Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:

(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?

Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:

“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler (Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).

Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.

(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?

Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.

Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner  2002:46-47).

Insofern wäre dann der Vergliche zwischen Künstlicher Intelligenz und Multiplen Intelligenzen ein Kategorienfehler. Siehe dazu auch Künstliche Intelligenz – ein Kategorienfehler? Darin wird auch auf die sozialen und emotionalen Dimensionen bei Menschen hingewiesen.

(3) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlichen Kompetenzen ein Kategorienfehler?

Wenn wir Künstliche Intelligenz mit Menschlichen Kompetenzen vergleichen, vergleichen wir auch indirekt die beiden Konstrukte “Intelligenz” und “Kompetenz. In dem Beitrag Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen? finden Sie dazu ausführlichere Anmerkungen.

Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?

Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.

“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).

Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Digitale Souveränität: Welche Open Source Alternativen gibt es?

Open Source Alternativen (Ausschnitt). Quelle: https://digital-sovereignty.net/recommendations/product-recom

In den letzten Jahrzehnten haben wir uns an alle möglichen Tools gewöhnt. Dazu gehören z.B. alle Microsoft-, Google-, Meta-Produkte. Es fällt vielen Privatpersonen und Organisationen sehr schwer, sich aus dieser Abhängigkeit zu befreien (Pfadabhängigkeit). Dennoch merken in letzter Zeit viele Privatpersonen und Organisationen, dass es Zeit wird, Alternativen zu suchen.

Es stellt sich allerdings die Frage: Welche Open Source Alternativen gibt es?

Wer sich bisher mit dem Thema noch nicht wirklich auseinandergesetzt hat, wird über die von Prof. Wehners zusammengestellte Liste an Open Source Alternativen überrascht sein. In der Abbildung ist nur ein Ausschnitt zu sehen. Darin habe ich hervorgehoben (grün umrahmt), welche der genannten Tools wir selbst schon einsetzen. Bei den Videokonferenzen sollte noch das in NEXTCLOUD intergierte TALK mit aufgenommen werden.

Schauen Sie sich die Liste an und überlegen Sie, welche Alternative Sie einmal ausprobieren wollen. Bei Fragen können Sie uns ansprechen. Wir teilen Ihnen gerne unsere Erfahrungen mit.

Künstliche Intelligenz: Von der Produktentwicklung wieder (zurück) zur Prozessentwicklung?

Künstliche Intelligenz wird unseren individuellen Alltag, Unternehmen/Organisationen und letztendlich die gesamte Gesellschaft in verschiedenen Anwendungsformen immer stärker beeinflussen.

Dabei deutet sich in den Unternehmen/Organisationen eine interessante Entwicklung an.

Organisationen waren in den letzten 100 Jahren der Industrialisierung darauf fokussiert, ihre Prozesse (oftmals Routineprozesse) immer weiter zu optimieren, effektiver und effizienter zu machen. Diese Prozesslandschaften haben dann zu den bekannten Qualitätsmanagement-Systemen oder auch Projektmanagement-Systemen geführt. Gerade im Projektmanagement hat sich diese Vorgehensweise (Vorgehensmodelle) bei Projekten im Entwicklungsbereichen (Innovationen) zu einer Arbeitsform (Vorgehensmodell) entwickelt, die eher produktorientiert ist. Paradebeispiel dafür ist das Scrum-Framework mit den zu erzielenden Increments am Ende des Sprints oder das Minimum Viable Product (MVP), das wir aus dem Lean Start-up-Ansatz kennen.

Dieser Trend wird aktuell durch Künstliche Intelligenz scheinbar wieder umgekehrt. Wie kommt das?

Schauen wir uns einmal an, wie stark Künstliche Intelligenz den gesamten Lebenszyklus der Software-Entwicklung beeinflusst, so können wir erahnen, dass die Zyklen, in denen ein (Software-)Ergebnis (Increment, MVP) produziert werden kann, immer kürzer werden. Möglicherweise so kurz, dass es sich gar nicht mehr lohnt, den gesamten Scrum-Zyklus mit den vorgesehenen Artefakten und Events durchzuführen, und es zu einem kontinuierlichen Fluss an Ergebnissen (Produkten) kommt. In meinem Beitrag Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban? hatte ich das schon einmal angedeutet. Es freut mich daher, dass der Gedanke durchaus auch von anderen Autoren vertreten wird:

“Der Fokus essenzieller Design- und Architekturentscheidungen verschiebt sich in der Digitalisierung genau wie einst in der Industrialisierung von der Produktentwicklung hin zur Prozessentwicklung. Hier schließt sich auch der Kreis zu Scrum, denn zwei der wichtigsten Scrum-Pioniere Hirotaka Takeuchiund Ikujiro Nonaka kamen ursprünglich aus industriellen Produktions- und Innovationskontexten, nicht aus der Softwareentwicklung” (Immich, T.(2025): KI-Agenten Teil 2: Von der Produktentwicklung zur Prozessoptimierung, in Heise Online vom 27.05.2025).

