Vom Mindmap zu einem KI-Agenten für Wissensmanagement?

 „Wissensmanagement-Mindmap“ von Martin Harnisch, Sonja Kaiser, Dirk Liesch, Florian Schmuhl, Gabriele Vollmar, Sabine Wax, lizenziert unter CC BY 4.0

In einer Arbeitsgruppe der Gesellschaft für Wissensmanagement e.V. (GfWM) wurde 2024 ein umfangreiches Mindmap zu Wissensmanagement erstellt. In der Abbildung ist die Quelle und die Lizenz zur Nutzung genannt.

“Die Wissensmanagement-Mindmap soll einen systematischen Überblick über die wesentlichen Handlungsfelder, Modelle, Methoden und Tools im Bereich des Wissensmanagements geben” (ebd.).

Die Mindmap ist auf der Website der GfWM in verschiedenen Dateiformaten zu finden, die mit Angabe der Quelle genutzt werden können.

Einerseits ist es gut, einen Überblick zu den vielfältigen Themenbereichen des Wissensmanagements zu erhalten. Andererseits weisen die Autoren berechtigt darauf hin, dass dieses Mindmap keinen Anspruch auf Vollständigkeit hat. Wenn da allerdings noch viele weitere “Äste” hinzukommen, wirkt das Mindmap weniger hilfreich und “erschlägt” möglicherweise den Interessenten.

Insofern frage ich mich, ob es nicht besser wäre einen Einstig zu wählen, der sich aus den jeweiligen Situationen, Kontexten, Domänen ergibt. Solche “Ankerpunkte” konkretisieren den Umgang mit Wissen, und führen in einem Bottom-Up-Ansatz zur Entdeckung der vielfältigen Möglichkeiten des Wissensmanagements – speziell abgestimmt auf die einzelne Person, die Gruppe, die Organisation und/oder das Netzwerk.

Umgesetzt werden kann das heute mit KI- Agenten (AI Agents).

Projektmanagement und Resilienz

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Die Zeitschrift projektmanagementaktuell wird in 2025 verschiedene Schwerpunktthemen haben. Darunter ist auch Projektmanagement und Resilienz. In der aktuellen Ausgabe wird darauf wie folgt hingewiesen:

“Das ökonomische, ökologische und gesellschaftliche Umfeld ist in ständiger Bewegung. Das sorgt bei Projekten für Unsicherheiten und Risiken und für Stress in den Projektteams. Projekte und Projektteams müssen anpassungsfähiger werden.

Wie können Veränderungsmuster und konkrete Projektrisiken früher erkannt werden?

Welche Rolle können dabei Simulations-, Szenariotools oder die KI spielen?

Wie können Projektkrisen besser bewältigt werden?

Was kann unternommen werden, um die psychologische Resilienz der Projektteams zu fördern?

Welche zusätzlichen Kompetenzen müssen ProjektleiterInnen erwerben?”

Quelle: projektmanagementaktuell 4/2024

Siehe dazu auch:

Das Verständnis von Resilienz als Outcome.

Wie hängen “Menschenorientierung” und Resilienz einer Organisation zusammen?

Durchschnittliches Resilienzprofil der Ausgezeichneten des „Großen Preises des Mittelstandes“

Wie bleiben Teams während des Veränderungsprozesses handlungsfähig ? Mit Resilienz-Selbsttest!

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

“Innovation” und “Innovationsmanagementsystem” nach ISO-Norm

Image by Gerd Altmann from Pixabay

Innovationen sind den Standort Deutschland wichtig – für die gesamte Gesellschaft und für Organisationen. Im Jahr 2019 wurde dazu in der ISO 56002 ein Rahmen für das Innovationsmanagement in Organisationen veröffentlicht. Zusammen mit der übergeordneten ISO 56000 wird auch eine einheitliche Definition von “Innovation” und “Innovationsmanagement” festgelegt:

Eine Innovation beschreibt hier eine “neue oder veränderte Einheit, die Wert schafft oder neu verteilt” (ISO 56000).

“Ein Innovationsmanagementsystem ist ein Satz zusammenhängender oder sich gegenseitig beeinflussender Elemente die auf der Schaffung von Wert abzielen. Es bietet einen gemeinsamen Rahmen zum Entwickeln und Bereitstellen von Innovationsfähigkeiten, Beurteilen von Leistung und Erreichen von beabsichtigten Ergebnissen” (ISO 56002:2019), gefunden in Flore/Würdemann (2024), projektmagementaktuell 05/2024).

