Mass Intelligence: Wenn mehr als 1 Mrd. Menschen Zugang zu leistungsfähiger KI haben

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Wenn wir uns die Entwicklungen der Künstlichen Intelligenz in der letzten Zeit ansehen, so fällt auf, dass es mehrere Trends gibt.

Neben den dominierenden wenigen großen Large Language Models (LLMs) der Tech-Konzerne gibt es immer mehr kleine Modelle (Small Language Models), die je nach Anwendungsfall ausgewählt werden können. Solche SLM sind flexibler, kostengünstiger und in bestimmten Bereichen sogar besser. Siehe dazu auch KI-Modelle: Von „One Size Fits All“ über Variantenvielfalt in die Komplexitätsfalle?

Weiterhin wird für solche Problemlösungen auch viel weniger Energie benötigt, was die weltweiten, aber auch die unternehmensspezifischen Ressourcen/Kosten schont, Siehe dazu auch Künstliche Intelligenz: Das menschliche Gehirn benötigt maximal 30 Watt für komplexe Problemlösungen.

Darüber hinaus gibt es auch immer mehr leistungsfähige Open Source KI-Modelle, die jedem zur Verfügung stehen, und beispielsweise eher europäischen Werten entsprechen. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI

Wenn also in Zukunft mehr als 1 Milliarde Menschen Künstliche Intelligenz nutzen, stellt sich gleich die Frage, wie Unternehmen damit umgehen. Immerhin war es üblich, dass so eine Art der intelligenten komplexen Problemlösung bisher nur spärlich – und dazu auch noch teuer – zur Verfügung stand.

Nun werden Milliarden von einzelnen Personen die Möglichkeit haben, mit geringen Mitteln komplexe Problemlösungen selbst durchzuführen. Prof. Ethan Mollick nennt dieses Phänomen in einem Blogbeitrag Mass Intelligence.

„The AI companies (whether you believe their commitments to safety or not) seem to be as unable to absorb all of this as the rest of us are. When a billion people have access to advanced AI, we’ve entered what we might call the era of Mass Intelligence. Every institution we have — schools, hospitals, courts, companies, governments — was built for a world where intelligence was scarce and expensive. Now every profession, every institution, every community has to figure out how to thrive with Mass Intelligence“ (Mollick, E. (2025): Mass Intelligence, 25.08.2025).

Ich bin sehr gespannt, ob sich die meisten Menschen an den proprietären großen KI-Modellen der Tech-Konzerne orientieren werden, oder ob es auch einen größeren Trend gibt, sich mit KI-Modellen weniger abhängig zu machen – ganz im Sinne einer Digitalen Souveränität.

Künstliche Intelligenz, Agiles Manifest, Scrum und Kanban

Bei Künstlicher Intelligenz denken aktuell die meisten an die KI-Modelle der großen Tech-Konzerne. ChatGPT, Gemini, Grok etc sind in aller Munde und werden immer stärker auch in Agilen Organisationen eingesetzt. Wie in einem anderen Blogbeitrag erläutert, sind in Agilen Organisationen Werte und Prinzipien mit ihren Hebelwirkungen die Basis für Praktiken, Methoden und Werkzeuge. Dabei beziehen sich viele, wenn es um Werte und Prinzipien geht, auf das Agile Manifest, und auf verschiedene Vorgehensmodelle wie Scrum und Kanban. Schauen wir uns einmal kurz an, was hier jeweils zum Thema genannt wird:

Agiles Manifest: Individuen und Interaktionen mehr als Prozesse und Werkzeuge
In der aktuellen Diskussion über die Möglichkeiten von Künstlicher Intelligenz werden die Individuen eher von den technischen Möglichkeiten (Prozesse und Werkzeuge) getrieben, wobei die Interaktion weniger zwischen den Individuen, sondern zwischen Individuum und KI-Modell stattfindet. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

SCRUM: Die Werte Selbstverpflichtung, Fokus, Offenheit, Respekt und Mut sollen durch das Scrum Team gelebt werden
Im Scrum-Guide 2020 wird erläutert, was die Basis des Scrum Frameworks ist. Dazu sind die Werte genannt, die u.a. auch die Offenheit thematisieren, Ich frage mich allerdings, wie das möglich sein soll, wenn das Scrum Team proprietäre KI-Modelle wie ChatGPT, Gemini, Grok etc. nutzt, die sich ja gerade durch ihr geschlossenes System auszeichnen? Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

KANBAN basiert auf folgenden Werten: Transparenz, Balance, Kooperation, Kundenfokus, Arbeitsfluss, Führung, Verständnis, Vereinbarung und Respekt.
Bei den proprietären KI-Modellen ist die hier angesprochene Transparenz kaum vorhanden. Nutzer wissen im Detail nicht, mit welchen Daten das Modell trainiert wurde, oder wie mit eingegebenen Daten umgegangen wird, etc.