Künstliche Intelligenz: Ein gesellschaftlicher Bifurkationspunkt mit der Chance für einen Pfadwechsel?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

In unserer heutigen Welt, in der alles und jeder miteinander vernetzt ist, ist die Komplexität in allen Systemen nicht nur Theorie, sondern hat auch für jeden Einzelnen praktische Auswirkungen. Dabei scheint es eine gewisse gesellschaftliche Ohnmacht gegenüber den vielfältigen globalen Problemen zu geben. Denn obwohl es Belege für diese Probleme gibt, wird nicht/kaum gehandelt. Siehe dazu z.B. Nassehi (2020) mit der entsprechenden Begründung aus der Systemtheorie.

In “Zeiten von Corona” allerdings haben wir deutlich erkennen können, dass es den jeweiligen Staaten durchaus gelungen ist, für die Menschen und deren Überleben zu handeln. Dabei wurde auf die Unternehmen und Finanzinstitutionen im Markt weniger Rücksicht genommen. Solche historischen Punkte können also Wendepunkte (Bifurkationspunkte) dafür sein, von bekannten Wegen – also einer Pfadabhängigkeit – abzuweichen, und neue Wege/Pfade zu gehen.

“In bestimmten Konstellationen aber, zu bestimmten Zeitpunkten im historischen Verlauf, die als geschichtliche „Bifurkationspunkte“ begriffen werden können, eröffnen sich plötzlich Chancen auf einen Pfadwechsel, weil aufgetretene Anomalien nicht mehr ignoriert werden können (vgl. Knöbl 2010; Goldstone 1998). Es handelt sich um Krisenmomente, in denen die Fortsetzung der institutionellen Operationen in Frage steht, in denen eben nicht klar ist, wie es weitergeht, weil die Prozessketten gerissen sind. An solchen Gabelungen erscheint es vielen Akteuren wünschenswert, auf den alten Pfad zurückzukehren und so schnell wie möglich die eingespielten Routinen wiederzubeleben. Es ist aber auch möglich, einen neuen Pfad einzuschlagen” (Rosa, H. Pfadabhängigkeit, Bifurkationspunkte und die Rolle der Soziologie. Ein soziologischer Deutungsversuch der Corona-Krise. Berlin J Soziol 30, 191–213 (2020). https://doi.org/10.1007/s11609-020-00418-2).

Stehen wir möglicherweise mit dem Aufkommen Künstlicher Intelligenz wieder vor so einem Wendepunkt, einem Bifurkationspunkt, der staatliche Organisationen dazu aufruft, ihre tradierten, marktorientierten Entscheidungen wieder mehr auf das Wohl der Menschen auszurichten? Siehe dazu auch

Der Strukturbruch zwischen einfacher und reflexiver Modernisierung

“Pfadabhängigkeit” in Organisationen

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Hybrides Projektmanagement: “Emergent Practice” und Bifurkationspunkte

Worin unterscheiden sich Industry 5.0 und Society 5.0?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Vergleich zwischen Google Drive und Nextcloud im Rahmen der Bewertung mithilfe des Souveränitätsscores
.

Der Souveränitätsscore von Prof. Wehnes stellt verschiedene Kriterien auf, anhand derer Angebote verglichen werden können. In der Abbildung ist zu erkennen, dass Google Drive und Nextcloud (Open Source) gegenübergestellt wurden. Das Ergebnis ist eindeutig.

Google Drive erfüll kein einziges Kriterium, wohingegen Nextcloud 5 von insgesamt 6 Kriterien erfüllt. Daraus ergibt sich für Google Drive ein Souveränitätsscore von 0 und für Nextcloud ein Souveränitätsscore von 1.

Diese einfache Gegenüberstellung zeigt, dass die Digitale Souveränität mit Nextcloud erreicht werden kann.

