Den Weg zu einem modernen Innovationsmanagement mit Blended Learning unterstützten

Quelle: Übersicht über die Blended-Learning-Weiterbildung „Innovationsmanagement in KMU“. (Quelle: Eigene Abbildung (Hochschule Pforzheim), in Bosch et al. 2022)

Das Umfeld von Kleinen und Mittelständischen Unternehmen (KMU) hat sich erheblich verändert. Die Zunahme von Komplexität in allen Bereichen führt dazu, dass auf allen Ebenen (Individuum, Gruppe, Organisation und Netzwerk) stärker selbstorganisiert gearbeitet werden muss. Mehr Selbstorganisation auf allen Ebenen ist die Antwort auf Komplexität. Betrachten wir Kompetenz als Selbstorganisationsdisposition, so wird deutlich, dass ein modernes Innovationsmanagement bedeutet, entsprechende Kompetenzen zu entwickeln. Siehe dazu auch Kompetenzmanagement.

Durch ein Ambidextres Innovationsmanagement stellen sich KMU immer besser auf diese Veränderungen ein. Dabei kann der permanente Wechsel zwischen Exploitation und Exploration beispielswise durch klassisches, hybrides und auch agiles Projektmanagement unterstützt werden. Siehe dazu auch DAS Projektmanagement-Kontinuum in der Übersicht.

Übersehen wird hier oft, dass auch Blended Learning einen wichtigen Beitrag leisten kann, da dadurch das selbstorganisierte Lernen, und eine entsprechende Kompetenzentwicklung unterstützt wird (siehe Abbildung).

In dem Artikel Bosch, N. et al. (2022). Neue Wege für das Innovationsmanagement in KMU durch Blended Learning und firmenübergreifenden Austausch. In: Nitsch, V., Brandl, C., Häußling, R., Lemm, J., Gries, T., Schmenk, B. (eds) Digitalisierung der Arbeitswelt im Mittelstand 1. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64803-2_5 wird der Zusammenhang ausführlich dargestellt.

User Innovation entwickeln sich in drei Phasen

von Hippel et al. (2011): The Age of the Consumer-Innovator, in MITSloan Management Review,Fall 2011 Vol. 53 No 1

In unserem Blog habe ich schon sehr oft über User Innovation geschrieben. Eine Entwicklung, die so ganz anders ist, als der bekannte Hersteller-bezogene Innovationsprozess. Siehe dazu beispielhaft Hybrides Innovationsmanagement: Free Innovation und Producer Innovation.

Wie kann man sich den Ablauf eines Prozesses vorstellen, der bei der Innovationsentwicklung von einzelnen Personen (User) ausgeht?

“In Phase 1 — the earliest stage of a market — users often innovate to create the products they want; then, in Phase 2, other users either reject or validate the initial innovation. If the user innovation is validated through adoption by others, in Phase 3 the market has grown enough to be interesting to producing companies, which refine and commercialize the innovation for sale to a growing market of users” (ebd.).

Da User ihre Innovationen oft “nur” für sich entwickeln, kann es sein, dass diese Innovationen nicht über die Phase 1 hinauskommen. In der heutigen Zeit ist es allerdings durchaus möglich, solche User in den Sozialen Netzwerken zu finden. Das kann dann auch schon der Übergang in die Phase 2 bedeuten, in der andere User (Communities) die Innovation kommentieren und bewerten. In Phase 3 geht es dann darum, die User Innovation zu skalieren. An der Stelle kann es für Unternehmen interessant werden, denn die User haben oftmals nicht die Ressourcen, um die eigene Innovation in den Markt zu bringen.

Gerade Kleine und Mittlere Unternehmen (KMU) können heute mit Hilfe von KI-Agenten permanent nach interessanten User Innovation suchen lassen – und das am besten mit Hilfe von Open Source AI.

Innovations-Feuchtgebiete (Innovation Wetlands): Was ist darunter zu verstehen?

Quelle: https://pixabay.com/photos/wetlands-wetland-protection-5095846/

Wenn wir etwas erklären wollen, bedienen wir uns oft der Analogie. Wenn es um Innovationen geht, haben Forscher den Begriff “Innovation Wetlands“, also Innovations-Feuchtgebiete, benutzt, um eine besondere Form der Innovationsentwicklung zu beschreiben.

