Mass Customization und Quantenmechanik

In verschiedenen Blogbeiträgen habe ich immer wieder darauf hingewiesen, dass wir uns von den in vielen Bereichen diskutierten Dichotomien (Entweder-oder) verabschieden sollten. Im Wissensmanagement beispielsweise haben wir es mit den beiden Polen implizites Wissen oder explizites Wissen zu tun. Zwischen beiden Polen gibt es allerdings ein Kontinuum des „sowohl-als-auch“. Ähnlich sieht es in anderen Bereichen aus.

Im Innovationsmanagement kennen wir die Extreme Closed Innovation oder Open Innovation. Beim Projektmanagement gibt es nicht nur das klassische Projektmanagement oder das agile Projektmanagement, sondern zwischen beiden Polen ein Kontinuum. Ähnlich sieht es bei der Künstlichen Intelligenz aus, wo es von Closed AI Models über Open Weight AI Models bis zu Open Source AI Models auch ein Kontinuum der Möglichkeiten gibt.

Diese Entwicklung deutet schon darauf hin, dass es in vielen Bereichen nicht mehr um ein „entweder-oder“, sondern um ein angemessenes „sowohl-als-auch“ geht. Vor über 30 Jahren hat B. Joseph Pine II schon darauf hingewiesen, und dabei eine Verbindung von der Quantenmechanik zu Mass Customization als hybride Wettbewerbsstrategie hergestellt:

„Today management has much the same problem: We still build most of our models around false dichotomies. To name but a few, we speak of strategy versus operations, cost versus quality, and centralized versus decentralized. The way out of this dilemma for scientist, finally, was to abandon the perspective of irreconcilable opposites, and to embrace interpretations that accept contradictions without trying to resolve them. Quantum mechanics does that in physics, mass customization does that in business“ (Pine 1993).

Die hybriden Möglichkeiten zur Schaffung von Werten für Kunden (User) sind heute (nach mehr als 30 Jahre nach der Veröffentlichung) in vielen Organisationen immer noch nicht bekannt.

Auf der nächsten MCP 2026 – Konferenz, im September in Balatonfüred (Ungarn), haben Sie die Chance, mit führenden Forschern und Praktikern über die Themen Mass Customization, Mass Personalization und Open Innovation zu sprechen.

Als Initiator der Konferenzreihe stehe ich Ihnen gerne für weitere Fragen zur Verfügung.

Von KI-Agenten zu Personalized AI Twins

Die aktuelle Diskussion zu Künstlicher Intelligenz befasst sich u.a. mit den Möglichkeiten generativer Künstlicher Intelligenz (GenAI) und den Entwicklungen bei KI-Agenten (AI Agents). KI-Agenten können in Zukunft viele Tätigkeiten/Jobs in Organisationen übernehmen, und so deren Effektivität und Effizienz steigern.

Solche Entwicklungen sind allerdings nicht alleine auf Organisationen begrenzt. Auf der individuellen, persönlichen Ebene entwickeln sich KI-Agenten immer mehr zu persönlichen Agenten, oder sogar zu Personal AI Twins:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Die hier angesprochene Entwicklung von generischen KI-Agenten zu personalisierten KI-Agenten (personal ai twins) ist bemerkenswert. Es stellt sich natürlich gleich die Frage, ob eine Person solche Personal AI Twins nur für ihre Arbeit, oder auch für alle ihre Aktivitäten nutzen möchte. Dabei kommt es immer wieder zu Überschneidungen zwischen der beruflichen Domäne und den privaten Kontexten.

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins ihre eigenen Ideen besser selbst entwickeln oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Flexibilität und der Ursprung des Wortes „Job“

In der Vergangenheit wurden immer wieder Begriffe/Wörter benutzt, die über die Zeit eine Wandlung/Weiterentwicklung erfahren haben. Das ist mit „Innovation“ oder auch mit „Qualität“ so – um nur diese beiden beispielhaft zu nennen.