Fangen Sie an, und machen Sie den ersten Schritt zu Ihrer eigenen Digitalen Souveränität, indem Sie auf Open Source Anwendungen setzen, bei denen Sie die Kontrolle über Ihre eigenen Daten haben – z.B. mit Nextcloud.

Wir nutzen seit 2022 auf unserem Server Nextcloud und in der Zwischenzeit auch LocalAI. Dabei können wir innerhalb von Nextcloud auf KI-Modelle zurückgreifen – alle Daten bleiben dabei auf unserem Server. Der nächste Schritt ist, KI-Agenten auf unserem Server zu entwickeln. Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften und

Souveränitätsscore: Zoom und BigBlueButton im Vergleich.

Welche betrieblichen Probleme können durch ein modernes Wissensmanagement gelöst werden?

Nicht alles, was in Organisationen so passiert, wird vom Management beachtet. Doch gibt es immer wiederkehrende betriebliche Probleme, die dann doch in den Fokus des Managements rücken. Oft kommen entsprechende Impulse/Hinweise aus den betriebswirtschaftlichen Kennzahlen, den KPIs. Die folgenden Punkte stellen dabei keine Rangfolge dar:

– Project teams exhibit slow progress due to insufficient collaboration among individuals or business units
– Frequent reinvention of solutions due to inefficient information retrieval or lack of oversight
– High rate of specialist retirements
– Prolonged onboarding time for new employees
– Need for upskilling through cross-domain knowledge or information transfer
– Lack of comprehensive oversight for effective action Increasing complexity in process coordination due to insufficient communication between administrative units
– Customers struggle to find answers independently, leading to excessive reliance on human support
– Inefficient information retrieval
– High turnover of knowledge workers
Source: Kraus & Bornemann (2024)

Die Autoren argumentieren in ihrem Paper (Konferenzbeitrag), dass ein modernes Wissensmanagement dazu beitragen kann, die Aufmerksamkeit des Managements (C-Level) zu gewinnen, und dazu beiträgt, die genannten Probleme zu lösen / zu verbessern.

Siehe dazu Ein neuer Wissensbegriff und meine vielen Blogbeiträge zum Thema.

Nextcloud FLOW: Automatisieren von Abläufen

Eigener Screenshot

Viele persönliche, bzw. organisatorische Abläufe sind Routineprozesse, die sich häufig wiederholen. Sobald dazugehörende Unterlagen digital vorliegen, können diese mit Hilfe von definierten Abläufen automatisiert werden.

Auf unserem Server haben wir Nextcloud (Open Source) installiert, sodass alle Daten geschützt sind. Mit der App Nextcloud FLOW können wir auf alle Daten zugreifen, und einfache, oder auch etwas komplexere Abläufe automatisieren.

In der Abbildung ist beispielhaft zu sehen, dass in der linken Navigationsleiste “Ablauf”, also “Flow”, angeklickt wurde. In der rechten Hälfte ist zu erkennen, dass wir den Ablauf “PDF-Umwandlung” hinterlegt haben. Nun können wir anhand der verschiedenen Auswahlfelder bestimmen, unter welchen Bedingungen Dateien automatisiert in PDF umgewandelt werden können.

Das ist natürlich nur ein kleines und einfaches Beispiel für die Nutzung von Nextcloud FLOW, doch sind auch Anwendungen bei IKBD (Information, Kommunikation, Berichtswesen und Dokumentation) in Projekten denkbar, usw. usw. Den Möglichkeiten, sind fast keine Grenzen gesetzt.

Darüber hinaus kann es Sinn machen, auch noch den Nextcloud ASSISTENT oder sogar KI-Agenten zu nutzen – alles auf Open Source Basis, sodass alle Daten auf dem eigenen Server bleiben.

Hybride Szenarien für agile und klassische Arbeitsformen inkl. möglicher Transformationsansätze

Hybride Szenarien und Transformationsansätze (Schaffitze/Fore 2020:31)

In gewachsenen Organisationen sind Arbeitsformen dominant, die auf Routinearbeit ausgerichtet sind, und ein entsprechendes Mindset ergeben. Agile Arbeitsformen sind anders, da sie in einem eher turbulenten Umfeld komplexe Problemlösungen anbieten – mit allen Konsequenzen für Organisationen.

Beide Elemente werden im Projektmanagement deutlich. Oftmals müssen beide Arbeitsformen in eine Gesamtstruktur überführt werden. Dabei stellt sich die Frage, wie agile und klassische Arbeitsformen in einer hybriden Gesamtstruktur erfolgreich sein können.

