Influencer – Experten: Gemeinsamkeiten und Unterschiede

Image by One_ Time from Pixabay

Seit wir in Sozialen Netzwerken unterwegs sind, haben sich nach und nach – hauptsächlich ab dem Jahr 2000 – einzelne Personen zu Influencer entwickelt, und in der Zwischenzeit sogar professionell positioniert. Doch was sind Influencer eigentlich?

“Als Influencer (deutsch etwa EinflussnehmerBeeinflusser; von englisch to influence ‚beeinflussen‘) werden seit dem Beginn der 2000er Jahre Multiplikatoren bezeichnet, die ihre starke Präsenz und ihr Ansehen in sozialen Netzwerken nutzen, um beispielsweise Produkte oder Lebensstile zu bewerben” (Quelle: Wikipedia vom 21.08.2025).

Es geht den Personen also hauptsächlich darum, andere zu beeinflussen, bestimmte Produkte oder Dienstleistungen zu kaufen. Dabei verknüpfen die Influencer Ihre persönlichen Meinungen ganz bewusst und offen mit den verschiedenen Marken und verdienen dadurch teilweise sehr viel Geld. Die Beeinflussung von möglichen Interessenten von Produkten ist schon lange ein Instrument des Marketings. Durch die Sozialen Netzwerke kommt noch hinzu, dass jeder sich mit relativ geringen Aufwand als Influencer positionieren kann – Skalierbarkeit bei geringen Kosten.

Manche Influencer stellen sich in ihren Videos und Kommentaren auch gerne als Experten für bestimmte Produkte und Dienstleistungen dar. An dieser Stelle stellt sich natürlich die Frage:

Gibt es zwischen einem Influencer und einem Experten Unterschiede?

Experten haben oftmals mehrere tausend Stunden in einer bestimmten Domäne gearbeitet und dabei implizites Wissen und entsprechende Kompetenz entwickelt. Expertise ist also zu einem großen Teil personengebunden und wird ihnen zugeschrieben. Expertise/Kompetenz als Zuschreibung anderer. Experten können beispielswiese durch ein Pyramiding in Netzwerken visualisiert/erkannt werden.

Pyramiding search is a variant of snowballing – but with an important difference. Pyramiding requires that people having a strong interest in a given attribute or quality, for example a particular type of expertise, will tend to know of people who know more about and/or have more of that attribute than they themselves do (von Hippel et al 1999)”, zitiert von von Hippel/Franke/Prügl 2009).

Experten wollen also – im Gegensatz zu Influencern – nicht primär beeinflussen, sondern helfen, komplexe Probleme zu lösen. Experten haben auch nicht so sehr das Ziel einen Verkaufsprozess auszulösen. Das kann zwar auch vorkommen, ist allerdings nicht das Hauptziel.

In dieser ersten kleinen Gegenüberstellung wird schon deutlich, dass es zwischen Influencer und Experten Unterschiede, allerdings auch einige Überschneidungen gibt – was die Sache wiederum kompliziert macht. Diesen Umstand nutzen manche Influencer, um sich als Experten zu positionieren, was sie allerdings oft nicht sind…

Qualitätsmanagement: Die neue ISO 9001:2026

Image by u_4xcm1iw8y9 from Pixabay

Die allseits bekannte ISO 9001 für Qualitätsmanagementsysteme liegt aktuell noch in der Version aus dem Jahr 2018 vor – es wird Zeit für ein Update, an dem auch schon gearbeitet wird. In der ISO 9001:2026 sollen viele neue Themen enthalten sein.

“Die Integration von KI und digitalen Tools zur Unterstützung von Qualitätssystemen soll aufgenommen werden – ein echtes Novum. Ein Fokus wird auf der Risiko- bzw. Chancenidentifikation ruhen – das ist sicher. Die Nachhaltigkeit wird an Bedeutung gewinnen, die ISO 9001 wird zur Basis für die Integration von ESG und CSRD – Details noch unbekannt. Aber auch Lieferkettenmanagement, organisatorisches Wissen, Change- und Resilienzmanagement sollen vertieft behandelt werden – lassen wir uns überraschen” (Funk 2025, QZ News vom 15.08.2025).

