Open Source: Nextcloud-Assistent und Künstliche Intelligenz (KI)

Bei den verschiedenen kommerziellen Anwendungen ist es fast schon Standard, dass Assistenten eingeblendet und angewendet werden, um Künstliche Intelligenz in den jeweiligen Prozess oder Task zu nutzen. Dabei ist immer noch weitgehend unklar, welche Trainingsdaten bei den verschiedenen Trainingsdatenbanken (LLM: Large Language Models) genutzt werden, und was beispielsweise mit den jeweils eigenen Eingaben (Prompts) passiert. Nicht zuletzt werden sich die kommerziellen Anbieter die verschiedenen Angebote mittelfristig auch gut bezahlen lassen.

Es kann daher nützlich sein, Open Source AI zu nutzen.

Praktisch kann das mit NEXTCLOUD und dem darin enthaltenen Nextcloud-Assistenten umgesetzt werden. Jede Funktion (Abbildung) kann man mit einer Traingsdatenbank verbinden, die wirklich transparent und Open Source ist. Solche Trainingsdatenbanken stehen beispielsweise bei Hugging Face zur Verfügung. Darüber hinaus bleiben alle Daten auf dem eigenen Server – ein heute unschätzbarer Wert . Wir werden diesen Weg weitergehen und in Zukunft dazu noch verschiedene Blogbeiträge veröffentlichen. Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Open Source AI: Common Corpus als größte offene Trainingsdatenbank veröffentlicht.

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data

Immer mehr Privatpersonen und Organisationen realisieren, dass die populären Trainingsdaten (LLM: Large Language Models) für ChatGPT von OpanAI, oder auch Gemini von Google usw., so ihre Tücken haben können, wenn es beispielsweise im andere oder um die eigenen Urheberrechte geht. In diesem Punkt unterscheiden wir uns in Europa durchaus von den US-amerikanischen und chinesischen Ansätzen. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich. Darüber hinaus liegen die Daten der bekannten (closed source) LLMs zu einem überwiegenden Teil in englischer oder chinesischer Sprache vor.

Die Alternativen waren bisher entweder nicht leistungsstark genug, oder einfach nicht für die Allgemeinheit als Open Source Model verfügbar. Siehe dazu Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht. Das hat sich in der Zwischenzeit geändert. Beispielsweise wurde Open Source AI: Common Corpus als größte offene Trainingsdatenbank veröffentlicht, die gerade Daten für KI-Anwendungen enthält, die urheberrechtlich freigegeben wurden. Weiterhin gibt es das geförderte Projekt OpenGPT-X, das nun Teuken 7B-v0.4 veröffentlicht hat.

Quelle: https://opengpt-x.de/en/models/teuken-7b/

“Multilingual, open source models for Europe – instruction-tuned and trained in all 24 EU languages…. Training on >50% non English Data. (…) This led to the creation of a custom multilingual tokenizer” (ebd.).

Neben der freien Verfügbarkeit (Open Source AI) (via Hugging Face) ist somit ein großer Pluspunkt, dass eine große Menge an Daten, nicht englischsprachig sind. Das unterscheidet dieses Large Language Model (LLM) sehr deutlich von den vielen englisch oder chinesisch dominierten (Closed Source) Large Language Models.

Insgesamt halte ich das alles für eine tolle Entwicklung, die ich in der Geschwindigkeit nicht erwartet hatte!