Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.

Mit Künstlicher Intelligenz zu Innovationen – aber wie?

Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.

Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.

„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).

Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.

Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.

Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.

Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:

LocalAI: Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI

Ollama und Langflow: Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.

Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Eine soziologische Perspektive auf „Gemeinschaft“ und „Gemeinsinn“

Image by louisehoffmann83 from Pixabay

In einer heute komplexen Welt wird gesellschaftlich auf allen Ebenen versucht, den Gemeinsinn oder die Gemeinschaft zu beschwören, obwohl das der Realität nicht entspricht.

In den Unternehmen wird oft die Gemeinschaft oder der Gemeinsinn sogar noch mit weiteren Metaphern – wie z.B. „Familie“ – auf die Spitze getrieben. Der Soziologe Armin Nassehi sieht solche Entwicklungen kritisch:

„Wer auf die Gemeinschaft setzt, muss sagen, wer nicht dazugehört. Appelle ans Wir-Gefühl haben immer auch etwas Ausschließendes. Wenn man in einem Unternehmen von der Belegschaft einen starken Gemeinsinn einfordert, riskiert man, dass sich niemand mehr traut, zu widersprechen. Das ist tödlich für alle Kreativität, die man im Unternehmen dringend braucht. Der ausgerufene Gemeinsinn hat eine kompensatorische Funktion, damit soll ein Versagen zum Beispiel des Managements oder der Politik kaschiert werden“ (Nassehi in brand eins 12/2024).

Daraus leitet sich ab, dass Unternehmen bei der Verwendung der genannten Begriffe vorsichtiger sein sollten, wenn sie Kreativität und Innovation in ihrer Organisation benötigen. Siehe dazu auch

Anders über gesellschaftliche Transformation nachdenke

Blockiert die Ausrichtung auf Kernkompetenzen Innovationen?

 

MCP-CE 2026: 12th International Conference on Customization and Personalization

Screenshot von der Konferenzwebsite https://mcp-ce.org/

Manchmal kann ich es gar nicht glauben: Die MCP-CE – Konferenzreihe findet in 2026 zum 12. Mal statt. Seit 2004 gibt es alle 2 Jahre die Möglichkeit, sich zu den Themen Customization und Personalization auszutauschen.

Die Idee zu der Konferenzreihe hatte ich 2001 auf der ersten Weltkonferenz MCP2001 in Hong Kong, an der ich teilgenommen habe. Damals haben mir viele gesagt, dass das wohl kaum funktionieren würde. Doch gemeinsam mit vielen Kollegen aus verschiedenen Ländern ist es gelungen, die Konferenzreihe zu etablieren. An dieser Stelle: Herzlichen Dank an alle, die uns unterstützt haben.

In 2026 werden wir uns mit den verschiedenen internationalen Kollegen aus Forschung und Wirtschaft in Ungarn treffen. Vom 16.-19.09.2026 finden in Balatonfüred insgesamt drei Events statt:

Die Konferenz mit spannenden Beiträgen und Diskussionen.

Ein Workshop für Doktoranden, der schon zum 7. Mal durchgeführt wird.

Das 4. Ideen-Forum: Man weiß nie, was sich aus den vielen Ideen, die auf der Konferenz ausgetauscht werden, entsteht…

Sprechen Sie mich bitte an, wenn Sie weitere Informationen zur Konferenz benötigen.

Künstliche Intelligenz für die Menschen

UN (2024): Governing AI For Humanity

Immer mehr Regionen und Länder stellen fest, dass die Entwicklung der Künstlichen Intelligenz – wie alle Innovationen – mindestens zwei Seiten hat. Es gibt einerseits den Nutzen für Menschen, Unternehmen und Gesellschaften und andererseits auch Schwierigkeiten.

Solche Entwicklungen geben immer Anlass, darüber nachzudenken, ob Künstliche Intelligenz so gesteuert werden kann, dass es nicht nur einzelnen Unternehmen zugute kommt, sondern einer ganzen Gesellschaft.

In der Zwischenzeit gibt es sehr viele nationale und regionale Initiativen, die versuchen, einerseits die Entwicklungen von Künstlicher Intelligenz zu fördern, andererseits aber auch Grenzen zu ziehen, deren Überschreitung zu möglichen gesellschaftlichen Schäden führen können.

