Ein aufgeklärter “Ich-Begriff” bedeutet, dass Individuen ihren Einfluss perspektivisch drastisch ausbauen können

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.

Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.

Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.

Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.

Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:

“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).

Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.

Dabei steht nicht der Profit im Mittelpunkt, sondern das soziale Miteinander zum Wohle aller.

InstructLab: A new community-based approach to build truly open-source LLMs

Screenshot https://instructlab.ai/

In vielen Blogbeiträgen habe ich darauf hingewiesen, dass es kritisch ist, Closed Sourced Modelle für KI-Anwendungen (GenAI) zu nutzen. Die hinterlegten Trainingsdaten können kritisch sein und auch das Hochladen eigener Daten sollte bei diesen Modellen möglichst nicht erfolgen. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

In der Zwischenzeit gibt es viele Large Language Models (LLMs), die Open Source basiert sind, und sich an der Definition von Open Source AI orientieren. Das reicht vielen Unternehmen allerdings nicht aus, da sie gerne ihre eigenen Daten mit den Möglichkeiten der LLMs kombiniert – und sicher – nutzen wollen. Siehe dazu Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden.

In der Zwischenzeit ist es mit Hilfe von InstructLab möglich, vorhandene LLMs mit eigenen Daten zu trainieren. Dabei handelt sich um eine Initiative von Redhat und IBM – weiterführende Informationen dazu finden Sie bei Hugging Fcae.

Wie funktioniert InstructLab? Das Prinzip ist relativ einfach: Ein bestehendes Modell (LLM) wird mit Hilfe von InstructLab und eigenen Daten erweitert, spezifiziert und trainiert – alles unter eigener Kontrolle und Open Source.

“InstructLab can augment models though skill recipes used to generate synthetik data for tuning. Experiments can be run locally on quantized version of these models” (InstructLab-Website).

In einem ausführlichen, deutschsprachigen artikel erklärt Redhat noch einmal die Zusammenhänge: “Unternehmen können die InstructLab-Tools zum Modellabgleich auch nutzen, um ihre eigenen privaten LLMs mit ihren Kompetenzen und ihrem Fachwissen zu trainieren” (Redhat vom 10.03.2025).

Es ist für mich entscheidend, dass diese Initiative Open Source basiert, nicht auf bestimmte Modelle beschränkt, und lokal angewendet werden kann.

Hybrides Projektmanagement: Vom Trend zum neuen Standard

In den letzten Jahren habe ich schon viele Beiträge zum Hybriden Projektmanagement geschrieben. In der Zwischenzeit nehmen auch die Diskussionen um Normen, Standards und Vorgehensmodelle diese Entwicklung auf. Im Vorfeld des IPMA World Congress (17.-19.09.2025 in Berlin) ist zum Beispiel folgendes zu Trendthemen zu lesen:

“Die zunehmende Komplexität von Projekten und unsichere Rahmenbedingungen machen flexible Lösungen notwendig. Hybride Modelle erlauben schnelle Reaktionen auf Veränderungen, ohne die organisatorische Stabilität zu gefährden. Auch große Unternehmen wie IBM und Microsoft berichten von positiven Erfahrungen: Effizientere Projektabläufe und zufriedenere Teams nach Einführung hybrider Ansätze. Hybrides Projektmanagement entwickelt sich damit vom Trend zum neuen Standard. Es kombiniert Planungsdisziplin mit Agilität – und macht Projekte robuster gegenüber externen Einflüssen. Ein klarer Wettbewerbsvorteil” (Wieschowski 2025, in projektmanagementaktuell 3/2025).

Dass Hybrides Projektmanagement der neue Standard sein soll ist zwar gut und richtig, doch gibt es noch gar keinen Standard zum Hybriden Projektmanagement.

Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren

An AI router that understands the capabilities of models in its library directs
a given inference request to the best model able to perform the task at hand (Thomas et al. 2025)

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodelle geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Siehe dazu diesen Blogbeitrag zu den Vorteilen und Nachteilen dieser Vorgehensweise.

Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs).

Neben den genannten Extremen gibt es noch Modelle, die dazwischen anzusiedeln sind, und daher als “midsized” bezeichnet werden können.

Diese drei Möglichkeiten sind beispielhaft in der Abbildung unter “Sample of model ecosystem” zusammengefasst. Erfolgt also eine neue Anfrage über den “New data point” an den AI Router, so kann der vorher trainierte AI Router das geeignete Trainingsmodell (Small, Midsized, Large) zuweisen.

Die Autoren (Thomas et al. 2025) konnten in verschiedenen Tests zeigen, dass ein guter Mix an geeigneten Modellen, zusammen mit einem gut trainierten AI Router bessere und wirtschaftlichere Ergebnisse erzielt.

Die Vorteile liegen auf der Hand: Sie sparen Geld, reduzieren die Latenz und helfen der Umwelt. Diese Punkte sind gerade für Kleine und Mittlere Unternehmen (KMU) interessant.

GPM (2025): Künstliche Intelligenz im Projektkontext – Studie

Es ist schon eine Binsenweisheit, dass Künstliche Intelligenz (GenAI) alle Bereiche der Gesellschaft mehr oder weniger berühren wird. Das ist natürlich auch im Projektmanagement so. Dabei ist es immer gut, wenn man sich auf verlässliche Quellen, und nicht auf Berater-Weisheiten verlässt.

Eine dieser Quellen ist die Gesellschaft für Projektmanagement e.V., die immer wieder Studien zu verschiedenen Themen veröffentlicht. In der Studie GPM (2025): Gehalt und Karriere im Projektmanagement. Sonderthema: Die Anwendung Künstlicher Intelligenz im Projektmanagement findet sich auf Seite 13 folgende Zusammenfassung:

Künstliche Intelligenz im Projektkontext
Künstliche Intelligenz (KI) wird im Bereich Projektmanagement in der Mehrheit der Unternehmen eingesetzt, allerdings in noch geringem Maße.
(1) KI-basierte Tools werden insgesamt eher selten genutzt, wenn sie zum Einsatz kommen, dann sind es hauptsächlich ChatGPT, Jira, MS Pilot oder eigenentwickelte Tools.
(2) Es zeichnet sich kein eindeutiger Projektmanagement-Bereich ab, in dem KI bevorzugt zum Einsatz kommt. Am deutlichsten noch in der Projektplanung und in der Projektinitiierung, am seltensten im Projektportfolio- und im Programmmanagement.
(3) Der Nutzen der KI wird tendenziell eher positiv gesehen, insbesondere als Unterstützung der alltäglichen Arbeit, zur Erleichterung der Arbeit im Projektmanagement und zur Erhöhung der Produktivität.
(4) Der Beitrag von KI zu einem höheren Projekterfolg wird von der Mehrheit der Befragten nicht gesehen – allerdings nur von einer knappen Mehrheit.
(5) Es besteht eine grundlegende Skepsis gegenüber KI, was verschiedene Leistungsparameter im Vergleich zum Menschen betrifft. Alle hierzu gestellten Fragen wie Fehleranfälligkeit, Genauigkeit, Konsistenz der Information oder Konsistenz der Services wurden mehrheitlich zu Gunsten des Menschen bewertet.
(6) Die überwiegende Mehrheit der befragten Projektmanagerinnen und Projektmanager teilt diverse Ängste gegenüber der KI nicht, wie z. B. diese werde Jobs vernichten oder dem Menschen überlegen sein.”
Quelle: GPM (2025). Anmerkung: Im Originaltext wurden Aufzählungszeichen verwendet. Um besser auf einzelnen Punkte einzugehen, habe ich diese nummeriert, was somit keine Art von Priorisierung darstellt.

