Plangetriebenes Projektmanagement: Synchronisationspunkte zwischen Software, Elektronik und Hardware

Paralleler Durchlauf der einzelnen Vorgehensweisen in der software (hellblau), der Elektronik (grün) und der Mechanik (dunkelblau) mit geforderten Synchronisationspunkten (Timinger/Sticherling 2016)

In der Mechatronik geht es um Mechanik und Elektronik. Hinzu kommen heute fast immer auch Softwareelemente. Jeder einzelne Bereich ist schon schwierig genug, doch ist es noch herausfordernder, alle drei Bereiche aufeinander abzustimmen.

In der Abbildung sind die drei Bereiche mit ihren Entwicklungsschritten zu erkennen (farbliche Unterscheidung). Hinzu kommen jetzt noch geforderte Synchronisationspunkte, an denen alles zu einem bestimmten Zeitpunkt aufeinander abgestimmt wird. Dazu gehört auch, dass es von einem Synchronisationspunkt aus nicht weiter, sondern noch einmal zurück geht.

In einem eher plangetriebenen Projektmanagement ist es nicht einfach, alles zu koordinieren, da alle drei Stränge im zeitlichen Ablauf sehr unterschiedlich sein können.

Möglicherweise ist es bei einen größeren Dynamik (Komplexität) im Innovationsprozess besser, alles auf ein agiles, bzw. hybrides Vorgehensmodell umzustellen: Feature 1 > Feature 2 > Feature 3 etc. Siehe dazu auch Waterfall-Agile: Unterschiedliches Erarbeiten von Features.

Neue Erkenntnisse zum Zusammenhang zwischen Innovation und Lernen

Top view of multiracial young creative people in modern office. Group of young business people are working together with laptop, tablet, smart phone, notebook. Successful hipster team in coworking. Freelancers.

Dass Innovationen mit Lernen zusammenhängen ist offensichtlich, da es sich bei Innovationen um etwas Neues handelt. Neues bedeutet auch oft komplexes Problemlösen. In so einem Umfeld ist das Lernen von Individuen, Gruppen, Organisationen und Netzwerken wichtig, denn Lernen ist der Prozess und (neues) Wissen das Ergebnis (nach Willke 2018).

Neuere Forschungsergebnisse zeigen nun auf, dass es für Teams, die sich mit Innovationen befassen, erfolgsversprechend ist, wenn sie “establishing a rhythm that alternates thoughtfully between exploration and reflection” (Harvey et al 2025). Die Autoren schlagen daher vor, wie folgt vorzugehen:

(1) Experimental learning
(2) Vicarious learning
(3) Contextual learning
(4) Reflexive learning

Harvey et al. (2025): New Research on the Link between Learning and Innovation, in HBR vom 14.07.2025.

In dem Artikel werden noch weitere Einzelheiten zur effektiven Vorgehensweise genannt, die Sie für Ihre Innovationsprojekte nutzen können.

Siehe dazu auch Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation.

Waterfall-Agile: Unterschiedliches Erarbeiten von Features

Bain & Company (2015): Agile Innovation

Die Abbildung zeigt die prinzipielle Vorgehensweise im Wasserfallmodell und beim agilen Vorgehen bei Innovationen.

Bei Wasserfallmodell gibt es zu jedem Feature (1-4) die Schritte Discover – Design – Develop – Integrate – Test – Deploy, wobei erst beim letzten Schritt das jeweilige Feature vorliegt.

Bei der agilen Vorgehensweise werden für das Feature 1 die genannten Schritte durchgeführt, anschließend (idealtypisch aufbauend) für Feature 2 usw.

Das sind natürlich wirklich nur grundsätzliche Unterschiede, denn zwischen beiden Extrempositionen gibt es ein Kontinuum von Kombinationsmöglichkeiten. Diese hängen dann beispielsweise von den jeweiligen Rahmenbedingungen, z.B. rechtliche Vorgaben, Vorschriften, Ausschreibungen usw., ab.