In einem anderen Blogbeitrag hatte ich dazu schon einmal darauf hingewiesen, dass man sich mit proprietärer Künstlicher Intelligenz (KI) auch die Denkwelt der Eigentümer einkauft.

Um agile Arbeitsweisen mit Künstlicher Intelligenz zu unterstützen, sollte das KI-Modell den genannten Werten entsprechen. Bei entsprechender Konsequenz, bieten sich also KI-Modelle an, die transparent und offen sind. Genau an dieser Stelle wird deutlich, dass das gerade die KI-Modelle sind, die der Definition einer Open Source AI entsprechen – und davon gibt es in der Zwischenzeit viele. Es wundert mich daher nicht, dass die Open Source Community und die United Nations die gleichen Werte teilen.

Es liegt an uns, ob wir uns von den Tech-Giganten weiter in eine immer stärker werdende Abhängigkeit treiben lassen, oder andere Wege gehen – ganz im Sinne einer Digitalen Souveränität. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Mit proprietärer Künstlicher Intelligenz (KI) kauft man sich auch die Denkwelt der Eigentümer ein

In dem Blogbeitrag Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century hatte ich schon einmal darauf hingewiesen, dass es nicht richtig ist, dass Europa „nur“ reguliert und die USA „nur“ innovativ sind.

In Europa, und gerade in Deutschland, möchten wir, dass der Rechtsstaat weiter existiert und die Gesellschaft nicht nur als Business Case gesehen wird. Der immer größer werdende Einfluss von aktuell Künstlicher Intelligenz auf eine Gesellschaft kann diese überfordern, denn mit jeder Software geht auch eine bestimmte Denkhaltung einher.

Auf solche Entwicklungen macht ein aktueller Kommentar im Handelsblatt aufmerksam. Hier geht es um die Denkwelt des Firmenchefs von Palantir, die man sich mit der Software mit einkauft:

„Palantir passt nicht zum deutschen Rechtsstaat. Das US-Unternehmen mag für Sicherheitsbehörden eine Hilfe sein. Doch die Haltung des Firmenchefs macht die Software zu einem Risiko für die politische Stabilität in Deutschland“ (Kommentar von Dieter Neuerer im Handelsblatt vom 12.12.2025).

Es stellen sich natürlich gleich weitere Fragen, wie z.B.: Stellen die Karten von Google Maps die Realität dar, oder sind „unliebsame“ Gebiete nicht verzeichnet? Enthalten die bekannten proprietäten KI-Modelle (Closed Models) Einschränkungen, die Ergebnisse tendenziell beeinflussen? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Künstliche Intelligenz: Das menschliche Gehirn benötigt maximal 30 Watt für komplexe Problemlösungen

Weltweit werden KI-Giga-Factories gebaut, um den erforderlichen Rechenkapazitäten der großen Tech-Konzerne gerecht zu werden. Europa fällt auch hier immer weiter zurück, wodurch eine zusätzliche digitale Abhängigkeit entsteht.

Prof. Lippert vom Kernforschungszentrum hat das so ausgedrückt: „“Unser geistiges Eigentum geht in andere Länder“ (MDR vom 05.09.2025). Teilweise wird prognostiziert, dass KI-Rechenzentren bis 2030 so viel Energie benötigen, wie ganz Japan.

Es stellt sich daher die Frage, ob das langfristig der richtige Weg ist. Eine Antwort liefert möglicherweise der Energieverbrauch eines menschlichen Gehirns:

„Das menschliche Gehirn leistet vieles, was Maschinen überfordert – und das mit minimalem Energieverbrauch. Im Durchschnitt verbraucht es nur etwa 20 Watt, so viel wie eine schwache Glühbirne“ Knees (2025): Wie Forscher die Tech-Konzerne entmachten wollen, in Handelsblatt vom 11.10.2025.

„Unser Gehirn benötigt für hochkomplexe Informationsübertragungen und -verarbeitungen weniger Energie als eine 30-Watt-Glühbirne“ (Prof. Dr. Amunts).

Mit so einer geringen Energiemenge leistet unser menschliches Gehirn erstaunliches. Es wundert daher nicht, dass die Entwicklung immer größerer Modelle (Large Language Models) infrage gestellt wird.

Forscher sind aktuell auf der Suche nach Modellen, die ganz anders aufgebaut sind und nur einen Bruchteil der aktuell benötigten Energie verbrauchen. Gerade in China gibt es dazu schon deutliche Entwicklungen. Auch in Deutschland befassen sich Forscher mit dem Thema neuroinspirierte Technologien.

Digitale Souveränität: Wie kann ein KI-Modell aus LocalAI in den Nextcloud Assistenten eingebunden werden?

Um digital souveräner zu werden, haben wir seit einiger Zeit Nextcloud auf einem eigenen Server installiert – aktuell in der Version 32. Das ist natürlich erst der erste Schritt, auf den nun weitere folgen – gerade wenn es um Künstliche Intelligenz geht.