Es ist gut, wenn ein Managementsystem alle wichtigen Themen der heutigen Realität abbildet. Dennoch könnte es sein, dass man die Norm mit den vielen Handlungsfeldern überfrachtet, und Organisationen dadurch überfordert. Was in der Endfassung herauskommt ist – wie gesagt – allerdings noch nicht klar.

Ich bin gespannt, ob es in der Norm auch eine Art Wirkungsnetz gibt aus dem hervorgeht, welche Einflussfaktoren für die jeweilige Organisation in den Fokus rücken sollten – also zu managen sind. Bei der Wissensbilanz – Made in Germany war so ein Wirkungsnetz Bestandteil der Vorgehensweise für ein Wissensmanagement-System. Ich habe damit gute Erfahrungen gemacht.

Gerade Kleine und Mittlere Unternehmen (KMU) tun sich oft mit der Komplexität des gesamten Management-Systems schwer, da ja alles mit allem zusammenhängt. Ein Wirkungsnetz mit den daraus abgeleiteten Generatoren hilft also KMU, das immer komplexer werdende Managementsystem effektiv und effizient zu bewältigen.

RKW Kompetenzzentrum: Das Twin Transition Tool

Quelle: https://www.rkw-kompetenzzentrum.de/twintransitiontool/

Das RKW Kompetenzzentrum veröffentlicht immer wieder Hilfen für die organisatorische Entwicklung von gerade mittelständischen Unternehmen. Diesmal wurden mit dem Twin Transition Tool (Abbildung) zwei wichtige Trans kombiniert. Einerseits ist das natürlich die Digitalisierung, und andererseits die Nachhaltigkeit.

“Die Twin Transition (auch doppelte Transformation oder Nachhaltige Digitalisierung genannt) ist eine der größten Herausforderungen unserer Zeit. Doch was ist die Idee dahinter? Gemeint ist, die grüne (nachhaltige) und die digitale Transformation von Wirtschaft und Gesellschaft gemeinsam zu denken und voranzutreiben” (ebd.).

Das Online-Tool kann direkt gestartet werden. Anschließend haben Sie die Möglichkeit, aus insgesamt 17 Themenfelder die Bereiche per drag&drop auswählen, die für Sie am wichtigsten erscheinen. Das weitere Vorgehen wird in einem kleinen Video erläutert.

Insgesamt ist das Tool gerade für Kleine und Mittlere Unternehmen (KMU) geeignet, sich die Zusammenhänge klar zu machen und geeignete Maßnahmen für die eigene Organisation abzuleiten.

KI-Modelle: Monitoring einer Entwicklungsumgebung

Using watsonx.governance to build a dashboard and track a multimodel
deployment environment (Thomas et al. 2025)

In verschiedenen Beiträgen hatte ich beschrieben, was eine Organisation machen kann, um KI-Modelle sinnvoll einzusetzen. An dieser Stelle möchte ich nur einige wenige Punkte beispielhaft dazu aufzählen.

Zunächst können LLM (Large Language Models) oder SLM (Small Language Models) eingesetzt werden – Closed Sourced , Open Weighted oder Open Source. Weiterhin können KI-Modelle mit Hilfe eines AI-Routers sinnvoll kombiniert, bzw. mit Hilfe von InstructLab mit eigenen Daten trainiert werden. Hinzu kommen noch die KI-Agenten – aus meiner Sicht natürlich auch Open Source AI.

Das sind nur einige Beispiele dafür, dass eine Organisation aufpassen muss, dass die vielen Aktivitäten sinnvoll und wirtschaftlich bleiben. Doch: Wie können Sie das ganze KI-System verfolgen und verbessern? In der Abbildung sehen Sie ein Dashboard, dass den Stand eines KI-Frameworks abbildet. Die Autoren haben dafür IBM watsonx Governance genutzt.

“Our dashboard gives us a quick view of our environment. There are LLMs from OpenAI, IBM, Meta, and other models that are in a review state. In our example, we have five noncompliant models that need our attention. Other widgets define use cases, risk tiers, hosting locations (on premises or at a hyper scaler), departmental use (great idea for chargebacks), position in the approval lifecycle, and more” (Thomas et al. 2025).

Die Entwicklungen im Bereich der Künstlichen Intelligenz sind vielversprechend und in ihrer Dynamik teilweise auch etwas unübersichtlich. Das geeignete KI-Framework zu finden, es zu entwickeln, zu tracken und zu verbessern wird in Zukunft eine wichtige Aufgabe sein.