In der nationalen und internationalen Zusammenarbeit ist es immer gut, Begriffe zu standardisieren, um die Kommunikation zu vereinfachen. Ich frage mich allerdings, ob die in den letzten Jahrzehnten veröffentlichten Normen zum Innovationsmanagement in Organisationen wirklich dazu beigetragen haben, dass Organisationen innovativer geworden sind. Die Realität sieht m. E. in Deutschland nicht danach aus…. Siehe dazu auch:

“Innovation”: Definition aus 2018 (Oslo Manual)

Künstliche Intelligenz im Innovationsprozess von Organisationen.

Künstliche Intelligenz und Open Innovation.

Inflation der Innovationspreise?

Menschliches Verhalten operiert mit einem speed limit von 10 bits/s. Was bedeutet das?

Jede Sekunde prasseln auf uns eine Unmenge an Daten ein. Zheng und Meister (2024) vom California Institute of Technology haben in ihrem Paper The Unbearable Slowness of Being: Why do we live at 10 bits/s? (PDF) dazu analysiert, dass der gesamte menschliche Körper eine Datenmenge von 109 bits/s absorbieren kann. Die Autoren nennen das “outer brain“.

Dabei stellt sich natürlich gleich die Frage, ob ein Mensch diese Menge auch zeitgleich verarbeiten kann. Die Antwort: Das ist nicht der Fall. Um existieren/leben zu können, müssen wir viele der äußeren Reize / Daten ausblenden. Doch wie viele Daten benötigen wir Menschen bei unserem Verhalten (“inner brain“, ebd.) pro Sekunde? Auch hier geben die Autoren eine deutliche Antwort:

“Human behaviors, including motor function, perception, and cognition, operate at a speed limit of 10 bits/s. At the same time, single neurons can transmit information at that same rate or faster. Furthermore, some portions of our brain, such as the peripheral sensory regions, clearly process information dramatically faster” (Zheng und Meister 2024).

Die Evolution hat gezeigt, dass es für den Menschen von Vorteil ist, gegenüber der absorbierbaren Datenflut (outer brain) ein innerliches Regulativ (inner brain) zu haben. Wir haben in der Vergangenheit auch unsere gesamte Infrastruktur (Straßen, Brücken usw.) auf die 10 bits/s ausgerichtet. Was ist, wenn wir die Infrastruktur auf die neuen technologischen Möglichkeiten ausrichten? Ist der Mensch dann darin eher ein Störfaktor?

Meines Erachtens sollten wir nicht immer versuchen, den Menschen an die neuen technologischen Möglichkeiten anzupassen, sondern die technologischen Möglichkeiten stärker an die menschlichen (inkl. Umwelt) Erfordernisse adaptieren. Aktuell geht die weltweite Entwicklung immer noch zu stark von der Technologie und den damit verbundenen “Märkten” aus. Eine mögliche Alternative sehe ich in der von Japan vor Jahren schon propagierten Society 5.0.

Künstliche Intelligenz und Open Innovation

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Zunächst sollten Sie sich noch einmal klar machen, wie sich Closed Innovation und Open Innovation unterscheiden. Wie so oft, gibt es nicht nur die beiden Pole, sondern ein Innovations-Kontinuum (Roth 2008). Weiterhin finden Sie in dem Beitrag Künstliche Intelligenz im Innovationsprozess von Organisationen Hinweise dazu, welche Vorteile, bzw. Nachteile es geben kann, wenn für jeden Schritt im Innovationsprozess eines der bekannten KI-Modelle wie ChatGPT, Gemeni etc. genutzt wird.

In diesem Beitrag geht es mir darum aufzuzeigen, wie Künstliche Intelligenz bei Open Innovation genutzt werden kann. Wie der folgenden Tabelle zu entnehmen ist, kann zwischen der Verbesserung von Open Innovation durch KI (OI-Enhancing AI), einer Ermöglichung von Open Innovation durch KI (OI-Enabling AI) und der Ersetzung von Open Innovation durch KI (OI-Peplacing AI) unterschiedenen werden. Die jeweils genannten Beispiele zeigen konkrete Einsatzfelder.