In solchen Fällen kommt es zu einem hybriden, adaptiven Vorgehen bei der Entwicklung von Innovationen. Dabei ist es die Kunst, für das jeweilige Projekt, Programm oder Portfolio das angemessene Vorgehensmodell herauszufinden. Siehe dazu auch:

Projektmanagement: Das geeignete Vorgehensmodell finden

Agiles Projektmanagement: Anforderungen auf verschiedenen Granularitätsebenen

Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation

Digitale Souveränität: Die Initiative AI for Citizens

Website: https://mistral.ai/news/ai-for-citizens

Immer mehr Privatpersonen, Organisationen, Verwaltungen usw. überlegen, wie sie die Möglichkeiten der Künstlichen Intelligenz nutzen können. Dabei gibt es weltweit drei grundsätzlich unterschiedliche Richtungen: Der US-amerikanische Ansatz (Profit für wenige Unternehmen), der chinesische Ansatz (KI für die politische Partei) und den europäischen Ansatz, der auf etwas Regulierung setzt, ohne Innovationen zu verhindern. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Es freut mich daher sehr, dass es in Europa immer mehr Initiativen gibt, die Künstliche Intelligenz zum Wohle von Bürgern und der gesamte Gesellschaft anbieten möchten – alles Open Source. Das in 2023 gegründete Unternehmen Mistral AI hat so einen Ansatz, der jetzt in der Initiative AI for Citizens eine weitere Dynamik bekommt, und einen Gegenentwurf zu den Angeboten der bekannten Tech-Giganten darstellt:

“Empowering countries to use AI to transform public action and catalyze innovation for the benefit of their citizens” (Quelle).

Dabei listet die Website noch einmal ausführlich die Nachteile der “One size fits all AI” auf, die vielen immer noch nicht bewusst sind.

Informieren Sie sich über die vielen Chancen, Künstliche Intelligenz offen und transparent zu nutzen und minimieren Sie die Risiken von KI-Anwendungen, indem Sie offene und transparente Trainingsmodelle (Large Language Models; Small Language Models) und KI-Agenten nutzen. Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Innovationen: Blue Ocean Strategie im Zeitalter Künstlicher Intelligenz

Image by Elias from Pixabay

Es ist für Unternehmen heute nicht leicht, eine geeignete Strategie für Innovationen zu entwickeln. Dabei können inkrementelle oder auch disruptive Innovationen im Fokus stehen. Kleine, inkrementelle Verbesserungen sind möglicherweise in Zeiten von Künstlicher Intelligenz (Artificial Intelligence) nicht mehr ausreichend. An dieser Stelle kommt die Blue-Ocean-Strategie ins Spiel:

“Die Blue-Ocean-Strategie beschäftigt sich mit disruptiven Verbesserungen von Produkten bzw. Produktideen. Disruption (= zerstören, unterbrechen) beschreibt einen Prozess, bei dem ein bestehendes Geschäftsmodell oder ein Markt von Innovationen abgelöst bzw. verdrängt wird. Die Blue-Ocean-Strategie unterteilt Märkte in sogenannte Red Oceans und Blue Oceans. Blue Oceans umfassen zukünftige, noch zu schaffende Markträume, in denen Wettbewerb eine Zeit lang wenig Relevanz hat. Der Fokus von Unternehmen liegt auf dem Aufbau von Nutzeninnovationen für die Kundschaft in neuen Markträumen. Dadurch erreichen Blue-Ocean-Produkte eine Differenzierung (Alleinstellungsmerkmale); sie sind zunächst wettbewerbsarm und erlauben höhere Gewinne (vgl. Kim/ Mauborgne 2015). Red Oceans umfassen hingegen die Gesamtheit des bereits bestehenden Wettbewerbs. Es gilt die existierende Nachfrage zu nutzen und zu steigern, um sich im bestehenden Wettbewerb zu behaupten” (RKW 2018).

Was hat das nun mit Künstlicher Intelligenz zu tun? Wie ich in dem Beitrag Warum wird GESCHÄFTSMODELL + AI nicht ausreichen? erläutert habe, ist es in Zukunft nicht mehr ausreichend, einfach zu den bestehenden Innovationsprozessen Künstliche Intelligenz hinzuzunehmen. Es kommt eher darauf an, die Möglichkeiten von Künstlicher Intelligenz (Artificial Intelligence) für ganz neue/neuartige Produkte und Dienstleistungen zu nutzen. Ganz im Sinne von AI +. Mit AI meine ich dabei immer Open Source AI.

Überraschend: Für ein Auto werden 100 Millionen, und für ein Flugzeug nur 14 Millionen Lines of Code benötigt

Image by ????? from Pixabay

Die etablierten Automobilhersteller haben seit ca. 100 Jahren ein Selbstverständnis (Mindset), das sich hauptsächlich auf die herausragende Hardware eines Autos fokussiert (Stichwort: Spaltmaß). Software war hier ein nützliches Zusatzprodukt. Es ging prinzipiell um

HARDWARE + Software

In den letzten Jahrzehnten wird immer klarer, dass Daten und Informationen, und damit Software, in dem Ökosystem Mobilität eine immer wichtigere Rolle spielen. Viele der etablierten Autohersteller haben daher versucht, den Softwarebereich immer weiter auszubauen, um letztendlich konkurrenzfähige Software im Vergleich zu den Tech-Giganten aus dem Silicon Valley anzubieten.

