Emotionale Intelligenz und Künstliche Intelligenz am Arbeitsplatz

Wenn es um Künstliche Intelligenz geht, kommt auch immer öfter der Hinweis auf, dass Emotionale Intelligenz immer wichtiger wird. In dem Blogbeitrag AI City und Emotionale Intelligenz wird beispielsweise auf den Zusammenhang mit AI Citys verwiesen:

“For a smart city, having only “IQ” (intelligence quotient) is not enough; “EQ” (emotional quotient) is equally essential. (…) the emotions of citizen communities …”

Hier wird also vorgeschlagen, neben dem Intelligenz-Quotienten (IQ) noch einen Emotionalen Quotienten (EQ) bei der Betrachtung zu berücksichtigen.

Doch was verstehen wir unter “Emotionale Intelligenz”?

Ich beziehe mich hier auf eine Beschreibung von Salovay und Mayer, und bewusst nicht auf den populären Ansatz von Goleman:

“Emotional intelligence is a type of social intelligence that involves the ability to monitor one’s own and others’ emotions to discriminate among them, and to use the information to guide one’s thinking and actions (Salovey & Mayer 1990)”, cited in Mayer/Salovay 1993, p. 433).

Die Autoren sehen also Emotionale Intelligenz als Teil einer Sozialen Intelligenz. Spannend ist weiterhin, dass Mayer und Salovay ganz bewusst einen Bezug zur Multiplen Intelligenzen Theorie von Howard Gardner herstellen. Siehe Emotionale Intelligenz: Ursprung und der Bezug zu Multiplen Intelligenzen.

Betrachten wir nun Menschen und AI Agenten im Zusammenspiel, so muss geklärt werden, woran AI Agenten (bisher) bei Entscheidungen scheitern. Dazu habe ich folgenden Text gefunden:

“AI agents don’t fail because they’re weak at logic or memory. They fail because they’re missing the “L3” regions — the emotional, contextual, and motivational layers that guide human decisions every second” (Bornet 2025 via LinkedIn).

Auch Daniel Goleman, der den Begriff “Emotionale Intelligenz” populär gemacht hat, beschreibt den Zusammenhang von Emotionaler Intelligenz und Künstlicher Intelligenz am Arbeitsplatz, und weist auf die erforderliche Anpassungsfähigkeit (Adaptability) hin:

Adaptability: This may be the key Ei competence in becoming part of an AI workplace. Along with emotional balance, our adaptability lets us adjust to any massive transformation. The AI future will be different from the present in ways we can’t know in advance” (EI in the Age of AI, Goleman via LinkedIn, 30.10.2025).

Was mir allerdings an der Formulierung nicht gefällt ist der Begriff “Ei competence”, denn Intelligenz und Kompetenz sind durchaus unterschiedlich. Siehe dazu Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler.

Künstliche Intelligenz und die ursprüngliche Bedeutung von Bildung

Image by dumcarreon from Pixabay

Es ist deutlich zu erkennen, dass Künstliche Intelligenz in seinen verschiedenen Formen (GenAI, AI Agenten usw.) Berufsbilder, Lernen, Wissens- und Kompetenzentwicklung beeinflusst, bzw. in Zukunft noch stärker beeinflussen wird. Siehe dazu beispielsweise WEF Jobs Report 2025.

Auch Strukturen im Bildungsbereich müssen sich daher fragen, welche Berechtigung sie noch in Zukunft haben werden, da sich der aktuelle Bildungssektor in fast allen Bereichen noch stark an den Anforderungen der Industriegesellschaft orientiert. Wenn es beispielsweise um Schulen geht, hat sich seit mehr als 100 Jahren nicht viel geändert. Siehe dazu Stundenplan von 1906/1907: Geändert hat sich bis heute (fast) nichts. Dazu passt folgendes Zitat:

“Every time I pass a jailhouse or a school, I feel sorry for the people inside.”
— Jimmy Breslin, Columnist, New York Post (Quelle)

Wohin sollen sich die Bildungsstrukturen – hier speziell Schulen – entwickeln?