DescriptionExamples
OI-Enhancing AIAI that enhances established forms of open innovation by utilizing the advantages of AI complemented with human involvementInnovation search
Partner search
Idea evaluation
Resource utilization
OI-Enabling AIAI that enables new forms of open innovation, based upon AI’s potential to coordinate and/or generate innovationAI-enabled markets
AI-enabled open business models
Federated learning
OI-Replacing AIAI that replaces or significantly reshapes established forms of open innovationAI ideation
Synthetic data
Multi-agent systems
Quelle: Holgersson  et al. (2024)

Alle drei Möglichkeiten – mit den jeweils genannten Beispielen – können von einem KI-Modell (z.B. ChatGPT oder Gemeni etc.) der eher kommerziell orientierten Anbieter abgedeckt werden. Dieses Vorgehen kann als One Sizes Fits All bezeichnet werden.

Eine andere Vorgehensweise wäre, verschiedene spezialisierte Trainingsmodelle (Large Language Models) für die einzelnen Prozessschritte einzusetzen. Ein wesentlicher Vorteil wäre, dass solche LLM viel kleiner und weniger aufwendig wären. Das ist gerade für Kleine und Mittlere Unternehmen (KMU) von Bedeutung.

Nicht zuletzt kann auch immer mehr leistungsfähige Open Source AI eingesetzt werden. Dabei beziehe ich mich auf die zuletzt veröffentlichte Definition zu Open Source AI. Eine Erkenntnis daraus ist: OpenAI ist kein Open Source AI. Die zuletzt veröffentlichten Modelle wie TEUKEN 7B oder auch Comon Corpus können hier beispielhaft für “wirkliche” Open source AI genannt werden.

Weiterhin speilen in Zukunft AI Agenten – auch Open Source – eine immer wichtigere Rolle.

Lernkompetenz: Schritt für Schritt zum kompetenten Selbstlerner

Das Kompetenztableau zeigt zwischen den beiden Dimensionen “Selbstwirksamkeit” und “Kooperation” verschiedene Kompetenzen auf. In diesem Spannungsfeld sind Emotionale KompetenzSpirituelle Kompetenz (ohne Esoterik), Kommunikationskompetenz, Wissenskompetenz und Lernkompetenz eingebettet. Je besser diese Kompetenzen ausgeprägter sind, um so handlungsfähiger ist jemand im Sinne einer sachgemäßen Problemlösung.

“Die Lernkompetenz ist eine eher technische Fähigkeit. Sie umfasst die autodidaktischen Verfahren der Aufbereitung und systematischen Aneignung von Wissen und Können. Lern- und Memorierungstechniken gehören ebenso zu diesem Fähigkeitsbündel wie die Kenntnis unterschiedlicher Strategien zur schrittweisen Erschließung und Übung von Neuem. Zahlreiche Ratgeber und Trainings zum Selbsterlernen haben in den letzten Jahren diese Fähigkeiten gezielt in den Blick gerückt und den Einzelnen kleinschrittig zu absolvierende Wege zur Lernkompetenz aufgezeigt – gemäß dem Motto „Schritt für Schritt zum kompetenten Selbstlerner / zur kompetenten Selbstlernerin“. Menschen, die über Lernkompetenz verfügen, sind in der Lage, ihre Lernprozesse weitgehend selbständig zu planen. Sie haben die Besitzverhältnisse im Lehr-Lern-Prozess verstanden und wissen, dass das eigene Lernen ihnen gehört und nicht von anderen – gewissermaßen stellvertretend – verwaltet und gestaltet werden kann. Die Ownership der Lernenden entzieht der Inputpädagogik ihre Basis, und es wird sichtbar: ´Das Lehren ist nicht zu retten!´ (vgl. Arnold 2013c)” (Arnold 2017).

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Künstliche Intelligenz im Innovationsprozess von Organisationen

Quelle: AdobeStock_650993865

Innovationen sind für eine Gesellschaft, und hier speziell für marktorientierte Organisationen wichtig, um sich an ein verändertes Umfeld anzupassen (inkrementelle Innovationen), bzw. etwas ganz Neues auf den Markt zu bringen (disruptive Innovationen).

Organisationen können solche Innovationen in einem eher geschlossenen Innovationsprozess (Closed Innovation) oder in einem eher offenen Innovationsprozess (Open Innovation) entwickeln.

Darüber hinaus können die Innovationen von Menschen (People Driven) oder/und von Technologie (Data Driven) getrieben sein. Aktuell geht es in vielen Diskussionen darum, wie Künstliche Intelligenz (AI: Artificial Intelligence) und die damit verbundenen Trainingsdaten (LLM: Large Language Models) im Innovationsprozess genutzt werden können.