Die United Nations (UN) ist für so eine Fragestellung prädestiniert, und hat mit der Veröffentlichung UN /2024): Governing AI For Humanity (PDF) eine gute Basis geschaffen, um ausgewogen über das Thema diskutieren zu können.

Aktuell habe ich den Eindruck, dass die Diskussionen über die Entwicklung und Nutzung Künstlicher Intelligenz von den amerikanischen Tech-Konzernen dominiert werden, die ihre wirtschaftlichen Vorteile sehen, die gesellschaftlich negativen Auswirkungen gerne den jeweiligen Ländern überlassen wollen.

Siehe dazu auch Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century und die Erläuterungen zu einer Society 5.0.

Innovationen: Künstliche Intelligenz und Neu-Kombinationen

Bei Innovationen sollten wir uns zunächst einmal klar machen, was im Unternehmenskontext darunter zu verstehen ist. Das Oslo Manual schlägt vor, Innovation wie folgt zu interpretieren:

„(…) a new or improved product or process (or combination thereof) that differs significantly from the unit’s previous products or processes and that has been made available to potential users (product) or brought into use by the unit (process)” (Oslo Manual 2018).

Dass Innovation u.a. eine Art Neu-Kombination von Existierendem bedeutet, ist vielen oft nicht so klar (combination thereof). Neue Ideen – und später Innovationen – entstehen oft aus vorhandenen Konzepten. oder Daten.

An dieser Stelle kommen nun die Möglichkeiten der Künstlichen Intelligenz (GenAI oder auch AI Agenten) ins Spiel. Mit KI ist es möglich, fast unendlich viele Neu-Kombinationen zu entwickeln, zu prüfen und umzusetzen. Das können Unternehmen nutzen, um ihre Innovationsprozesse neu zu gestalten, oder auch jeder Einzelne für seine eigenen Neu-Kombinationen im Sinne von Open User Innovation nutzen. Siehe dazu Von Democratizing Innovation zu Free Innovation.

Entscheidend ist für mich, welche KI-Modelle dabei genutzt werden. Sind es die nicht-transparenten Modelle der Tech-Unternehmen, die manchmal sogar die Rechte von einzelnen Personen, Unternehmen oder ganzer Gesellschaften ignorieren, oder nutzen wir KI-Modelle, die frei verfügbar, transparent und für alle nutzbar sind (Open Source AI)?

Wenn wir das Wohl der Menschen, und nicht nur den Profit einzelner Tech-Konzerne in den Mittelpunkt stellen, kommt für mich im Sinne einer Digitalen Souveränität nur Open Source AI infrage. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Kontextorientierte Innovationstrategie in Zeiten von Künstlicher Intelligenz

Innovation ist ein wesentliches Element für den Wohlstand einer Gesellschaft – nicht nur für einzelne Unternehmen. Diese orientieren sich in ihren Strategien oft auf Technik (technikorientiere Innovationsstrategie) und auf Kunden (kundenorientierte Innovationsstrategie). Beide Perspektiven sollten durch ein Denken in Kontexten ergänzt werden.

„Eine kontextorientierte Innovationsstrategie versucht daher, nutzerorientierte Lösungsansätze für die Bewältigung und Entlastung von Alltagskomplexität in innovative Produkte und Dienstleistungen zu übersetzen. (…) Eine kontextorientierte Strategie ist von der Perspektive her langfristig orientiert, verbindet technologisches Wissen mit den jeweiligen soziokulturellen Anwendungskontexten und trägt insofern der rekursiven Beziehung von Innovation und Bedürfnis Rechnung. Dabei zielt eine kontextorientierte Innovationsstrategie letztlich auf Differenzierung am Markt, denn »the essence of strategy is […] choosing to perform activities differently or to perform different activities than rivals« – und damit auf langfristiges Überleben am Markt (Porter 1996, 64)“ Quelle: Burmeister et al. (2006): Innovation im Kontext: Ansätze zu einer offenen Innovationsstrategie, in Drossou (2006).

Gerade in Zeiten von Künstlichen Intelligenz werden oftmals nur die Dimensionen „Technik“ und „Kunde“ thematisiert und zu wenig der gesellschaftliche Kontext von Innovationen mit bedacht. Die ersten beiden Dimensionen sind eher kurzfristig, die kontextorientierte Innovationsstrategie eher langfristig ausgerichtet. Gerade dieser Punkt ist für eine gesellschaftliche Entwicklung wichtig, die alle Menschen mit einbezieht.