Manchmal kann es auch sein, dass ein Wort wieder zu seiner ursprünglichen Bedeutung „zurückkehrt“. Schauen wir uns dazu einmal das Wort „Job“ an, das sehr oft benutzt wird, und heute auf eine Arbeitswelt trifft, in der Flexibilität eine große Rolle spielt.

„Das Wort „job“ bedeutete im Englischen des 14. Jahrhunderts einen Klumpen oder eine Ladung, die man herumschieben konnte. Die Flexibilität bringt diese vergessene Bedeutung zu neuen Ehren. Die Menschen verrichten Arbeiten wie Klumpen, mal hier, mal da. Es ist nur natürlich, dass diese Flexibilität Angst erzeugt. Niemand ist sich sicher, wie man mit dieser Flexibilität umgehen sollte, welche Risiken vertretbar sind, welchen Pfad man folgen sollte“ (Sennett 2002).

Es wird hier deutlich, dass Jobs im Vergleich zu eher langfristig angelegten Berufen kurzfristiger sind.: „Stellen werden durch Projekte und Arbeitsfelder ersetzt“ (ebd.). In der heutigen Arbeitswelt haben Jobs daher eine gute Passung zu iterativen, projektorientierten Arbeitsformen (New Work).

Das kommt den Unternehmen zu Gute, doch schüren Jobs auch Ängste, die in dem Zusammenhang zu wenig thematisiert werden.

Organisationale Daten-Souveränität bedeutet nicht unbedingt Digitale Souveränität

Image by Tumisu from Pixabay

Digitale Souveränität wird oftmals mit Daten-Souveränität in Organisationen verwechselt. Es ist daher wichtig zu verstehen, was Organisationale Daten-Souveränität ausmachen kann. Dazu habe ich folgenden Vorschlag in einem Paper gefunden:

„We define organizational data sovereignty as the self-determined and deliberate exercise of control over an organization’s data assets, which includes the recognition of their value, the proactive management of data activities (collection, storage, sharing, analysis, and interpretation), and the ability to assimilate and apply these data to drive value creation through interorganizational collaboration“ (Moschko et al. 2024).

In dem Paper geht es den Autoren um Organisationale Daten-Souveränität in Bezug auf Open Value Creation (OVC) in offenen Innovationsprozessen (Open Innovation).

Die hier angesprochene eigene (organisationale) Kontrolle der Daten würde durch den Einsatz von proprietären (Closed Models) KI-Anwendungen konterkariert, da man bei deren Nutzung nicht wirklich weiß, was mit den eigenen Daten passiert. Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

In dem Blogbeitrag Digitale Souveränität, oder doch nur Souveränitäts-Washing? finden Sie eine Definition von Digitaler Souveränität. Dabei werden Sie feststellen, dass Digitale Souveränität in diesem Sinne nur möglich ist, wenn Open Source AI – Modelle verwendet werden.

Wie geht Indien mit Künstlicher Intelligenz um?

Quelle: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2025/nov/doc2025115685601.pdf

In dem Beitrag Digitale Souveränität: Europa, USA und China im Vergleich wird deutlich, wie unterschiedlich die Herangehensweisen in den USA, in China und in Europa sind, wenn es um Künstliche Intelligenz geht. Darüber hinaus hat auch Japan mit dem Ansatz einer Society 5.0 beschrieben, dass Künstliche Intelligenz dazu dienen soll, die Herausforderungen einer modernen Gesellschaft zu lösen.

Auch das aufstrebende Indien hat nun seine Richtlinien für die gesellschaftliche Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) veröffentlicht. Dabei werden gleich zu Beginn folgende 7 Prinzipien genannt:

01 Trust is the Foundation
Without trust, innovation and adoption will stagnate.
02 People First
Human-centric design, human oversight, and human empowerment.
03 Innovation over Restraint
All other things being equal, responsible innovation should be prioritised over cautionary restraint.
04 Fairness & Equity
Promote inclusive development and avoid discrimination.
05 Accountability
Clear allocation of responsibility and enforcement of regulations.
06 Understandable by Design
Provide disclosures and explanations that can be understood by the intended user and regulators.
07 Safety, Resilience & Sustainability
Safe, secure, and robust systems that are able to withstand systemic shocks and are environmentally sustainable.

