LangFlow: Per Drag & Drop KI-Agenten auf dem eigenen Server entwickeln und testen

Screenshot von unserer LangFlow-Installation (Simple Agent)

In dem Beitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren wird erläutert, wie Modelle – abhängig von der Eingabe – so kombiniert werden können, dass ein qualitativ gutes Ergebnis herauskommt.

Der nächste Schritt wäre, beliebig viele KI-Modelle in einem Framework zu entwickeln und zu koordinieren. Die Plattform LangChain bietet so eine professionelle, und somit auch anspruchswolle Möglichkeit.

“LangChain is an incredibly valuable tool for linking up chains of models and defining steps for how an output from a model should be handled before being sent to a different model (or often, the same model with a different prompt) for a new step in a workflow” (Thomas et al. 2025).

Wenn es etwas einfacher sein soll, bietet sich LangFlow an, bei dem mit einfachen Mitteln per Drag & Drop KI-Agenten in Zusammenspiel mit verschiedenen Modellen konfiguriert werden können.

Wir haben LangFlow auf unserem Server installiert (Open Source) und können nun KI-Agenten für verschiedene Anwendungen entwickeln und testen. Die Abbildung zeigt einen Screenshot der Startseite, wenn man einen einfachen Agenten entwickeln möchte. Auf der linken Seite können sehr viele Optionen ausgewählt werden, in dem grau hinterlegten Bereich werden diese dann per Drag & Drop zusammengestellt. Die farbigen Verbindungslinien zeigen, welche Optionen miteinander kombiniert werden können. Abschließend kann im anwählbaren Playground das Ergebnis beurteilt werden.

Dabei bietet LangfFlow auch die Möglichkeit, eigene Daten, oder auch externe Datenquellen einzubinden – alles per Drag & Drop. Weiterhin haben wir den Vorteil, dass alle generierten Daten auf unserem Server bleiben.

Künstliche Intelligenz, Wissen und kritisches Denken

Der Wissensbegriff hat sich in den letzten Jahrzehnten verändert, und damit auch erweitert. Arnold hat beispielsweise von einem neuen Wissensbegriff gesprochen und plädiert für eine Art von Wissenskompetenz.

Mit den Möglichkeiten der Künstlichen Intelligenz wird der Umgang mit Wissen noch dynamischer – vormals eher personales Wissen wird immer mehr zu einem öffentlichen Wissen. Dabei ist bemerkenswert, dass die Menschen den Ergebnissen der KI-Modellen durchaus vertrauen, obwohl diese nachweislich fehlerhaft sind. Siehe dazu Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit? Dieses sehr unkritische Verhalten führt zu einer Entwertung des personalen Wissens

“Menschen ziehen sich infolge von KI zunehmend aus der Generierung personalen Wissens zurück und begnügen sich mit der Überwachung und Validierung KI-generierten öffentlichen Wissens. Der Einsatz von KI und ein übermäßiges Vertrauen in die Qualität KI generierter Inhalte reduzieren zudem die Bereitschaft zum kritischen Denken. Mit wachsendem Vertrauen in KI verschlechtert sich kritisches Denken, während Zuversicht in Bezug auf die eigene Expertise kritisches Denken stärkt” (Reinmann, Preprint. Erscheint in: Dittler, U. & Kreidl, C. (in Druck). Fragen an die Hochschuldidaktik der Zukunft. Schäffer-Poeschel).

Die stärkere Nutzung der KI-Möglichkeiten führt also letztendlich zur Reduzierung des kritischen Denkens, wobei das Vertrauen in die eigene Expertise eher das kritische Denken fördert.

Wir sollten daher nicht “blind” den Verheißungen der Tech-Industrie hinterherrennen, sondern auf Basis unserer eigenen Expertise durchaus kritisch mit den Ergebnissen der KI umgehen. Siehe dazu beispielsweise Kritisches Denken genauer betrachtet. Darin werden u.a. die affirmative (bestätigende) Wissenskonstruktion und das kritische Denken gegenübergestellt.

(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

KI-Agenten im Projektmanagement

Künstliche Intelligenz kann ganz generell in vielen Bereichen einer Organisation eingesetzt werden – natürlich auch im Projektmanagement. Zu KI im Projektmanagement gibt es in der Zwischenzeit viele Beiträge. Siehe dazu beispielsweise auch Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit.

