amerikanischen Tech-Konzerne möchten alle Daten für ihre Trainingsdatenbanken (LLM: Large Language Models) kostenlos nutzen können. Das Ziel ist hier, die maximale wirtschaftliche Nutzung im Sinne einiger weniger Großkonzerne. Dabei sind die Trainingsdaten der bekannten KI-Modelle wie ChatGPT etc. nicht bekannt/transparent. Die Strategie von Big-Tech scheint also zu sein,: Alle Daten „abgreifen“ und seine eigenen Daten und Algorithmen zurückhalten. Ein interessantes Geschäftsmodell, dass sehr einseitig zu sein scheint.
Bei der chinesische Perspektive auf Daten liegt der Schwerpunkt darauf, mit Hilfe aller Daten politische Ziele der Einheitspartei zu erfüllen. Daran müssen sich alle Bürger und die Unternehmen – auch die KI-Unternehmen – halten.
In Europa versuchen wir einen hybriden Ansatz zu verfolgen. Einerseits möchten wir in Europa Daten frei zugänglich machen, um Innovationen zu fördern. Andererseits wollen wir allerdings auch, dass bestimmte Daten von Personen, Unternehmen, Organisationen und Öffentlichen Verwaltungen geschützt werden.
An dieser Stelle versucht die aktuelle amerikanische Regierung, Druck auf Europa auszuüben, damit Big-Tech problemlos an alle europäischen Daten kommen kann. Ob das noch eine amerikanische Regierung ist, oder nicht schon eine kommerziell ausgerichtete Administration wird sich noch zeigen. Das letzte Wort werden wohl die Gerichte in den USA haben.
Ich hoffe, dass wir in Europa unseren eigenen Weg finden, um offene Daten in großem Umfang verfügbar zu machen, und um gleichzeitig den Schutz sensibler Daten zu gewährleisten.
Es wundert daher nicht, dass sich die neue Regierung in den USA darüber beschwert, dass Europa die Entwicklung und Nutzung Künstlicher Intelligenz in Schranken regulieren will. Ich hoffe, Europa ist selbstbewusst genug, sich diesem rein marktwirtschaftlich ausgerichteten Vorgehen der USA zu widersetzen, ohne die Möglichkeiten einer Nutzung und Entwicklung von Künstlicher Intelligenz zu stark einzuschränken. Der Einsatz Künstlicher Intelligenz wird gravierende gesellschaftliche Veränderungen nach sich ziehen, sodass es auch erforderlich, gesellschaftlich auf diese Entwicklung zu antworten.
Neben China und den USA kann es Europa durchaus gelingen, beide Schwerpunkte (USA: Kapital getrieben, China: Politik getrieben) zur Nutzung von Künstliche Intelligenz in einem Hybriden Europäischen KI-Ansatz zu verbinden. Das wäre gesellschaftlich eine Innovation, die durchaus für andere Länder weltweit interessant sein könnte.
Open Euro LLM ist beispielsweise so eine Initiative, die durchaus vielversprechend ist. Wie in dem Screenshot zur Website zu erkennen ist, setzt man bei Open Euro LLM auf Offenheit und Transparenz, und auch auf europäische Sprachen in den Trainingsdatenbanken der Large Language Models (LLM). Beispielhaft soll hier der Hinweis auf Truly Open noch einmal herausgestellt werden:
Truly Open including data, documentation, training and testing code, and evaluation metrics; including community involvement
In Zukunft wird es meines Erachtens sehr viele kleine, spezialisierte Trainingsdatenbanken (SLM: Small Language Models) geben, die kontextbezogen in AI-Agenten genutzt werden können. Wenn es um Kontext geht, muss auch die kulturelle Vielfalt Europas mit abgebildet werden. Dabei bieten sich europäische Trainingsdatenbanken an. Siehe dazu auch
Seit Jahren und Jahrzehnten begeben wir uns in Deutschland in eine digitale Abhängigkeit, die für viele Menschen, Organisationen und die ganze Gesellschaft nicht gut ist.