An dieser Stelle möchte ich nur zwei der hier genannten Ergebnisse kommentieren:

Punkt (1): Es wird deutlich, dass hauptsächlich Closed Source Modelle verwendet werden. Möglicherweise ohne zu reflektieren, was mit den eigenen Daten bei der Nutzung passiert – gerade wenn auch noch eigene, projektspezifische Daten hochgeladen werden. Besser wäre es, ein Open Source basiertes KI-System und später Open Source basierte KI-Agenten zu nutzen. Dazu habe ich schon verschiedene Blogbeiträge geschrieben. Siehe dazu beispielhaft Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Punkt (6): Es geht bei der Nutzung von KI nicht immer um die “Vernichtung” (Was für ein schreckliches Wort) von Jobs, sondern darum, dass viele verschiedene Aufgaben (Tasks) in Zukunft von KI autonom bearbeitet werden können. Siehe dazu auch The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen

Quelle: Xu et al. (2025): The Agent Company | https://the-agent-company.com/

Es ist mehr als eine interessante Spielerei von KI-Enthusiasten: KI-Agenten (AI-Agents) können immer mehr Aufgaben in einem Unternehmen autonom übernehmen. Um das genauer zu untersuchen, haben Wissenschaftler in dem Paper

Xu et al. (2025): TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

wichtige Grundlagen dargestellt, und auch untersucht, welche Tasks in einem Unternehmen von KI-Agenten autonom übernommen werden können.

Wie in der Abbildung zu erkennen ist, wurden Mitarbeiterrollen simuliert (Engineer, CTO, HR) und verschiedene Tasks angenommen. Bei dem Admin beispielsweise “arrange meeting room” und bei dem Projektmanager (PM) “teams sprint planning”, was auf das Scrum Framework hinweist. Als Modelle für Trainingsdaten wurden Large Language Models (LLMs) genutzt – closed source und open weight models:

“We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that the most competitive agent can complete 30% of tasks autonomously” (Xu et al (2025).

Es wird zwar ausdrücklich auf die Beschränkungen (Limitations) hingewiesen, doch gibt diese Untersuchung konkrete Hinweise darauf, welche Aufgaben (Tasks) in Zukunft möglicherweise von KI-Agenten in Unternehmen übernommen werden können.

Interessant bei dem Paper ist, dass dazu auch eine ausführliche Website https://the-agent-company.com/ aufgebaut wurde, auf der Videos, inkl. der verschiedenen KI-Agenten zu finden sind. Interessiert Sie das? Wenn ja, nutzen Sie einfach den Quick Start Guide und legen Sie los!

Natürlich sollte jedes Unternehmen für sich herausfinden, welche Tasks von KI-Agenten sinnvoll übernommen werden sollten. Dabei wird schon deutlich, dass es hier nicht darum geht, ganze Berufe zu ersetzen, sondern ein Sammelsurium von unterschiedlichen Tasks (Ausgaben) autonom durchführen zu lassen.

Hervorzuheben ist aus meiner Sicht natürlich, dass die Autoren mit dem letzten Satz in ihrem Paper darauf hinweisen, dass die Nutzung von Open Source AI in Zukunft ein sehr vielversprechender Ansatz sein kann – aus meiner Sicht: sein wird!

“We hope that TheAgentCompany provides a first step, but not the only step, towards these goals, and that we or others may build upon the open source release of TheAgentCompany to further expand in these promising directions” (Xu et al 2025).

The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework

Im Projektmanagement ist es heute wichtig, zwischen einfachen, komplizierten und komplexen Projekten zu unterscheiden, um das angemessene Vorgehensmodell zu bestimmen.

Dabei können Organisationen im einfachsten Fall mit der Stacey-Matrix, oder auch mit ausführlicheren Analysemethoden nach Boehm & Turner oder Timinger usw. arbeiten. Siehe dazu Projektmanagement: Das geeignete Vorgehensmodell finden.

Darin wird auch das Cynefin-Framework als geeignetes Instrument erwähnt, das ursprünglich aus dem Wissensmanagement kommt. Siehe dazu Projektmanagement: Das Cynefin-Framework und der Bereich “disorder”. Natürlich kann man sich bei Wikipedia oder auch von KI-Modellen Informationen zum Cynefin-Framework zusammenstellen, doch ist es manchmal auch gut, sich ein Buch anzusehen,.

