Auf die Omo 3 Familie von AI2 hatte ich ja schon in dem Beitrag vom 06.12.205 hingewiesen. Es geht dabei um frei verfügbare KI-Modelle, die auf der Website im Playground getestet, oder auch auf dem eigenen Server genutzt werden können.
Im Dezember 2025 wurde darüber hinaus auch noch die Modell-Familie Molmo 2 mit dem veröffentlicht. Der besondere Schwerpunkt der Modell-Familie sind Videos:
Molmo 2 (8B) is Qwen 3-based and our best overall model for video grounding and QA.
Molmo 2 (4B) – also Qwen 3-based – is optimized for efficiency.
Molmo 2-O (7B) is built on Olmo, offering a fully open end-to-end model flow including the underlying LLM. This Olmo-backed variant is particularly useful for researchers who want full control over every part of the stack—vision encoder, connector, and language model.
Die verschiedenen Modelle bieten auch wieder die Möglichkeit, je nach technischer Ausstattung, diese auf den eigenen Servern, oder im Playground zu testen – probieren Sie es doch einfach einmal aus.
Darüber hinaus gibt es auch immer mehr leistungsfähige Open Source KI-Modelle, die jedem zur Verfügung stehen, und beispielsweise eher europäischen Werten entsprechen. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI
Wenn also in Zukunft mehr als 1 Milliarde Menschen Künstliche Intelligenz nutzen, stellt sich gleich die Frage, wie Unternehmen damit umgehen. Immerhin war es üblich, dass so eine Art der intelligenten komplexen Problemlösung bisher nur spärlich – und dazu auch noch teuer – zur Verfügung stand.
Nun werden Milliarden von einzelnen Personen die Möglichkeit haben, mit geringen Mitteln komplexe Problemlösungen selbst durchzuführen. Prof. Ethan Mollick nennt dieses Phänomen in einem Blogbeitrag Mass Intelligence.
„The AI companies (whether you believe their commitments to safety or not) seem to be as unable to absorb all of this as the rest of us are. When a billion people have access to advanced AI, we’ve entered what we might call the era of Mass Intelligence. Every institution we have — schools, hospitals, courts, companies, governments — was built for a world where intelligence was scarce and expensive. Now every profession, every institution, every community has to figure out how to thrive with Mass Intelligence“ (Mollick, E. (2025): Mass Intelligence, 25.08.2025).
Ich bin sehr gespannt, ob sich die meisten Menschen an den proprietären großen KI-Modellen der Tech-Konzerne orientieren werden, oder ob es auch einen größeren Trend gibt, sich mit KI-Modellen weniger abhängig zu machen – ganz im Sinne einer Digitalen Souveränität.
Bei Künstlicher Intelligenz denken aktuell die meisten an die KI-Modelle der großen Tech-Konzerne. ChatGPT, Gemini, Grok etc sind in aller Munde und werden immer stärker auch in Agilen Organisationen eingesetzt. Wie in einem anderen Blogbeitrag erläutert, sind in Agilen Organisationen Werte und Prinzipien mit ihren Hebelwirkungen die Basis für Praktiken, Methoden und Werkzeuge. Dabei beziehen sich viele, wenn es um Werte und Prinzipien geht, auf das Agile Manifest, und auf verschiedene Vorgehensmodelle wie Scrum und Kanban. Schauen wir uns einmal kurz an, was hier jeweils zum Thema genannt wird:
Agiles Manifest:Individuen und Interaktionen mehr als Prozesse und Werkzeuge In der aktuellen Diskussion über die Möglichkeiten von Künstlicher Intelligenz werden die Individuen eher von den technischen Möglichkeiten (Prozesse und Werkzeuge) getrieben, wobei die Interaktion weniger zwischen den Individuen, sondern zwischen Individuum und KI-Modell stattfindet. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.
SCRUM: Die Werte Selbstverpflichtung, Fokus, Offenheit, Respekt und Mut sollen durch das Scrum Team gelebt werden Im Scrum-Guide 2020 wird erläutert, was die Basis des Scrum Frameworks ist. Dazu sind die Werte genannt, die u.a. auch die Offenheit thematisieren, Ich frage mich allerdings, wie das möglich sein soll, wenn das Scrum Team proprietäre KI-Modelle wie ChatGPT, Gemini, Grok etc. nutzt, die sich ja gerade durch ihr geschlossenes System auszeichnen? Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.