Feuchtgebiete waren über eine lange Zeit für Pest und Krankheiten verantwortlich und wurden daher oft in sogenannte Nutzflächen umgewandelt. In der Zwischenzeit wird allerdings immer deutlicher, dass Feuchtgebiete für unser Ökosystem sehr wichtig sind. Die Folge: Viele Flächen werden wieder renaturiert. Ähnlich sieht es mit den Innovation Wetlands, also den Innovations-Feuchtgebieten aus. Der folgende Absatz erläutert die Zusammenhänge:

“Similar concerns have motivated IP researcher Andrew Torrance and user innovation scholar Eric von Hippel to call for preservation of the “innovation wetlands” that are essential to the ability of users to innovate. Marshy ecosystems were for a very long time, they point out, conceived of either as “resources ripe for conversion into more beneficial uses” or as “noxious sources of pestilence and disease.” Over time, environmentalists and regulators realized that wetlands were “among the most productive and diverse of ecosystems on earth” and the law should protect and preserve them. Torrance and von Hippel coined the phrase “innovation wetlands” to suggest an analogous need for an awakening in the intellectual realm. They believe that legislation and other forms of regulation can have a “significant negative impact” on the “fragile” innovation ecosystem that enables user innovation to flourish” (Samuelson, Pamela, Freedom to Tinker (June 15, 2016). Theoretical Inquiries in Law, Forthcoming, Available at SSRN: https://ssrn.com/abstract=2800362).

Forscher aus dem Bereich IP (Intellectual Property Rights) wie Andrew Torrance und Eric von Hippel, der User Innovation in den Mittelpunkt seiner Arbeiten stellt, weisen darauf hin, dass staatliche Regulierungen diese Innovations-Feuchtgebiete einschränken, ja sogar vernichten können. Siehe dazu ausführlicher Free Innovation Paradigm and Producer Innovation Paradigm.

Möglicherweise erkennen staatliche Organisationen -genau wie bei den natürlichen Feuchtgebieten, auch den Wert von Innovation Wetlands und schützen diesen wichtigen Innovations-Raum im gesamten Innovations-Ökosystem.

Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation

Innovationsmanagement zwischen Steuerung und Zufall (Kaudela-Baum 2008:35)

In dem Beitrag Innovationsmanagement zwischen Steuerung und Zufall hatte ich schon einmal darauf hingewiesen, dass Organisationen gerade in Innovationsmanagement zwischen Steuerung und Zufall hin und her “pendeln” (siehe Abbildung).

Die gesamte Organisationen soll somit Routineprozesse (inkl. KVP: Kontinuierlicher Verbesserungsprozess / oder Kaizen) effizient gestalten (Exploitation), und andererseits in dem aktuell turbulenten Umfeld flexibel und dynamisch sein (Exploration). Dieses Sowohl-als-auch wird auch als Organisationale Ambidextrie bezeichnet. Siehe dazu ausführlich:

Lang-Koetz, C., Reischl, A., Fischer, S., Weber, S., Kusch, A. (2023). Ambidextrie und das hybride Vorgehen. In: Ambidextres Innovationsmanagement in KMU. Springer Gabler, Berlin, Heidelberg.

Natürlich erinnert das auch an die Hybride Wettbewerbsstrategie Mass Customization und an das Hybride Projektmanagement.

Pfadabhängigkeit etwas genauer betrachtet

Die Konstitution und Entwicklung von Pfaden (Schäcke 2006:31)

In mehreren Blogbeiträgen habe ich im Zusammenhang mit Innovationen den Begriff der Pfadabhängigkeit thematisiert. Siehe dazu “Pfadabhängigkeit” in Organisationen, Führt “Agilität” auch wieder zu einer Pfadabhängigkeit? , Wie hängen Nebenfolgen, Pfadabhängigkeit und Innovation zusammen?, Zu Kernkompetenzen und Pfadabhängigkeiten in der Automobilindustrie.

In allen Beiträgen liegt der Schwerpunkt darauf, Effizienz als das prägende Element zu betrachten, um zu entscheiden: Bleibe ich in dem gewohnten Pfad, oder wechsle ich in einen anderen Pfad?

Dass es auch einen anderen Blick auf Pfadabhängigkeit gibt, hat Jürgen Beyer in seinem Artikel ausführlich dargestellt. Dabei stellt er fest, dass Pfadabhängigkeit nicht gleich Pfadabhängigkeit ist.

Beyer, J. (2005): Pfadabhängigkeit ist nicht gleich Pfadabhängigkeit! Wider den impliziten Konservatismus eines gängigen Konzepts, in Zeitschrift für Soziologie, Jg. 34, Heft 1, Februar 2005, S. 5–21 | PDF

Der Autor zeichnet zunächst den Verlauf der wissenschaftlichen Diskussionen zum Thema nach und zeigt, dass sich die Pfadabhängigkeits-These durchaus verändert und weiterentwickelt hat. Dabei wird deutlich, dass die für die These herangezogenen Stabilitätsgründe (wie “”increasing returns“, Komplementaritäten, Machtkonstellationen oder andere Grundlagen der Pfadabhängigkeit” ebd.) durchaus anfällig für einen grundlegenden Wandel sein können.