Brougham, G. (2015): The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework | PDF

Das frei verfügbare Mini-Buch zum Thema ist deshalb wertvoll, da es die verschiedenen Facetten des Cynefin-Frameworks intensiv thematisiert, und dazu auch noch wichtige Quellen angibt.

Stafford Beer (1959): Nicht Gewinnmaximierung, sondern Überleben muss das Ziel von Organisationen sein

Image by Foto-RaBe from Pixabay

In der heutigen Zeit hat man den Eindruck, dass Organisationen – und hier speziell wirtschaftlich ausgerichtete Unternehmen – das alleinige Ziel haben, ihre Gewinne zu maximieren. Die Begründung ist, dass mit hohen Gewinnen die Wahrscheinlichkeit steigt, wirtschaftlich zu überleben. Ein weiterer Gedanke ist, dass solche Unternehmen die Bedürfnisse von Verbrauchern zufriedenstellen und dafür über den zu erzielenden Preis vom Markt “belohnt” werden. Siehe dazu auch Von “Märkte als Ziele” zu “Märkte als Foren”.

In den letzten 80 Jahren nach Ende des 2. Weltkriegs haben sich wirtschaftlich ausgerichtete Unternehmen immer mehr der Gewinnmaximierung verschrieben, sodass die Produkte und Dienstleistungen kaum noch den Anforderungen der Verbraucher entsprechen. Am Beispiel der Fast Food Branche ist das beispielhaft gut zu erkennen: Siehe dazu Lebensmitteltechniker Sebastian Lege entlarvt die Produkte der Fast-Food-Industrie (ZDF vom 06.02.2024).

Was gut ist für die massenhafte Produktion und die Gewinnmaximierung der Unternehmen, ist nicht besonders gut für die Verbraucher. Siehe dazu Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht? oder auch Deceptive Patterns (Täuschungsmuster): Über die Tricks der Tech-Unternehmen.

Es scheint so, als ob diese Art der Gewinnmaximierung auf Kosten der Verbraucher, bzw. ganzer Gesellschaften immer mehr in die Kritik gerät. Dabei stellt sich natürlich die Frage: Wenn es die Gewinnmaximierung nicht ist, woran kann sich eine wirtschaftlich orientierte Unternehmung denn sonst orientieren? Einige sagen, dass es die Nachhaltigkeit ist, andere wiederum setzen auf Social Responsibility usw. usw.

Ein Ansatz, der möglicherweise etwas in Vergessenheit geraten ist, ist das Modell eines lebensfähigen Systems nach Stafford Beer aus dem Jahr 1959:

“Das Viable System Model (VSM; deutsch Modell lebensfähiger Systeme) wurde 1959 von Stafford Beer in seinem Buch Kybernetik und Management erstmals formuliert. (…) S. Beer formuliert die Lebensfähigkeit wie folgt: Nicht Gewinnmaximierung, sondern Überleben muss das Ziel sein. Nicht die Führung von Menschen, sondern das Lenken bzw. Steuern und Regulieren ganzer Organisationen in ihrer Umwelt ist entscheidend. Nicht wenige Menschen managen, sondern alle müssen bestimmte Funktionen des Managements ausüben.(Quelle: Wikipedia).

Es geht manchen Unternehmen heute nicht mehr darum, sich an das Umfeld zu adaptieren, sondern das Umfeld (Markt, Gesellschaft) so zu manipulieren, dass ein Gewinnmaximum in exorbitanten Größenordnungen entsteht. Die Lebensfähigkeit dieser Unternehmen liegt also darin, das Umfeld immer stärker in ihrem Interesse zu beeinflussen – sogar bis hinein in die politische, demokratische Ebene einer Gesellschaft.

Wollen wir das weiter zulassen? Was wäre, wenn wieder die Bedürfnisse der Menschen im Mittelpunkt des Marktgeschehens stehen würden?