Viele der Initiativen sind krachend gescheitert. Ein Konzern, der Jahrzehnte lang das Mantra der Hardware propagiert hat, kann Softwareentwicklung scheinbar nicht – zumindest nicht marktgerecht. Doch es gibt auch ein gegenteiliges Beispiel: Der Vergleich der Lines of Code für eine Autos für ein viel größere Flugzeugs (Hardware) führt zu einem überraschenden Resultat:

“Consider this: today’s cars run on about 100 million lines of code—and to put that into perspective, a Boeing 787 Dreamliner runs on just 14 million lines of code. (We know, it shocked us too.) It’s obvious that a physical car defect requires a recall, but software code defects are super costly—especially in the auto industry” (Thomas et al. 2025).

Natürlich stellt sich hier die Frage, warum in einem Auto ca. 7x mehr (im Vergleich zu einem Flugzeug) Lines of Code nötig sind. Liegt es an dem Mindset aus der Hardwareentwicklung, die Softwareentwicklung einfach zu komplex werden lässt?

Es wird weiterhin deutlich, warum sich neue Marktteilnehmer (z.B. aus China) auf Software konzentrieren und die Hardware auf ein modernes Design abstimmen. Daraus entstehen konkurrenzfähige Produkte, die den heutigen Anforderungen (Preis und Leistung) entsprechen. Diese Vorgehensweise folgt der Logik

SOFTWARE + Hardware

Es ist spannend zu beobachten, wie sich die etablierten Automobilkonzerne auf die Herausforderer einstellen, denn diese brauchen keine alten Strukturen abzubauen/umzubauen.

Innovationen: Das Europäische Paradox

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Wenn es um Innovationen geht, sind wir in Deutschland und in der EU immer sehr bemüht zu betonen, was alles dafür getan wird, dass wir in diesem Bereich führend sein wollen – aber nicht sind. Denn: Alle aktuell wichtigen Innovationen kommen nicht aus Deutschland, bzw. der EU. Wenn dem nicht so wäre, wären wir beispielsweise bei der Digitalisierung nicht so abhängig von den Tech-Konzernen aus den USA.

Obwohl wir in Deutschland (in der EU) sehr viel Geld in die Förderung von Forschung & Entwicklung stecken, und auch unser Bildungssystem, sowie die gesamte Infrastruktur gut sind, sieht es bei den wichtigen Innovationen eher schlecht aus. Wir bekommen die guten Ansätze nicht wirklich umgesetzt – doch genau das macht Innovationen aus. Die Europäische Kommission hat diese Situation 1995 schon als Europäisches Paradox bezeichnet.

“In 1995, the European Commission firstly used the term ‘European Paradox’ (European Commission 1995) to define the phenomenon of having good higher education systems, well established research infrastructure but failing to translate this into markable innovations. (…) Additionally, the EU in comparison to the USA was unable to compete although education, research and science were very well established in the EU.”

Quelle: Banholzer, Volker M. (2022). From „Industry 4.0“ to „Society 5.0“ and „Industry 5.0“: Value- and Mission-Oriented Policies: Technological and Social Innovations – Aspects of Systemic Transformation. IKOM WP Vol. 3, No. 2/2022. Nürnberg: Technische Hochschule Nürnberg Georg Simon Ohm).

Interessant dabei ist, dass sich scheinbar in den letzten 30 Jahren (1995-2025) nicht viel verbessert hat. Möglicherweise ist die Schere bei den wichtigsten aktuellen Innovationsbereichen sogar noch größer geworden. Wie kommt das?

Verstehen wir Innovation immer noch falsch?

Messen wir die falschen Parameter?

Haben wir gerade in Deutschland mehr Innovationspreise als wirkliche Innovationen?

Anmerkung: Das Bild zum Blogbeitrag habe ich nur beispielhaft ausgewählt. Es geht mir bei hier nicht nur um die Situation bei der Künstlichen Intelligenz..

Wissen im Innovationsprozess analysieren

Eigene Darstellung; (c) Dr. Robert Freund

Wissen spielt im Innovationsprozess eine wichtige Rolle. Um dieses Wissen nutzen zu können, sollten Sie zunächst die verschiedenen Schritte des Innovationsprozesses notieren. In der Abbildung sehen Sie dazu ein Beispiel.