In der Zwischenzeit geht es in der Diskussion zu KI auch immer stärker um die Frage, wie KI Agenten im Projektmanagement genutzt werden können. Dazu gibt es den Beitrag KI-Agenten im Projektmanagement: So unterstützen digitale Rollen den Projektalltag von Jörg Meier, vom 15.07.2025 im GPM Blog. Darin werden erste gute Hinweise gegeben. Dennoch:

Ich hätte mir hier gewünscht, dass der Author auch auf die Problematik der Nutzung von Closed Sourced Modellen wie ChatGPT oder Gemini hinweist. Ausgewählte KI Modelle sollten möglichst “wirklich” Open Source AI (Definition aus 2024) sein. Es wäre m.E. auch die Aufgabe der GPM die Digitale Souveränität insgesamt stärker bewusst zu machen. Siehe dazu beispielsweise auch Digitale Souveränität: Souveränitätsscore für KI Systeme.

Dass KI Agenten gerade in der Software-Entwicklung erhebliche Potenziale erschließen können, wird in diesem Beitrag deutlich: The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

NANDA – die Idee eines Open Agentic Web

Nanda Roadmap (Quelle: https://nanda.media.mit.edu/)

Mit KI Agenten (AI Agents) ist es möglich, in der Geschäftswelt vielfältige Prozesse zu optimieren, oder innovative Prozesse, Produkte und Dienstleistungen zu generieren, die bisher aus den verschiedensten Gründen nicht möglich waren. Dazu zählen oftmals nicht verfügbare Daten und die dazugehörenden Kosten.

Auf Basis dieser Entwicklungen können wir in Zukunft immer stärker von einer Agentenbasierten Wirtschaft sprechen – Agentic Economy (Siehe Abbildung). Dabei geht es um die Nutzung von KI-Agenten in Unternehmen oder in ganzen Branchen. Siehe dazu The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen oder auch Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen.

Denken wir etwas weiter, so müssen in Zukunft auch immer stärker KI-Agenten miteinander kommunizieren, also von Agent zu Agent – A2A. Passiert das zwischen sehr vielen Agenten eines Wirtschaftssystems, bzw. einer ganzen Gesellschaft, entsteht so etwas wie eine Agentic Society.

Das Projekt NANDA hat sich in dem Zusammenhang das Ziel gesetzt, diese Entwicklung mit einem Open Agentic Web zu unterstützen:

“Imagine billions of specialized AI agents collaborating across a decentralized architecture. Each performs discrete functions while communicating seamlessly, navigating autonomously, socializing, learning, earning and transacting on our behalf” (Source).

Das vom MIT initiierte Projekt NANDA arbeitet in Europa u.a. mit der TU München und der ETH Zürich zusammen. Das Ziel ist, alles Open Source basiert zur Verfügung zu stellen..

Ich bin an dieser Stelle immer etwas vorsichtig, da beispielsweise OpenAI auch beim Start das Ziel hatte, KI als Open Source zur Verfügung zu stellen. In der Zwischenzeit wissen wir, dass OpenAI ein Closed Source Model, bzw. ein Open Weights Model ist, und kein Open Source Model. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

KI-Modelle: Monitoring einer Entwicklungsumgebung

Using watsonx.governance to build a dashboard and track a multimodel
deployment environment (Thomas et al. 2025)

In verschiedenen Beiträgen hatte ich beschrieben, was eine Organisation machen kann, um KI-Modelle sinnvoll einzusetzen. An dieser Stelle möchte ich nur einige wenige Punkte beispielhaft dazu aufzählen.

Zunächst können LLM (Large Language Models) oder SLM (Small Language Models) eingesetzt werden – Closed Sourced , Open Weighted oder Open Source. Weiterhin können KI-Modelle mit Hilfe eines AI-Routers sinnvoll kombiniert, bzw. mit Hilfe von InstructLab mit eigenen Daten trainiert werden. Hinzu kommen noch die KI-Agenten – aus meiner Sicht natürlich auch Open Source AI.

Das sind nur einige Beispiele dafür, dass eine Organisation aufpassen muss, dass die vielen Aktivitäten sinnvoll und wirtschaftlich bleiben. Doch: Wie können Sie das ganze KI-System verfolgen und verbessern? In der Abbildung sehen Sie ein Dashboard, dass den Stand eines KI-Frameworks abbildet. Die Autoren haben dafür IBM watsonx Governance genutzt.