Im einfachsten Fall würde sich eine Organisation den Innovationsprozess ansehen, und in jedem Prozessschritt ein Standard-KI-Modell wie ChatGpt, Gemini, Bart usw. nutzen. Die folgende Tabelle stellt das grob für einen einfachen Innovationsprozess nach Rogers (2003) dar:

Opportunity identification and idea generationIdea evaluation and selectionConcept and solution developmentCommercialization launch phase
e.g. identifying user needs, scouting promising technologies, generating ideas;e.g. idea assessment, evaluatione.g. prototyping, concept testinge.g. marketing, sales, pricing
ChatGPT, Gemeni, etc.ChatGPT, Gemini, etc.ChatGPT, Gemini, etc.ChatGPT, Gemini, etc.
Eigene Darstellung

Dieser Ansatz könnte als One Size fits all interpretiert werden: Eine Standard-KI für alle Prozessschritte.

Dafür sprechen verschiedene Vorteile:
– Viele Mitarbeiter haben sich schon privat oder auch beruflich mit solchen Standard-KI-Modelle beschäftigt, wodurch eine relativ einfache Kompetenzentwicklung möglich ist.
– Die kommerziellen Anbieter treiben AI-Innovationen schnell voran, wodurch es fast “täglich” zu neuen Anwendungsmöglichkeiten kommt.
– Kommerzielle Anbieter vernetzen KI-Apps mit ihren anderen Systemen, wodurch es zu verbesserten integrierten Lösungen kommt.

Es gibt allerdings auch erhebliche Nachteile:
– Möglicherweise werden auch andere Organisationen/Wettbewerber so einen Ansatz wählen, sodass kaum ein grundlegendes Alleinstellungsmerkmal erzielt werden kann.
– Kritisch ist auch heute noch, ob es sich bei den verwendeten Trainingsdaten (Large Language Models) nicht um Urheberrechtsverletzungen handelt. Etliche Klagen sind anhängig.
– Weiterhin können die für Innovationen formulierte Prompts und Dateien durchaus auch als Trainingsdaten verwendet werden.
– Die LLM sind nicht transparent und für alle zugänglich, also sie sind keine Open Source AI, auch wenn das von den kommerziell betriebenen KI-Modellen immer wieder suggeriert wird.
– Organisationen sind anhängig von den Innovationsschritten der kommerziellen Anbieter.
– Die Trainingsdatenbanken (Large Language Models) werden immer größer und damit natürlich auch teurer.
– Nicht zuletzt ist unklar, wie sich die Kosten für die kommerzielle Nutzung der KI-Apps in Zukunft entwickeln werden – eine gerade für kleine und mittlere Unternehmen (KMU) nicht zu unterschätzende Komponente.

Gerade kleine und mittlere Unternehmen (KMU) sollten die genannten Vorteile und Nachteile abwägen und überlegen, wie sie Künstliche Intelligenz in ihrem Innovationsprozess nutzen wollen.

In unserem Blog werde ich in der nächsten Zeit weitere Möglichkeiten aufzeigen.

Henry Chesbrough über die Zukunft von Open Innovation

Wenn es um Open Innovation geht, wird meistens die Veröffentlichung von Henry Chesbrough aus dem Jahr 2003 genannt: Open Innovation: The New Imperative for Creating and Profiting from Technology.

Dabei stellt Chesbrough dar, wie sich der bisher geschlossene Innovationsprozess (Closed Innovation) immer mehr öffnet. indem Organisationen für den dazugehörenden Wissensfluss (neue) technologische Möglichkeiten einsetzen (Abbildung). Darüber hinaus hatte Chesbrough bei seiner Veröffentlichung seinen Fokus auf Großunternehmen gelegt, und entsprechende Beispiele beschrieben. Nach mehr als 20 Jahren hat Henry Chesbrough nun einen sehr lesenswerten Artikel veröffentlicht:

Chesbrogh, H. (2024): Open Innovation: Accomplishments and Prospects for the Next 20 Years, in: California Management Review, Volume 67, Issue 1, November 2024, Pages 164-180 | Link

Der Beitrag zeichnet die Entwicklungslinien von Open Innovation für Organisationen noch einmal nach, und ordnet diese ein. Ich habe hier absichtlich “für Organisationen” ergänzt, da das Verständnis von Open Innovation nach Chesbrough auf ein offeneres Business Model von Organisationen abzielt.