Anschließend können Sie zu den einzelnen Schritten die jeweils benötigte(n) Wissensdomäne(n) notieren. Siehe dazu ausführlicher

Fraunhofer IPK (2010): Standarddefinitionen für Wissensdomänen (PDF).

Weitere Spalten Ihrer Analyse sind dann noch Technologie (Wo findet man die Wissensdomänen in technischen Systemen?), Organisation (Wo findet man die Wissensdomänen in der Organisation?) und Mensch (Bei wem findet man dazu noch weitere Expertise – speziell implizites Wissen?).

Diese Vorgehensweise kann auch für andere Prozesse genutzt werden. Beispielsweise für Projektmanagement-Prozesse usw. . Der Ansatz ist relativ einfach und ist daher gerade für Kleine und Mittlere Unternehmen (KMU) geeignet.

Den Weg zu einem modernen Innovationsmanagement mit Blended Learning unterstützten

Quelle: Übersicht über die Blended-Learning-Weiterbildung „Innovationsmanagement in KMU“. (Quelle: Eigene Abbildung (Hochschule Pforzheim), in Bosch et al. 2022)

Das Umfeld von Kleinen und Mittelständischen Unternehmen (KMU) hat sich erheblich verändert. Die Zunahme von Komplexität in allen Bereichen führt dazu, dass auf allen Ebenen (Individuum, Gruppe, Organisation und Netzwerk) stärker selbstorganisiert gearbeitet werden muss. Mehr Selbstorganisation auf allen Ebenen ist die Antwort auf Komplexität. Betrachten wir Kompetenz als Selbstorganisationsdisposition, so wird deutlich, dass ein modernes Innovationsmanagement bedeutet, entsprechende Kompetenzen zu entwickeln. Siehe dazu auch Kompetenzmanagement.

Durch ein Ambidextres Innovationsmanagement stellen sich KMU immer besser auf diese Veränderungen ein. Dabei kann der permanente Wechsel zwischen Exploitation und Exploration beispielswise durch klassisches, hybrides und auch agiles Projektmanagement unterstützt werden. Siehe dazu auch DAS Projektmanagement-Kontinuum in der Übersicht.

Übersehen wird hier oft, dass auch Blended Learning einen wichtigen Beitrag leisten kann, da dadurch das selbstorganisierte Lernen, und eine entsprechende Kompetenzentwicklung unterstützt wird (siehe Abbildung).

In dem Artikel Bosch, N. et al. (2022). Neue Wege für das Innovationsmanagement in KMU durch Blended Learning und firmenübergreifenden Austausch. In: Nitsch, V., Brandl, C., Häußling, R., Lemm, J., Gries, T., Schmenk, B. (eds) Digitalisierung der Arbeitswelt im Mittelstand 1. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64803-2_5 wird der Zusammenhang ausführlich dargestellt.

User Innovation entwickeln sich in drei Phasen

von Hippel et al. (2011): The Age of the Consumer-Innovator, in MITSloan Management Review,Fall 2011 Vol. 53 No 1

In unserem Blog habe ich schon sehr oft über User Innovation geschrieben. Eine Entwicklung, die so ganz anders ist, als der bekannte Hersteller-bezogene Innovationsprozess. Siehe dazu beispielhaft Hybrides Innovationsmanagement: Free Innovation und Producer Innovation.

Wie kann man sich den Ablauf eines Prozesses vorstellen, der bei der Innovationsentwicklung von einzelnen Personen (User) ausgeht?

“In Phase 1 — the earliest stage of a market — users often innovate to create the products they want; then, in Phase 2, other users either reject or validate the initial innovation. If the user innovation is validated through adoption by others, in Phase 3 the market has grown enough to be interesting to producing companies, which refine and commercialize the innovation for sale to a growing market of users” (ebd.).

Da User ihre Innovationen oft “nur” für sich entwickeln, kann es sein, dass diese Innovationen nicht über die Phase 1 hinauskommen. In der heutigen Zeit ist es allerdings durchaus möglich, solche User in den Sozialen Netzwerken zu finden. Das kann dann auch schon der Übergang in die Phase 2 bedeuten, in der andere User (Communities) die Innovation kommentieren und bewerten. In Phase 3 geht es dann darum, die User Innovation zu skalieren. An der Stelle kann es für Unternehmen interessant werden, denn die User haben oftmals nicht die Ressourcen, um die eigene Innovation in den Markt zu bringen.

Gerade Kleine und Mittlere Unternehmen (KMU) können heute mit Hilfe von KI-Agenten permanent nach interessanten User Innovation suchen lassen – und das am besten mit Hilfe von Open Source AI.