Das deutet wiederum darauf hin, dass es nach einem “lock-in” bei der Pfadabhängigkeit doch auch dazu kommen kann, dass “Akteure jeweils einen Schlüssel finden können, um das Schloss wieder aufzuschließen” (ebd.).

Perspektiven auf Innovation: Von “eng” zu “erweitert” bis gesellschaftlich “zielgerichtet”

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Der Blick auf Innovation ist immer noch sehr eng (narrow) und geprägt von dem Ansatz Schumpeters aus dem Jahr 1934. Dabei geht es bei Innovationen darum, vorwiegend technische Ideen zu kommerzialisieren, also für den Markt nutzbar zu machen. Die Gesellschaft war und ist dabei Empfänger der neuen Produkte und Dienstleistungen.

Eine etwas breitere (broader) Sicht auf Innovation erweitert den ursprünglichen Ansatz, indem nicht rein technologische, sondern auch Konzepte (Business Model Innovation), soziale Innovationen usw. hinzukommen.

In der Zwischenzeit geht man bei der Betrachtung von Innovation noch einen Schritt weiter und stellt den gesellschaftlichen Zweck (purposive) in den Mittelpunkt. Im Zusammenspiel zwischen Wissenschaft, Technologie und Innovationen soll es dadurch zu gesellschaftlichen Transformationen kommen.

“Within narrow understandings of innovation, in which innovation is defined as the commercialisation of research, emphasis is placed on the roles of science, academia, industry, and national governments in supporting scientific and technical knowledge. Society is frequently viewed as passively adopting innovations introduced by science and large corporations (Joly, 2019). Conversely, according to broad-based understandings, innovation encompasses the entire process of conceiving and actualising a novel concept or idea; it is not limited to technological advancements (Godin & Lane 2013). (…) Moreover, according to purposive understandings, innovation should be transformative in nature and result in sustainable change” (Nordling, N. 2024).

Es geht heute also darum, mit Innovationen Probleme in der Gesellschaft, zum Wohle (eigene Bemerkung) der Menschen und seiner Umwelt zu lösen. Siehe dazu auch Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wir sollten dazu kommen, Technologie – heute ist es die Künstliche Intelligenz – für die Gesellschaft einzusetzen, und nicht vorwiegend zum wirtschaftlichen Vorteil von einigen wenigen Tech-Konzernen, die die sozialen Folgen den Gesellschaften überlassen.

Dabei kommt es zu einer Friktion bei den beiden Geschwindigkeiten: Technik (KI) verändert sich in Sekunden, Gesellschaften – und mit ihnen das gesamte gesellschaftliche System – eher langsam. Wenn wir die Menschen mitnehmen wollen, sollte der Staat – und hier meine ich eher die Europäische Union – den Rahmen setzen, denn die Tech-Giganten werden sich nicht zurückhalten. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Hybrides Innovationsmanagement: Free Innovation und Producer Innovation

Source: The free innovation paradigm and the producer innovation paradigm. (von Hippel 2017)

Alles ist ja heute hybrid. Es gibt beispielsweise Hybrides Arbeiten, Hybrides Projektmanagement, Hybrides Wissensmanagement, und die Hybride Wettbewerbsstrategie Mass Customization. Das verwundert nicht wirklich, da es in der Reflexiven Modernisierung zu Entgrenzungen auf allen Ebenen der Gesellschaft kommt – so auch bei den Management-Prozessen. Management-Berater verkaufen alles jetzt als neue Entwicklung, doch ist diese schon sehr lange – beispielsweise in den Sozialwissenschaften – bekannt.

Den Run auf die Entgrenzung von Innovationsprozessen hat Henry Chesbrough (2003) mit Open Innovation ausgelöst (Innovation als Kontinuum zwischen Closed Innovation und Open Innovation). Sein Ansatz bezog sich dabei auf auf Innovationsprozesse in Organisationen, die nun langsam aber sicher angefangen haben, Wissen auch von Außen zu integrieren. In der Grafik ist das der untere große Pfeil (Producer Innovation Paradigm), mit dem Abschluss “Market diffusion”. Dieser auf Schumpeter zurückgehende Blick auf Innovation, und dessen Öffnung zeigt sich auch in den dazugehörenden Definitionen (Oslo Manual 2018) oder auch in den jeweiligen Statistiken, die eben Innovationen nur dann erfassen, wenn sie von Organisationen im Markt positioniert worden sind.