Dieser Hinweis ist deshalb wichtig, da es auch eine andere Perspektive auf Open Innovation gibt, und zwar die von Eric von Hippel. Siehe dazu von Hippel, E. (2005): Democratizing Innovation und von Hippel, E. (2017): Free Innovation. Dieser Blick ist eher Bottom-Up gerichtet, da er davon ausgeht, dass jeder Mensch in seinem täglichen Umfeld Möglichkeiten sieht, innovativ zu sein. Mit Hilfe neuer Technologien wird es fast jedem möglich sein, Innovationen zu entwickeln und anzubieten – entweder kommerziell oder frei nutzbar für andere Menschen.

Abschließend möchte ich Open Innovation auch noch mit den größeren gesellschaftlichen Entwicklungen der Modernisierung in Verbindung bringen. ein Ergebnis von Entgrenzungstendenzen, die sich aus der Reflexiven Modernisierung ergeben haben. Dabei handelt es sich um einen Strukturbruch zwischen einfacher und reflexiver Modernisierung.

Siehe dazu auch meine verschiedenen Veröffentlichungen zu Open Innovation, beispielsweise

Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Digital Kaizen essentiell für Kleine und mittlere Unternehmen (KMU)

Quelle: APO (2024)

Viele kleine und mittlere Unternehmen (KMU) müssen im Gegensatz zu Großunternehmen viel genauer auf ihre Vorhanden Ressourcen achten. Um die Produktivität zu verbessern setzen viele KMU daher auf Kaizen, oder in deutsch: Kontinuierlicher Verbesserungsprozess (KVP). Dabei spielt der Einfallsreichtum der Mitarbeiter eine wichtige Rolle.

Auch in KMU wird darüber hinaus auch die Digitalisierung immer stärker genutzt, sodass es in Zukunft darauf ankommen wird, ein für das jeweilige Unternehmen abgestimmte Vorgehensweise zu entwickeln. Dabei kommt es auf die Balance zwischen dem Einfallsreichtum der Mitarbeiter, den digitalen Technologien und von Digital Kaizen an.

“Traditionally, kaizen has significantly contributed to improving productivity in small SMEs. This is because one aspect of kaizen is to increase productivity through human ingenuity while reducing investment. As the importance of digital technology is increasingly recognized alongside the advancement of AI, human ingenuity or the kaizen mindset is becoming more and more important, not less. In other words, the Digital Kaizen concept is essential for SMEs that need to curb their investments” (APO 2024).

Siehe dazu auch Digital Transformation: Kein Erfolg ohne Digital Kaizen?

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Projekt “RECHT-TESTBED”: Verträge in Zeiten von Künstlicher Intelligenz rechtssicher gestalten

Website: https://rtb.public.apps.sele.iml.fraunhofer.de/home

Auch im Vertragsmanagement wird immer mehr digitalisiert und automatisiert. Die Automatisierung nutzt dabei immer mehr mit den Möglichkeiten der Künstlichen Intelligenz.

“Bereits heute lässt der US-amerikanische Einzelhandelsriese Walmart den Einkauf testweise von einem Chatbot erledigen” (Fraunhofer Magazin 4/2024 | PDF). Hier verhandeln also Software -Agenten den jeweiligen Preis.

Bei immer stärkeren Nutzung von Künstlicher Intelligenz im Vertragsmanagement kommt man auch zu folgender Frage,: Ist ein Vertrag rechtssicher ist, wenn er von Künstlicher Intelligenz unterzeichnet wurde? Das Projekt RECHT-TESTBED soll helfen, hier etwas Klarheit zu erhalten. In dem vom Fraunhofer Institut entwickelten Online-Portal können Interessenten Ein Szenario auswählen, das Szenario und ein Experiment konfigurieren, sowie das Experiment starten.

Ich muss allerdings anmerken, dass verschiedene Elemente nicht richtig funktionieren, und es teilweise zu einer Fehlermeldung kommt (Stand: 23.12.2024). Schade, denn ich halte so eine Online-Möglichkeit für sinnvoll. Gerade für Kleine und mittlere Unternehmen (KMU) kann diese Plattform hilfreich sein.

Um noch einmal auf die gestellte Frage zurückzukommen: “Ob vom Menschen oder von Künstlicher Intelligenz unterzeichnet – Vertrag ist Vertrag. Damit können automatisch geschlossene Verträge als rechtssicher gelten” Fraunhofer Magazin 4/2024. Bei dem Artikel wurde ein fiktiver Gerichtsprozess beschrieben, in dem es dann zu dieser Entscheidung gekommen ist.