Projektmanagement: Von Projektarten und Projekttypen

Projektarten und Projekttypen (Reinhardt 2015)

Da es in Organisationen immer mehr Projekte gibt, macht es Sinn zu kategorisieren. Beispielsweise wird das Multi-Projektmanagement oft in Einzelprojekte, Programme und Portfolios unterteilt.

Weiterhin können Projekte auch nach ihrem inhaltlichen Schwerpunkt in Projektarten unterschiedenen werden. In der Abbildung wurden dazu beispielsweise Technische Projekte, IT-Projekte, Organisationsprojekte und F&E-Projekte untergliedert. Anmerken möchte ich hier, dass ein Projekt oftmals aus mehreren, mehr oder weniger stark ausgeprägten Projektarten besteht.

Weiterhin wurden in der Abbildung Technische Projekte in Projekttypen II (nach Veränderung) und in Projekttypen I (nach Funktion) unterschiedenen.

Weitere Klassifizierungsmerkmale wie Größe, Komplexität und Dynamik gelten für alle angesprochenen Ebenen.

Tipp: Erstellen Sie für Ihre Organisation eine entsprechende Übersicht, um die Gesamtstruktur Ihres Projektmanagement-Systems besser zu verstehen.

AI 2027 Scenario: Wie wird sich Künstliche Intelligenz bis Ende 2027 entwickeln?

Quelle: https://ai-2027.com/summary

Der Mensch war schon immer daran interessiert heute schon zu wissen, was in der Zukunft auf ihn zukommen wird, oder zukommen soll. Es ist daher ganz selbstverständlich, dass verschiedene Interessengruppen wie Unternehmen, Berater, Soziologen oder auch einzelne Personen versuchenden, die Entwicklungen bei der Künstlichen Intelligenz vorherzusagen, zu prognostizieren.

Um ein relativ ausgewogenes Bild zu bekommen ist es gut, wenn sich unabhängige Wissenschaftler damit befassen. In dem AI Futures Project haben sich solche Personen zusammengetan. Es handelt sich hier um eine Nonprofit Research Organization, die im April 2025 eine erste Veröffentlichung zum Thema herausgebracht hat:

Kokotajlo et al. (2025): AI 2027 | Website

Es macht durchaus Sinn sich mit den dargestellten Schritten auseinanderzusetzen. denn die zusammengestellten Erkenntnisse sind ausführlich mit Forschungsergebnissen hinterlegt – was mir durchaus gefällt.

Dennoch: Mir sind die Perspektiven immer noch zu einseitig technologiegetrieben, denn Künstliche Intelligenz schafft auch gesellschaftliche, soziale Veränderungen.

Digital Sovereignty Index Score

Quelle: https://dsi.nextcloud.com/

In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich hatte ich schon einmal darauf hingewiesen, wie unterschiedlich die Ansätze zur Digitalen Souveränität in verschiedenen Regionen der Welt sind. Die verschiedenen Dimensionen waren hier “Right-based”, “Market-based”, “State-based” und “Centralization”, aus denen sich die gegensätzlichen Extreme “Hard Regulation” und “Soft Regulation” ergeben haben.

Der Digital Sovereignty Index Score (Abbildung) unterscheidet sich von dieser Betrachtungsweise. Im Unterschied zu der zu Beginn erwähnten Analyse, die eher die politische oder marktwirtschaftliche Perspektive hervorhebet, entsteht der Digital Sovereignty Index anders.

Hier wird analysiert, ob die wichtigsten 50 relevanten, selbst gehosteten Tools für digitale Kollaboration und Kommunikation verfügbar sind.

“We selected 50 of the most relevant self-hosted tools for digital collaboration and communication. These include platforms for file sharing, video conferencing, mail, notes, project management, and more.

We then measured their real-world usage by counting the number of identifiable server instances per country.

The result is an index score per country, (…)”

Source: https://dsi.nextcloud.com/

Die Digitale Souveränität wird in einem Score berechnet und für verschiedene Länder in einer anschaulichen Grafik dargestellt (Abbildung). Die Farben zeigen an, wie gut (grün) oder schlecht (rot) es in dem beschriebenen Sinn mit der Digitalen Souveränität in dem jeweiligen Land bestellt ist. Es ist gut zu erkennen, das die beiden Länder Finnland und Deutschland grün hervorgehoben sind.