Einzelne Personen merken immer mehr, wie digital abhängig sie von Facebook, X (ehemals Twitter), Instagram, WhatsApp, Twitch, TikTok usw. usw. sind. Ähnlich sieht es auch bei Unternehmen aus:
„90 Prozent der Unternehmen sind vom Import digitaler Technologien und Services aus anderen Ländern abhängig, insbesondere aus den USA und China“ (Bitkom 2025).
Auch unsere Verwaltungsstrukturen haben sich an diese digitale Abhängigkeit begeben.
Durch diese Entwicklungen fällt es allen schwer, von dieser digitalen Abhängigkeit loszukommen. Ein Verhalten, das Abhängige grundsätzlich haben. Wie wir aus der Theorie der Pfadabhängigkeit wissen, kommt es im Aneignungsprozess z.B. digitaler Anwendungen zu einer Art Lock-in. Es fällt dann allen Beteiligten schwer, aus dem gewohnten Umfeld wieder herauszukommen.
Kann man nichts machen, oder? Doch! Auf europäischer Ebene gibt es seit längerem die Erkenntnis, dass wir in Europa wieder zu einer Digitalen Souveränität kommen müssen.
In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich wird deutlich gemacht, dass Europa, die USA und China unterschiedliche Ansätze bei dem Thema Digitale Souveränität haben. Diese grundsätzlichen Unterschiede zeigen sich auch in den vielen Large Language Models (Trainingsdatenbanken), die für KI-Anwendungen benötigt werden.
Es wundert daher nicht, dass in dem Paper Buyl et al. (2024): Large Language Models Reflect The Ideology of their Creators folgende Punkte hervorgehoben werden:
„The ideology of an LLM varies with the prompting language.“
In dem Paper geht es um die beiden Sprachen Englisch und Chinesisch für Prompts, bei denen sich bei den Ergebnissen Unterschiede gezeigt haben.
„An LLM’s ideology aligns with the region where it was created.“
Die Region spielt für die LLMs eine wichtige Rolle. China und die USA dominieren hier den Markt.
„Ideologies also vary between western LLMs.“
Doch auch bei den „westlichen LLMs“ zeigen sich Unterschiede, die natürlich jeweils Einfluss auf die Ergebnisse haben, und somit auch manipulativ sein können.
Die Studie zeigt wieder einmal, dass es für einzelne Personen, Gruppen, Organisationen oder auch Gesellschaften in Europa wichtig ist, LLMs zu nutzen, die die europäischen Sprachen unterstützen, und deren Trainingsdaten frei zur Verfügung stehen. Das gibt es nicht? Doch das gibt es – siehe dazu
Immer mehr Privatpersonen und Organisationen realisieren, dass die populären Trainingsdaten (LLM: Large Language Models) für ChatGPT von OpanAI, oder auch Gemini von Google usw., so ihre Tücken haben können, wenn es beispielsweise im andere oder um die eigenen Urheberrechte geht. In diesem Punkt unterscheiden wir uns in Europa durchaus von den US-amerikanischen und chinesischen Ansätzen. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich. Darüber hinaus liegen die Daten der bekannten (closed source) LLMs zu einem überwiegenden Teil in englischer oder chinesischer Sprache vor.
„Multilingual, open source models for Europe – instruction-tuned and trained in all 24 EU languages…. Training on >50% non English Data. (…) This led to the creation of a custom multilingual tokenizer“ (ebd.).
Neben der freien Verfügbarkeit (Open Source AI) (via Hugging Face) ist somit ein großer Pluspunkt, dass eine große Menge an Daten, nicht englischsprachig sind. Das unterscheidet dieses Large Language Model (LLM) sehr deutlich von den vielen englisch oder chinesisch dominierten (Closed Source) Large Language Models.
Insgesamt halte ich das alles für eine tolle Entwicklung, die ich in der Geschwindigkeit nicht erwartet hatte!
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.