(1) Wir können die Technologischen Möglichkeiten von Künstlicher Intelligenz in den Mittelpunkt stellen, und Menschen als nützliches Anhängsel von KI-Agenten verstehen. Dabei werden Menschen auf die KI-Technologie trainiert,, weiter)gebildet, geschult.

(2) Wir können alternativ Menschen und ihr soziales Zusammenleben in den Mittelpunkt stellen, bei dem Künstliche Intelligenz einen wertvollen Beitrag liefern kann. Ganz im Sinne einer Society 5.0.

Aktuell dominiert fast ausschließlich die Nummer (1) der genannten Möglichkeiten, was dazu führen kann, dass der Bildungsbereich Menschen so trainiert, dass sie zu den von Tech-Giganten entwickelten Technologien passen.

Möglicherweise hilft es in der Diskussion, wenn man den Ursprung des Wortes “Schule” betrachtet. Der Begriff geht auf das griechische Wort “Skholè” zurück, was ursprünglich „Müßiggang“, „Muße“, bedeutet und später zu „Studium“ und „Vorlesung“ wurde (Quelle: Wikipedia).

Bei Forschungen zur Künstlichen Intelligenz sind Autoren genau darauf eingegangen, weil sie vermuten, dass gerade diese ursprüngliche Perspektive besser zu den aktuellen Entwicklung passen kann:

“We find this etymology deeply revealing because it undercovers a profound truth about education´s original purpose: it wasn´t about preparing workers for jobs, but about providing space for thoughtful reflection and exploration of life´s fundamental questions. What inspires us about the ancient´s Greek approach is how they saw education as a means to help people find their purpose and develop their full potential as human beings” (Bornet et al. 2025).

Menschen und AI Agenten im Zusammenspiel

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Immer mehr Organisationen fragen sich, inwiefern Workflows und besonders AI Agenten die bisher von Menschen durchgeführten Arbeiten ersetzen werden. In dem Blogbeitrag The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen wird deutlich, was heute schon in einzelnen Branchen möglich ist.

Auch der Jobs Reports 2025 des WEF zeigt auf, dass bis 2030 wohl 172 Millionen neue Jobs entstehen, und 92 Millionen wegfallen werden. Es geht dabei nicht immer um komplette Jobs, sondern auch um Teilbereiche oder Tätigkeitsportfolios, die immer mehr von AI Agenten übernommen werden (können).

Alles was mit Logik und Speicherung zu tun hat, ist eher die Stärke von Künstlicher Intelligenz, den Workflows, bzw. den AI Agenten. Doch in welchen Bereichen versagen AI Agenten noch? Dazu habe ich den folgenden Text gefunden:

“AI agents don’t fail because they’re weak at logic or memory. They fail because they’re missing the “L3” regions — the emotional, contextual, and motivational layers that guide human decisions every second” (Bornet 2025 via LinkedIn).

Dabei bezieht sich Bornet auf eine Veröffentlichung von Bang Liu et al. (2025:19-20), in dem die Autoren drei Hirnregionen in Bezug auf AI (Artificial Intelligence) untersuchten. L1: Well developed; L2: Partially developed; L3: Underexplored.

Das Ergebnis ist also, dass AI Agenten in den Ebenen Emotionen, Kontext und Motivation unterentwickelt sind (L3), wenn es um menschliche Entscheidungen geht.

Erkenntnis (Cognition) entsteht dabei nicht nur in einem Bereich im Gehirn, sondern durch das Zusammenspiel vieler unterschiedlich vernetzter Areale. Bei komplexen Problemlösungsprozesse (CPS: Complex Problem Solving) geht es verstärkt um Emotionen, Kontext und Motivation.

Im Idealfall könnten Menschen an diesen Stellen einen Mehrwert für eine qualitativ gute Problemlösung (Erkenntnis) einbringen. Es stellt sich dabei allerdings auch die Frage, wie stark sich Menschen an die Möglichkeiten einer Künstlichen Intelligenz (AI Agenten) anpassen sollen.

Zusätzlich können die in dem sehr ausführlichen wissenschaftlichen Paper von Bang Liu et al. (2025) erwähnten Zusammenhänge Hinweise geben, wie die Zusammenarbeit – das Zusammenspiel – zwischen Menschen und AI Agenten organisiert, ja ermöglicht werden kann.