Wie der Grafik weiterhin zu entnehmen ist, sind viele Länder, u.a. China noch weiß dargestellt. Die Limitierung der Analyse ist den Initiatoren des DSI Score durchaus bewusst, dennoch sehen sie diese Grafik als Startpunkt für eine bessere Übersicht zu dem Thema, zum dem jeder aufgefordert ist, mitzumachen.

Mich hat natürlich interessiert, wer hinter der Website steckt… – siehe da, es ist die Nextcloud GmbH mit dem Büro Stuttgart. Das wundert mich jetzt nicht wirklich, da Nextcloud schon immer auf die Digitale Souveränität bei Einzelpersonen, Organisationen und Öffentlichen Verwaltungen hingewiesen hat. Auch wir stellen nach und nach auf die Möglichkeiten von Nextcloud um, inkl. LocalAI und Open Source KI-Agenten. Siehe dazu auch

Von der digitalen Abhängigkeit zur digitalen Souveränität

Digitale Souveränität: Welche Open Source Alternativen gibt es?

Digitale Souveränität: Souveränitätsscore für KI Systeme

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Lean Innovation: 12 Schritte

Lean Innovation nach Schuh (2011); eigene Darstellung

Der Lean-Gedanke, also Verschwendung zu vermeiden und den Wertstrom zu optimieren, kann in allen Prozessen thematisiert und integriert werden. Dazu hatte ich in 2013 schon einmal einen Blogbeitrag geschrieben: Lean Innovation – Wie passt das zusammen?

Auf unserer Asienreise waren wir u.a. vom 15.04.-25.04.2025 in Tokyo, Kyoto und Osaka (mit Expo 2025). Dabei ist mir der Lean-Gedanke in allen Bereichen des gesellschaftlichen Lebens begegnet. Eben nicht nur theoretisch, sondern sehr praktisch – inkl. der Ausrichtung am Kundennutzen – sehr beeindruckend.

Es wundert daher nicht, dass der Lean-Gedanke auch im Projektmanagement, oder auch im Innovationsmanagement berücksichtigt werden kann. Prof. Schuh hat für Lean Innovation auf dieser Website 12 Schritte (Abbildung) ausführlich beschrieben.

Es ist wichtig, da alle wirtschaftlichen Bereiche stärker auf die Produktivität achten müssen – gerade in Zeiten vieler neuer technischen Möglichkeiten.

Fehler ist nicht gleich Fehler: Fehlerkultur im Innovationsprozess

Fehlerkultur im Innovationsprozess (RKW 2010)

In Deutschland haben wir manchmal ein etwas schwieriges Verhältnis zu einzelnen Begriffen. So ist es beispielsweise mit dem Begriff “Fehler“, der oft negativ besetzt ist. Wenn ein Fehler passiert, ist das (oft) nichts Gutes – so die allgemeine Meinung.

Zu dieser Perspektive beigetragen hat die aus dem Qualitätsmanagement bekannte “0-Fehler” Strategie, die sich in den Köpfen von Mitarbeitern eingeprägt hat. Wenn wir an Prozesse in der Produktion denken, die immer gleich ablaufen sollen, so ist es natürlich schlecht, wenn es zu größeren Abweichungen kommt. Auch Fehler von Chirurgen können Folgen haben usw.. Man kann Fehler allerdings auch anders sehen.

In der Abbildung sind verschiedene Fehlertypen so sortiert, dass nach oben Fehler eher vermieden werden sollten, und nach unten Fehler zu Verbesserungen, und sogar zu Innovationen führen können. Es liegt auf der Hand, dass beispielsweise “Sabotage” nicht toleriert und somit sanktioniert werden sollte. Andererseits sollten “Kreative Fehler” toleriert, ja sogar unterstützt und durch Experimentieren ermöglicht werden.

Die Übersicht zeigt, dass Fehler nicht gleich Fehler ist, und wir daher in Organisationen und auch im zwischenmenschlichen Bereich sinnvoll unterscheiden sollten. Gerne können Sie daraus nun eine eigene Übersicht für Ihre Organisation entwickeln, sodass sich die Mitarbeiter darin wiederfinden und möglicherweise eine neue Fehlerkultur in Ihrer Organisation entsteht.

Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?