In der Tabelle sind dazu drei Hybride Szenarien mit dem jeweiligen Transformationsansatz, der Skalierungsmöglichkeit und der Bewertung möglicher Organisationsveränderungen dargestellt.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Wie kommt es zum Trend “Hybrides Projektmanagement”?

Wie die HELENA-Studie und die PMI-Studie gezeigt haben, nutzen immer mehr Unternehmen/Organisationen ein hybrides Vorgehen im Projektmanagement. Es stellt sich natürlich die Frage, wie es dazu kommen konnte. Eine Antwort dazu habe ich in einem Artikel gefunden:

“Jedes Unternehmen ist eine Art Ökosystem. In diesem Ökosystem findet ja nicht nur beispielsweise die Entwicklung von Hardware und Software statt. Da gibt es auch andere Bereiche wie Sales, Rechnungswesen oder Personalmanagement. Dort herrschen ganz klassische Geschäftsprozesse vor. Zu diesen klassischen Prozessen müssen Projekte eine Schnittstelle anbieten. Aus Sicht vieler Unternehmen liefern agile Methoden diese Schnittstellen nicht” (Kuhrmann, M. (2019): Reines agiles Vorgehen kein „Allheilmittel“, in projektmanagementaktuell 3/2019).

Daran schließt sich natürlich die Frage an, wie Unternehmen das geeignete Vorgehen für ein Projekt festlegen. Wird das hybride Vorgehensmodell nur ein Mal festgelegt, und/oder im Projektverlauf angepasst?

“Vielleicht wird die komplette Vorgehensweise nicht von Projekt zu Projekt festgelegt. Im Allgemeinen sammeln Unternehmen Erfahrungen mit ihrem Projektmanagement. Es kommt zu bestimmten Konsolidierungen im Methodenapparat, also zu Mustern, die für alle Projekte gelten. Doch innerhalb dieses konsolidierten Methodenapparats kann dann für jedes Projekt die Vorgehensweise neu zusammengestellt werden” (ebd.).

Aus der täglichen Arbeit mit und in Projekten ergeben sich also Rahmenbedingungen, die zu einer Konsolidierung bei der Methodenvielfalt führen, und damit ein Muster erkennen lassen. Dieses Muster wiederum zeigt auf, welche Vorgehensmodelle kombiniert werden sollten, um das Projekte – oder die Projekte – erfolgreich umsetzen zu können.

Es wird in Zukunft immer mehr darauf ankommen, Hybrides Projektmanagement in diesem Sinne zu professionalisieren.

Siehe dazu auch

Hybrides Projektmanagement: “Emergent Practice” und Bifurkationspunkte

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Künstliche Generelle Intelligenz (AGI): Kann das überhaupt erreicht werden?

In den Diskussionen um Künstliche Intelligenz (Artificial Intelligence) werden die Tech-Riesen nicht müde zu behaupten, dass Künstliche Intelligenz die Menschliche Intelligenz ebenbürtig ist, und es somit eine Generelle Künstliche Intelligenz (AGI: Artificial General Intelligence) geben wird.

Dabei wird allerdings nie wirklich geklärt, was unter der Menschlichen Intelligenz verstanden wird. Wenn es der Intelligenz-Quotient (IQ) ist, dann haben schon verschiedene Tests gezeigt, dass KI-Modelle einen IQ erreichen können, der höher ist als bei dem Durchschnitt der Menschen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Heißt das, dass das KI-Modell dann intelligenter ist als ein Mensch? Viele Experten bezweifeln das:

“Most experts agree that artificial general intelligence (AGI), which would allow for the creation of machines that can basically mimic or supersede human intelligence on a wide range of varying tasks, is currently out of reach and that it may still take hundreds of years or more to develop AGI, if it can ever be developed. Therefore, in this chapter, “digitalization” means computerization and adoption of (narrow) artificial intelligence” (Samaan 2024, in Werthner et al (eds.) 2024, in Anlehnung an https://rodneybrooks.com/agi-has-been-delayed/).

Es wird meines Erachtens Zeit, dass wir Menschliche Intelligenz nicht nur auf den IQ-Wert begrenzen, sondern entgrenzen. Die Theorie der Multiplen Intelligenzen hat hier gegenüber dem IQ eine bessere Passung zu den aktuellen Entwicklungen. Den Vergleich der Künstlichen Intelligenz mit der Menschlichen Intelligenz nach Howard Gardner wäre damit ein Kategorienfehler.