Damit wir auch bei der Nutzung von Künstlicher Intelligenz digital souverän bleiben, haben wir zusätzlich LocalAI installiert. Dort ist es möglich, eine Vielzahl von Modellen zu testen und auszuwählen. In der folgenden Abbildung ist zu sehen, dass wir das KI-Modell llama-3.2-3B-instruct:q4_k_m für einen Chat ausgewählt haben. In der Zeile „Send a massage“ wurde der Prompt „Nenne wichtige Schritte im Innovationsprozess“ eingegeben. Der Text wird anschließend blau hinterlegt angezeigt. In dem grünen Feld ist ein Teil der Antwort des KI-Modells zu sehen.

LocalAI auf unserem Server: Ein Modell für den Chat ausgewählt

Im nächsten Schritt geht es darum, das gleiche KI-Modell im Nextcloud Assistant zu hinterlegen. Der folgende Screenshot zeigt das Feld (rot hervorgehoben). An dieser Stelle werden alle in unserer LocalAI hinterlegten Modelle zur Auswahl angezeigt, sodass wir durchaus variieren könnten. Ähnliche Einstellungen gibt es auch für andere Funktionen des Nextcloud Assistant.

Screenshot: Auswahl des Modells für den Nextcloud Assistenten in unserer Nextcloud – auf unserem Server

Abschließend wollen wir natürlich auch zeigen, wie die Nutzung des hinterlegten KI-Modells in dem schon angesprochenen Nextcloud Assistant aussieht. Die folgende Abbildung zeigt den Nextcloud Assistant in unserer Nextcloud mit seinen verschiedenen Möglichkeiten – eine davon ist Chat mit KI. Hier haben wir den gleichen Prompt eingegeben, den wir schon beim Test auf LocalAI verwendet hatten (Siehe oben).

Screenshot von dem Nextcloud Assistant mit der Funktion Chat mit KI und der Antwort auf den eigegebenen Prompt

Der Prompt ist auf der linken Seite zu erkennen, die Antwort des KI-Modells (llama-3.2-3B-instruct:q4_k_m) ist rechts daneben wieder auszugsweise zu sehen. Weitere „Unterhaltungen“ können erstellt und bearbeitet werden.

Das Zusammenspiel der einzelnen Komponenten funktioniert gut. Obwohl wir noch keine speziellen KI-Server hinterlegt haben, sind die Antwortzeiten akzeptabel. Unser Ziel ist es, mit wenig Aufwand KI-Leistungen in Nextcloud zu integrieren. Dabei spielen auch kleine, spezielle KI-Modelle eine Rolle, die wenig Rechenkapazität benötigen.

Alles natürlich Open Source, wobei alle Daten auf unseren Servern bleiben.

Wir werden nun immer mehr kleine, mittlere und große KI-Modelle und Funktionen im Nextcloud Assistant testen. Es wird spanned sein zu sehen, wie dynamisch diese Entwicklungen von der Open Source Community weiterentwickelt werden.

Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Künstliche Generelle Intelligenz (AGI): Kann das überhaupt erreicht werden?

In den Diskussionen um Künstliche Intelligenz (Artificial Intelligence) werden die Tech-Riesen nicht müde zu behaupten, dass Künstliche Intelligenz die Menschliche Intelligenz ebenbürtig ist, und es somit eine Generelle Künstliche Intelligenz (AGI: Artificial General Intelligence) geben wird.

Dabei wird allerdings nie wirklich geklärt, was unter der Menschlichen Intelligenz verstanden wird. Wenn es der Intelligenz-Quotient (IQ) ist, dann haben schon verschiedene Tests gezeigt, dass KI-Modelle einen IQ erreichen können, der höher ist als bei dem Durchschnitt der Menschen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Heißt das, dass das KI-Modell dann intelligenter ist als ein Mensch? Viele Experten bezweifeln das:

„Most experts agree that artificial general intelligence (AGI), which would allow for the creation of machines that can basically mimic or supersede human intelligence on a wide range of varying tasks, is currently out of reach and that it may still take hundreds of years or more to develop AGI, if it can ever be developed. Therefore, in this chapter, “digitalization” means computerization and adoption of (narrow) artificial intelligence“ (Samaan 2024, in Werthner et al (eds.) 2024, in Anlehnung an https://rodneybrooks.com/agi-has-been-delayed/).

Es wird meines Erachtens Zeit, dass wir Menschliche Intelligenz nicht nur auf den IQ-Wert begrenzen, sondern entgrenzen. Die Theorie der Multiplen Intelligenzen hat hier gegenüber dem IQ eine bessere Passung zu den aktuellen Entwicklungen. Den Vergleich der Künstlichen Intelligenz mit der Menschlichen Intelligenz nach Howard Gardner wäre damit ein Kategorienfehler.