KANBANbasiert auf folgenden Werten: Transparenz, Balance, Kooperation, Kundenfokus, Arbeitsfluss, Führung, Verständnis, Vereinbarung und Respekt. Bei den proprietären KI-Modellen ist die hier angesprochene Transparenz kaum vorhanden. Nutzer wissen im Detail nicht, mit welchen Daten das Modell trainiert wurde, oder wie mit eingegebenen Daten umgegangen wird, etc.
Um agile Arbeitsweisen mit Künstlicher Intelligenz zu unterstützen, sollte das KI-Modell den genannten Werten entsprechen. Bei entsprechender Konsequenz, bieten sich also KI-Modelle an, die transparent und offen sind. Genau an dieser Stelle wird deutlich, dass das gerade die KI-Modelle sind, die der Definition einer Open Source AI entsprechen – und davon gibt es in der Zwischenzeit viele. Es wundert mich daher nicht, dass die Open Source Community und die United Nations die gleichen Werte teilen.
In Europa, und gerade in Deutschland, möchten wir, dass der Rechtsstaat weiter existiert und die Gesellschaft nicht nur als Business Case gesehen wird. Der immer größer werdende Einfluss von aktuell Künstlicher Intelligenz auf eine Gesellschaft kann diese überfordern, denn mit jeder Software geht auch eine bestimmte Denkhaltung einher.
Auf solche Entwicklungen macht ein aktueller Kommentar im Handelsblatt aufmerksam. Hier geht es um die Denkwelt des Firmenchefs von Palantir, die man sich mit der Software mit einkauft:
„Palantir passt nicht zum deutschen Rechtsstaat. Das US-Unternehmen mag für Sicherheitsbehörden eine Hilfe sein. Doch die Haltung des Firmenchefs macht die Software zu einem Risiko für die politische Stabilität in Deutschland“ (Kommentar von Dieter Neuerer im Handelsblatt vom 12.12.2025).
Es stellen sich natürlich gleich weitere Fragen, wie z.B.: Stellen die Karten von Google Maps die Realität dar, oder sind „unliebsame“ Gebiete nicht verzeichnet? Enthalten die bekannten proprietäten KI-Modelle (Closed Models) Einschränkungen, die Ergebnisse tendenziell beeinflussen? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?
Weltweit werden KI-Giga-Factories gebaut, um den erforderlichen Rechenkapazitäten der großen Tech-Konzerne gerecht zu werden. Europa fällt auch hier immer weiter zurück, wodurch eine zusätzliche digitale Abhängigkeit entsteht.
Prof. Lippert vom Kernforschungszentrum hat das so ausgedrückt: „“Unser geistiges Eigentum geht in andere Länder“ (MDR vom 05.09.2025). Teilweise wird prognostiziert, dass KI-Rechenzentren bis 2030 so viel Energie benötigen, wie ganz Japan.
Es stellt sich daher die Frage, ob das langfristig der richtige Weg ist. Eine Antwort liefert möglicherweise der Energieverbrauch eines menschlichen Gehirns:
„Unser Gehirn benötigt für hochkomplexe Informationsübertragungen und -verarbeitungen weniger Energie als eine 30-Watt-Glühbirne“ (Prof. Dr. Amunts).
Mit so einer geringen Energiemenge leistet unser menschliches Gehirn erstaunliches. Es wundert daher nicht, dass die Entwicklung immer größerer Modelle (Large Language Models) infrage gestellt wird.
Forscher sind aktuell auf der Suche nach Modellen, die ganz anders aufgebaut sind und nur einen Bruchteil der aktuell benötigten Energie verbrauchen. Gerade in China gibt es dazu schon deutliche Entwicklungen. Auch in Deutschland befassen sich Forscher mit dem Thema neuroinspirierte Technologien.
Um digital souveräner zu werden, haben wir seit einiger Zeit Nextcloud auf einem eigenen Server installiert – aktuell in der Version 32. Das ist natürlich erst der erste Schritt, auf den nun weitere folgen – gerade wenn es um Künstliche Intelligenz geht.
