Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Screenshot AI2 Playground

AI2 ist eine Non-Profit Organisation, die Künstliche Intelligenz für die vielfältigen gesellschaftlichen Herausforderungen entwickelt. Das 2014 in Seattle gegründete Institut stellt dabei auch verschiedene Open Source KI-Modelle zur Verfügung – u.a. auch OLMo2.

“OLMo 2 is a family of fully-open language models, developed start-to-finish with open and accessible training data, open-source training code, reproducible training recipes, transparent evaluations, intermediate checkpoints, and more” (Quelle).

Wenn man die von AI2 veröffentlichten KI-Modelle einmal testen möchte, kann man das nun in einem dafür eingerichteten Playground machen. Wie in der Abbildung zu erkennen, können Sie einzelne Modelle auswählen, und mit einem Prompt testen. Der direkte Vergleich der Ergebnisse zeigt Ihnen, wie sich die Modelle voneinander unterscheiden.

Siehe dazu auch Künstliche Intelligenz: Mit der OLMo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben.

Künstliche Intelligenz: Mit FlexOlmo Trainingsmodelle kollaborativ erarbeiten – eine interessante Idee

Quelle: https://www.youtube.com/watch?v=dbTRBpA7FVQ

Trainingsmodelle sind für die Qualität der Ergebnisse von KI-Abfragen bedeutend. Dabei kann es sich im einfachsten Fall um ein Large Language Model (LLM) handeln – ganz im Sinne von “One Size Fits All, oder auch um verschiedene, spezialisierte Small Language Models (SLMs). Alles kann dann auch mit Hilfe eines AI-Routers sinnvoll kombiniert werden. Darüber hinaus ist es auch möglich, bestehende Modelle über InstructLab mit eigenen Daten zu kombinieren und zu trainieren.

Noch weiter geht jetzt Ai2, eine Not for Profit Organisation, über die ich schon einmal geschrieben hatte (Blogbeitrag). Mit FlexOlmo steht nun über Ai2 ein Trainingsmodell zur Verfügung, bei dem die Daten flexibel von einer Community weiterentwickelt / trainiert werden können:

“The core idea is to allow each data owner to locally branch from a shared public model, add an expert trained on their data locally, and contribute this expert module back to the shared model. FlexOlmo opens the door to a new paradigm of collaborative AI development. Data owners who want to contribute to the open, shared language model ecosystem but are hesitant to share raw data or commit permanently can now participate on their own terms” (Ai2 2025).

Die Idee ist wirklich spannend, da sie auf einem offenen Trainingsmodell basiert – ganz im Sinne von Open Source AI – und die Eigentümer der Daten darüber entscheiden, ob ihre Daten von dem gemeinsamen Modell genutzt werden können, oder eben nicht. Wer noch tiefer in diese Idee einsteigen möchte, kann das mit folgendem Paper gerne machen:

Shi et al (2025): FLEXOLMO: Open Language Models for Flexible Data Use | PDF