Plangetriebenes Projektmanagement: Synchronisationspunkte zwischen Software, Elektronik und Hardware

Paralleler Durchlauf der einzelnen Vorgehensweisen in der software (hellblau), der Elektronik (grün) und der Mechanik (dunkelblau) mit geforderten Synchronisationspunkten (Timinger/Sticherling 2016)

In der Mechatronik geht es um Mechanik und Elektronik. Hinzu kommen heute fast immer auch Softwareelemente. Jeder einzelne Bereich ist schon schwierig genug, doch ist es noch herausfordernder, alle drei Bereiche aufeinander abzustimmen.

In der Abbildung sind die drei Bereiche mit ihren Entwicklungsschritten zu erkennen (farbliche Unterscheidung). Hinzu kommen jetzt noch geforderte Synchronisationspunkte, an denen alles zu einem bestimmten Zeitpunkt aufeinander abgestimmt wird. Dazu gehört auch, dass es von einem Synchronisationspunkt aus nicht weiter, sondern noch einmal zurück geht.

In einem eher plangetriebenen Projektmanagement ist es nicht einfach, alles zu koordinieren, da alle drei Stränge im zeitlichen Ablauf sehr unterschiedlich sein können.

Möglicherweise ist es bei einen größeren Dynamik (Komplexität) im Innovationsprozess besser, alles auf ein agiles, bzw. hybrides Vorgehensmodell umzustellen: Feature 1 > Feature 2 > Feature 3 etc. Siehe dazu auch Waterfall-Agile: Unterschiedliches Erarbeiten von Features.

Mit Cloudfare unbefugtes Scraping und Verwenden von Originalinhalten stoppen

Image by Werner Moser from Pixabay

In den letzten Jahren haben die bekannten KI-Tech-Unternehmen viel Geld damit verdient, Daten aus dem Internet zu sammeln und als Trainingsdaten für Large Language Models (LLMs) zu nutzen. Dabei sind diese Unternehmen nicht gerade zimperlich mit Datenschutz oder auch mit Urheberrechten umgegangen.

Es war abzusehen, dass es gegen dieses Vorgehen Widerstände geben wird. Neben den verschiedenen Klagen von Content-Erstellern wie Verlagen, Filmindustrie usw. gibt es nun immer mehr technische Möglichkeiten, das unberechtigte Scraping und Verwenden von Originalinhalten zu stoppen. Ein kommerzielles Beispiel dafür ist Cloudfare. In einer Pressemitteilung vom 01.07.2025 heißt es:

San Francisco (Kalifornien), 1. Juli 2025 – Cloudflare, Inc. (NYSE: NET), das führende Unternehmen im Bereich Connectivity Cloud, gibt heute bekannt, dass es nun als erster Anbieter von Internetinfrastruktur standardmäßig KI-Crawler blockiert, die ohne Erlaubnis oder finanziellen Ausgleich auf Inhalte zugreifen. Ab sofort können Eigentümerinnen und Eigentümer von Websites bestimmen, ob KI-Crawler überhaupt auf ihre Inhalte zugreifen können, und wie dieses Material von KI-Unternehmen verwertet werden darf” (Source: Cloudfare).

Siehe dazu auch Cloudflare blockiert KI-Crawler automatisch (golem vom 01.07.2025). Ich kann mir gut vorstellen, dass es in Zukunft viele weitere kommerzielle technische Möglichkeiten geben wird, Content freizugeben, oder auch zu schützen.

Das ist zunächst einmal gut, doch sollte es auch Lösungen für einzelne Personen geben, die sich teure kommerzielle Technologie nicht leisten können oder wollen. Beispielsweise möchten wir auch nicht, dass unsere Blogbeiträge einfach so für Trainingsdaten genutzt werden. Obwohl wir ein Copyright bei jedem Beitrag vermerkt haben, wissen wir nicht, ob diese Daten als Trainingsdaten der LLMs genutzt werden, da die KI-Tech-Konzerne hier keine Transparenz zulassen. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Dazu gibt es eine weitere interessante Entwicklung, die ich in dem Beitrag Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht erläutert habe.