Damit wir auch bei der Nutzung von Künstlicher Intelligenz digital souverän bleiben, haben wir zusätzlichLocalAIinstalliert. Dort ist es möglich, eine Vielzahl von Modellen zu testen und auszuwählen. In der folgenden Abbildung ist zu sehen, dass wir das KI-Modell llama-3.2-3B-instruct:q4_k_m für einen Chat ausgewählt haben. In der Zeile „Send a massage“ wurde der Prompt „Nenne wichtige Schritte im Innovationsprozess“ eingegeben. Der Text wird anschließend blau hinterlegt angezeigt. In dem grünen Feld ist ein Teil der Antwort des KI-Modells zu sehen.
LocalAI auf unserem Server: Ein Modell für den Chat ausgewählt
Im nächsten Schritt geht es darum, das gleiche KI-Modell im Nextcloud Assistant zu hinterlegen. Der folgende Screenshot zeigt das Feld (rot hervorgehoben). An dieser Stelle werden alle in unserer LocalAI hinterlegten Modelle zur Auswahl angezeigt, sodass wir durchaus variieren könnten. Ähnliche Einstellungen gibt es auch für andere Funktionen des Nextcloud Assistant.
Screenshot: Auswahl des Modells für den Nextcloud Assistenten in unserer Nextcloud – auf unserem Server
Abschließend wollen wir natürlich auch zeigen, wie die Nutzung des hinterlegten KI-Modells in dem schon angesprochenen Nextcloud Assistant aussieht. Die folgende Abbildung zeigt den Nextcloud Assistant in unserer Nextcloud mit seinen verschiedenen Möglichkeiten – eine davon ist Chat mit KI. Hier haben wir den gleichen Prompt eingegeben, den wir schon beim Test auf LocalAI verwendet hatten (Siehe oben).
Screenshot von dem Nextcloud Assistant mit der Funktion Chat mit KI und der Antwort auf den eigegebenen Prompt
Der Prompt ist auf der linken Seite zu erkennen, die Antwort des KI-Modells (llama-3.2-3B-instruct:q4_k_m) ist rechts daneben wieder auszugsweise zu sehen. Weitere „Unterhaltungen“ können erstellt und bearbeitet werden.
Das Zusammenspiel der einzelnen Komponenten funktioniert gut. Obwohl wir noch keine speziellen KI-Server hinterlegt haben, sind die Antwortzeiten akzeptabel. Unser Ziel ist es, mit wenig Aufwand KI-Leistungen in Nextcloud zu integrieren. Dabei spielen auch kleine, spezielle KI-Modelle eine Rolle, die wenig Rechenkapazität benötigen.
Alles natürlich Open Source, wobei alle Daten auf unseren Servern bleiben.
Wir werden nun immer mehr kleine, mittlere und große KI-Modelle und Funktionen im Nextcloud Assistant testen. Es wird spanned sein zu sehen, wie dynamisch diese Entwicklungen von der Open Source Community weiterentwickelt werden.
In den Diskussionen um Künstliche Intelligenz (Artificial Intelligence) werden die Tech-Riesen nicht müde zu behaupten, dass Künstliche Intelligenz die Menschliche Intelligenz ebenbürtig ist, und es somit eine Generelle Künstliche Intelligenz (AGI: Artificial General Intelligence) geben wird.
Dabei wird allerdings nie wirklich geklärt, was unter der Menschlichen Intelligenz verstanden wird. Wenn es der Intelligenz-Quotient (IQ) ist, dann haben schon verschiedene Tests gezeigt, dass KI-Modelle einen IQ erreichen können, der höher ist als bei dem Durchschnitt der Menschen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?Heißt das, dass das KI-Modell dann intelligenter ist als ein Mensch? Viele Experten bezweifeln das:
„Most experts agree that artificial general intelligence (AGI), which would allow for the creation of machines that can basically mimic or supersede human intelligence on a wide range of varying tasks, is currently out of reach and that it may still take hundreds of years or more to develop AGI, if it can ever be developed. Therefore, in this chapter, “digitalization” means computerization and adoption of (narrow) artificial intelligence“ (Samaan 2024, in Werthner et al (eds.) 2024, in Anlehnung an https://rodneybrooks.com/agi-has-been-delayed/).
Es wird meines Erachtens Zeit, dass wir Menschliche Intelligenz nicht nur auf den IQ-Wert begrenzen, sondern entgrenzen. Die Theorie der Multiplen Intelligenzen hat hier gegenüber dem IQ eine bessere Passung zu den aktuellen Entwicklungen. Den Vergleich der Künstlichen Intelligenz mit der Menschlichen Intelligenz nach Howard Gardner wäre damit ein Kategorienfehler.
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.