“Our dashboard gives us a quick view of our environment. There are LLMs from OpenAI, IBM, Meta, and other models that are in a review state. In our example, we have five noncompliant models that need our attention. Other widgets define use cases, risk tiers, hosting locations (on premises or at a hyper scaler), departmental use (great idea for chargebacks), position in the approval lifecycle, and more” (Thomas et al. 2025).

Die Entwicklungen im Bereich der Künstlichen Intelligenz sind vielversprechend und in ihrer Dynamik teilweise auch etwas unübersichtlich. Das geeignete KI-Framework zu finden, es zu entwickeln, zu tracken und zu verbessern wird in Zukunft eine wichtige Aufgabe sein.

AI 2027 Scenario: Wie wird sich Künstliche Intelligenz bis Ende 2027 entwickeln?

Quelle: https://ai-2027.com/summary

Der Mensch war schon immer daran interessiert heute schon zu wissen, was in der Zukunft auf ihn zukommen wird, oder zukommen soll. Es ist daher ganz selbstverständlich, dass verschiedene Interessengruppen wie Unternehmen, Berater, Soziologen oder auch einzelne Personen versuchenden, die Entwicklungen bei der Künstlichen Intelligenz vorherzusagen, zu prognostizieren.

Um ein relativ ausgewogenes Bild zu bekommen ist es gut, wenn sich unabhängige Wissenschaftler damit befassen. In dem AI Futures Project haben sich solche Personen zusammengetan. Es handelt sich hier um eine Nonprofit Research Organization, die im April 2025 eine erste Veröffentlichung zum Thema herausgebracht hat:

Kokotajlo et al. (2025): AI 2027 | Website

Es macht durchaus Sinn sich mit den dargestellten Schritten auseinanderzusetzen. denn die zusammengestellten Erkenntnisse sind ausführlich mit Forschungsergebnissen hinterlegt – was mir durchaus gefällt.

Dennoch: Mir sind die Perspektiven immer noch zu einseitig technologiegetrieben, denn Künstliche Intelligenz schafft auch gesellschaftliche, soziale Veränderungen.

Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?

Künstliche Intelligenz: Was ist unter einer Mixture of Experts (MoE) Architektur zu verstehen?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten.

Doch es gibt noch eine andere Möglichkeit, und das ist eine Mixture of Experts (MoE) Architektur.

“In January of 2025, the MoE architecture got broad attention when DeepSeek released its 671 billion MoE model. But DeepSeek wasn’t the first to release an MoE model. The French AI Lab, Mistral AI, made headlines with the release of one of the first high-performing MoE models: Mixtral 8x7B (we think the name is great, Mistral + mixture) all the way back in December of 2023″ (Thomas et al. 2025).

Es geht also im Prinzip darum, für den jeweiligen Input das geeignete Modell auszuwählen, um einen qualitativ hochwertigen Output zu generieren. Das erinnert mich stark an meinen Blogbeitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Doch es gibt einen Unterschied: Bei dem Konzept eines AI-Routers, sind es verschiedene Modelle (LLM, SLM), die für den jeweiligen Input ausgewählt werden. Bei einer Mixture of Experts (MoE) Architektur ist das prinzipielle Vorgehen zwar ähnlich, doch es sind hier speziell trainierte Modelle mit Expertenstatus, die dann zur Auswahl stehen.

Es zeigt sich in solchen Beiträgen immer mehr, dass ein Unternehmen ein dynamisches, eigenes KI-System konfigurieren sollte, damit die Möglichkeiten der Künstlichen Intelligenz genau zu den Anforderungen und dem Kontext passt.

Aus meiner Sicht, sollten die Modelle alle der Definition einer Open Source AI entsprechen – das ist aktuell noch nicht überall gegeben. Siehe dazu auch Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Ein aufgeklärter “Ich-Begriff” bedeutet, dass Individuen ihren Einfluss perspektivisch drastisch ausbauen können

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.

Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.

Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.

Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.

Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:

“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).

Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.

Dabei steht nicht der Profit im Mittelpunkt, sondern das soziale Miteinander zum Wohle aller.