Source: Ministry of Electronics and Information Technology (2025): India AI Governance Guidelines. Enabling Safe and Trusted AI Innovation (PDF)

Bemerkenswert finde ich, dass an erster Stelle steht, dass Vertrauen die Grundlage für Innovationen bildet. Vertrauen in die Möglichkeiten der Künstlichen Intelligenz kann man meines Erachtens nur durch Transparenz erreichen. Proprietäre KI-Systeme, bei denen unklar ist, wo die Daten herkommen und wie mit (auch eigenen) Daten umgegangen wird, sind unter der genannten Bedingung (Trust) mit Vorsicht zu genießen.

Siehe dazu auch Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft.

Mit proprietärer Künstlicher Intelligenz (KI) kauft man sich auch die Denkwelt der Eigentümer ein

In dem Blogbeitrag Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century hatte ich schon einmal darauf hingewiesen, dass es nicht richtig ist, dass Europa „nur“ reguliert und die USA „nur“ innovativ sind.

In Europa, und gerade in Deutschland, möchten wir, dass der Rechtsstaat weiter existiert und die Gesellschaft nicht nur als Business Case gesehen wird. Der immer größer werdende Einfluss von aktuell Künstlicher Intelligenz auf eine Gesellschaft kann diese überfordern, denn mit jeder Software geht auch eine bestimmte Denkhaltung einher.

Auf solche Entwicklungen macht ein aktueller Kommentar im Handelsblatt aufmerksam. Hier geht es um die Denkwelt des Firmenchefs von Palantir, die man sich mit der Software mit einkauft:

„Palantir passt nicht zum deutschen Rechtsstaat. Das US-Unternehmen mag für Sicherheitsbehörden eine Hilfe sein. Doch die Haltung des Firmenchefs macht die Software zu einem Risiko für die politische Stabilität in Deutschland“ (Kommentar von Dieter Neuerer im Handelsblatt vom 12.12.2025).

Es stellen sich natürlich gleich weitere Fragen, wie z.B.: Stellen die Karten von Google Maps die Realität dar, oder sind „unliebsame“ Gebiete nicht verzeichnet? Enthalten die bekannten proprietäten KI-Modelle (Closed Models) Einschränkungen, die Ergebnisse tendenziell beeinflussen? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.

Mit Künstlicher Intelligenz zu Innovationen – aber wie?

Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.

Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.

„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).

Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.

Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.

Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.

Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:

LocalAI: Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI

Ollama und Langflow: Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.

Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Eine soziologische Perspektive auf „Gemeinschaft“ und „Gemeinsinn“

Image by louisehoffmann83 from Pixabay

In einer heute komplexen Welt wird gesellschaftlich auf allen Ebenen versucht, den Gemeinsinn oder die Gemeinschaft zu beschwören, obwohl das der Realität nicht entspricht.

In den Unternehmen wird oft die Gemeinschaft oder der Gemeinsinn sogar noch mit weiteren Metaphern – wie z.B. „Familie“ – auf die Spitze getrieben. Der Soziologe Armin Nassehi sieht solche Entwicklungen kritisch:

„Wer auf die Gemeinschaft setzt, muss sagen, wer nicht dazugehört. Appelle ans Wir-Gefühl haben immer auch etwas Ausschließendes. Wenn man in einem Unternehmen von der Belegschaft einen starken Gemeinsinn einfordert, riskiert man, dass sich niemand mehr traut, zu widersprechen. Das ist tödlich für alle Kreativität, die man im Unternehmen dringend braucht. Der ausgerufene Gemeinsinn hat eine kompensatorische Funktion, damit soll ein Versagen zum Beispiel des Managements oder der Politik kaschiert werden“ (Nassehi in brand eins 12/2024).

Daraus leitet sich ab, dass Unternehmen bei der Verwendung der genannten Begriffe vorsichtiger sein sollten, wenn sie Kreativität und Innovation in ihrer Organisation benötigen. Siehe dazu auch

Anders über gesellschaftliche Transformation nachdenke

Blockiert die Ausrichtung auf Kernkompetenzen Innovationen?