In den letzten mehr als 20 Jahren ist gerade von Eric von Hippel allerdings deutlich nachgewiesen worden, dass es auch viele Innovationen von einzelnen Personen gibt, die nicht zwingend im Markt, sondern beispielsweise innerhalb von interessierten Gruppen ausgetauscht werden (Free Innovation Paradigm). Dabei wird hier schon klar, dass solche Innovationen nach der Oslo-Definition gar keine Innovationen sind, und somit auch in keiner traditionellen Statistik vorkommen. In den verschiedenen Paper von Eric von Hippel allerdings schon. Siehe dazu ausführlicher Eric von Hippel (2005): Democratizing Innovation und Eric von Hippel (2017): Free Innovation.

In der Abbildung ist allerdings auch zu erkennen, dass es durchaus Sinn machen kann, nicht von einem Entweder-oder, sondern von einem Sowohl-als-auch zu sprechen. Beide Extrempositionen können sich an verschiedenen Stellen der jeweiligen Prozesse ergänzen, beispielsweise durch einen Innovation support vom Producer Innovation Paradigm zum Free Innovation Paradigm und umgekehrt durch Innovation Designs.

Ein so verstandenes Hybrides Innovationsmanagement, oder auch ein entsprechendes Innovations-Kontinuum, bieten gerade für Kleine und Mittlere Unternehmen (KMU) viele Chancen.

In Zukunft sollte wieder stärker die Nachfrage Treiber von Innovationen sein

Image by Gerd Altmann from Pixabay

Es ist immer wieder erstaunlich, dass Struktuten wie die Europäische Union, Bundes- oder Landesregieren usw. immer wieder über Geld, also Kapital, sprechen, wenn es um Innovationen geht. Es werden Statistiken aufgefahren, die zeigen sollen, dass z.B. Deutschland X Milliarden in Forschung und Entwicklung steckt, und auch mit vielen Programmen Innovationen fördert. Viele der von einzelnen Menschen erbrachten Innovationen tauchen in diesen Statistiken allerdings gar nicht auf. Siehe dazu bespielsweise Eine etwas andere Perspektive auf den Bundesbericht Forschung und Innovation 2020.

Einerseits sind Investitionen in Forschung und Entwicklung nicht zwangsläufig Innovationen, wenn z.B. Patente nicht in marktfähige Produkte und Dienstleistungen umgesetzt werden. Andererseits haben die vielen Förderprogramme einen Wust an Aktivitäten ausgelöst, die nur mehr Innovationspreise, aber keine wirklichen Innovationen gebracht haben. Wie ich darauf komme? Wir haben in der Europäischen Unionen kein Amazon, kein Apple, kein Microsoft, kein Meta, kein etc., obwohl es wohl bei den Menschen für die entsprechenden Dienstleistungen einen Bedarf gibt. Wir sind gerade bei Zukunfstechnologien in eine bequeme, allerdings auch verhängnisvolle Abhängigkeit geraten. Das hat sich alles in den letzten Jahrzehnten entwickelt. Gut erkennen kann man die dahinterliegende Denkweise an dem Vergleich der Smart City mit einer AI City:

The governance of the AI city is aimed at the difficulties and pain points in the current city. The key point of using AI to explore is the grafting point of AI technology and urban governance needs rather than the top-down promotion of AI concepts. This is fundamentally different from the rise and promotion of any “smart city” in the past, which is different from the construction of smart infrastructure and a large and comprehensive technology platform with high investment from the government, and the AI city is reflected in the “peripheral nerve” of urban governance” (Wu 2025).

Der Blick muss wieder auf die Bedürfnisse der Menschen gerichtet werden, nicht nur auf “Kapital” und “Märkte”. Diese haben die vielen Probleme der Menschen in ihrem täglichen Umfeld bisher jedenfalls nicht gelöst, trotz aller Versprechen im Marketing, beim Qualitätsmanagement, Innovationsmanagement etc. und aktuell bei den Agilen Arbeitsweisen. Siehe dazu auch Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

“There is still an invisible hand behind supply-side reform. Adam Smith argued that the invisible hand that drives markets is capital, while the invisible hand of supply that drives innovation is demand. Generally speaking, the “inconvenience” in the daily life of the people can be used as the traction of technological development. In the AI technology market, enterprises that see fundamental needs can have a large number of applications for their products” (Wu 2025).

RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Gerade Kleine und Mittlere Unternehmen (KMU) können es sich oftmals nicht leisten, eigene Trainingsmodelle (Large Language Models) zu entwickeln. KMU greifen daher gerne auf bekannte Modelle wie ChatGPT usw. zurück.

Es wird allerdings gerade bei innovativen KMU immer klarer, dass es gefährlich sein kann, eigene Datenbestände in z.B. ChatGPT einzugeben. Da diese Modelle nicht transparent sind ist unklar, was mit den eigenen Daten passiert.

Eine Möglichkeit aus dem Dilemma herauszukommen ist, RAG (Retrieval-Augmented Generation) zu nutzen – also ein Basismodell mit einer internen Wissensbasis zu verknüpfen:

Retrieval-Augmented Generation (RAG): Bei RAG wird ein Basismodell wie GPT-4, Jamba oder LaMDA mit einer internen Wissensbasis verknüpft. Dabei kann es sich um strukturierte Informationen aus einer Datenbank, aber auch um unstrukturierte Daten wie E-Mails, technische Dokumente, Whitepaper oder Marketingunterlagen handeln. Das Foundation Model kombiniert die Informationen mit seiner eigenen Datenbasis und kann so Antworten liefern, die besser auf die Anforderungen des Unternehmens zugeschnitten sind” (heise business services (2024): KI für KMU: Große Sprachmodelle erfolgreich einsetzen – mit Finetuning, RAG & Co.).

Wir gehen noch einen Schritt weiter, indem wir (1) einerseits LocalAI und Open Source AI mit einem Assistenten nutzen, und (2) darüber hinaus mit Hilfe von Ollama und Langflow eigene KI-Agenten entwickeln, die auf Basis von Open Source AI Modellen und beliebig konfigurierbaren eigenen Input einen gewünschten Output generieren In dem gesamten Prozess bleiben alle Daten auf unserem Server.

Mit Künstlicher Intelligenz und Online-Daten von Verbrauchern können (auch eigene) Produkte direkt entwickelt werden

Mit Hilfe der hybriden Wettbewerbsstrategie Mass Customization (PDF) ist es Unternehmen möglich, Produkte zu individualisieren, ohne dass der Preis höher ist, als bei massenhaft hergestellten Produkten. Kernelement ist dabei ein Konfigurator, mit dem der Kunde selbst in einem definierten Lösungsraum (fixed solution space) vielfältige Möglichkeiten zusammenstellen kann. In der Zwischenzeit gibt es allerdings mit Künstlicher Intelligenz noch ganz andere Optionen für Mass Customization.

Künstliche Intelligenz kann für einen Verbraucher Produkte und Dienstleistungen entwickeln und anbieten, nur auf Basis der vom Konsumenten generierten Daten – sogar ohne die aktive Mitwirkung des Konsumenten. Damit bringt Künstliche Intelligenz Mass Customization auf ein neues Level: Smart Customization.

“But this is one area where AI can take mass customization to a new level: The growth of AI and machine learning can allow us to use all the data traces consumers leave online to design a perfect product for an individual consumer, without their active involvement. AI can evolve into the ability to perfectly customize a product for a consumer, without the
need for a conscious process of elicitation from the consumer. As a consumer, I could specify what I want for aesthetics, while for functional parameters, it could be the system that senses what I want and desire. An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see a lot of opportunity to use the data that’s out there for what I call smart customization” (Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846).

Dieser Ansatz ist natürlich für Unternehmen interessant, da sie die umständlichen und teuren Befragungen von Verbraucher nicht mehr – oder etwas weniger – benötigen, um angemessene Produkte anzubieten.

Es gibt allerdings auch noch eine andere Perspektive: Was ist, wenn die Verbraucher ihre eigenen Daten mit Hilfe von Künstlicher Intelligenz selbst nutzen, um eigene Produkte zu entwickeln? Im Extremfall – und mit Hilfe von modernen Technologien wie z.B. den 3D-Druck (Additive Manufacturing) – können sich die Verbraucher innovative Produkte selbst herstellen. Diese Option klingt etwas futuristisch, da wir es gewohnt sind, Innovationen mit Unternehmen in Verbindung zu bringen. Doch hat Eric von Hippel gezeigt, dass es immer mehr von diesen Open User Innovation gibt, die gar nicht in den üblichen Statistiken zu Innovation auftauchen. Siehe dazu auch

Eric von Hippel (2005): Democratizing Innovation

Free Innovation: Was wäre, wenn wir Innovationen stärker Bottom-Up denken und fördern würden?

Eric von Hippel (2017): Free Innovation