Diese Gedanken passen gut zu dem in Japan vorgestellten Ansatz einer Society 5.0.

Global Innovation Index 2025: Deutschland nicht mehr in den TOP 10

Quelle: Global Innovation Index 2025

Der aktuelle Global Innovation Index 2025 zeigt, dass Deutschland im Ranking nicht mehr zu den TOP 10 zählt (Abbildung). Im internationalen Vergleich rutscht Deutschland etwas ab. Im Global Innovation Index 2017 war Deutschland im Vergleich zu 2016 einen Platz nach oben gerutscht, und belegte immerhin Platz 9.

Schon 2010 hatte ich in einem Blogbeitrag etwas zynisch angemerkt, dass wir in Deutschland mehr Innovationspreise als wirkliche Innovationen haben.

Vergleichen wir uns in Deutschland mit anderen Ländern in der EU, oder mit den eigenen Innovations-Kennzahlen der vergangenen Jahre, sieht es dagegen immer noch recht gut aus. Es ist halt immer die Frage, welche Zahlen ich heranziehe, um die Innovationskraft eines Landes zu bewerten. Es ist eben – frei nach Einstein – alles relativ.

Ein wichtiges Kriterium in unseren Regionen ist das Europäische Paradox. Gemeint ist, dass wir in Europa recht viel Geld in die Forschung stecken, doch im Verhältnis dazu recht wenige Innovationen generieren. Siehe dazu Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

Doch was können wir tun, um diese Entwicklung zu korrigieren?

In Zeiten von Künstlicher Intelligenz beispielsweise sollte es darum gehen, die bisher nicht erfüllten Bedürfnisse von Menschen endlich in den Mittelpunkt zu stellen, und geeignete Produkte und Dienstleistungen auf den Markt zu bringen.

“There is still an invisible hand behind supply-side reform. Adam Smith argued that the invisible hand that drives markets is capital, while the invisible hand of supply that drives innovation is demand. Generally speaking, the “inconvenience” in the daily life of the people can be used as the traction of technological development. In the AI technology market, enterprises that see fundamental needs can have a large number of applications for their products” (Wu 2025).

KI-Modelle: Von „One Size Fits All“ über Variantenvielfalt in die Komplexitätsfalle?

In letzter Zeit gibt es immer mehr Meldungen, dass der Einsatz von Künstlicher Intelligenz in allen gesellschaftlichen Bereichen steigt. Doch nicht immer sind KI-Projekte erfolgreich und werden daher eingestellt – was bei neuen Technologien ja nicht ungewöhnlich ist. Siehe dazu beispielsweise Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner).

Dennoch ist deutlich zu erkennen, dass es immer mehr Anbieter in allen möglichen Segmenten von Künstlicher Intelligenz – auch bei den Language Models – gibt. Wenn man sich alleine die Vielzahl der Modelle bei Hugging Face ansieht: Heute, am17.09.2025, stehen dort 2,092,823 Modelle zur Auswahl, und es werden jede Minute mehr. Das erinnert mich an die Diskussionen auf den verschiedenen (Welt-) Konferenzen zu Mass Customization and Personalization. Warum?

Large Language Models (LLM): One Size Fits All
Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Diese Einschätzung wird natürlich von den Tech-Unternehmen vertreten, die aktuell mit ihren Closed Source Models das große Geschäft machen, und auch für die Zukunft wittern. Die Argumentation ist, dass es nur eine Frage der Zeit ist, bis das jeweilige Large Language Model die noch fehlenden Features bereitstellt – bis hin zur großen Vision AGI: Artificial General Intelligence. Storytelling eben…

Small Language Models (SLM): Variantenvielfalt
In der Zwischenzeit wird immer klarer, dass kleine Modelle (SLM) viel ressourcenschonender, in speziellen Bereichen genauer, und auch wirtschaftlicher sein können. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs) und Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, ForbesLINK.

Komplexitätsfalle
Es wird deutlich, dass es nicht darum geht, noch mehr Möglichkeiten zu schaffen, sondern ein KI-System für eine Organisation passgenau zu etablieren und weiterzuentwickeln. Dabei sind erste Schritte schon zu erkennen: Beispielsweise werden AI-Router vorgeschlagen, die verschiedene Modelle kombinieren – ganz im Sinne eines sehr einfachen Konfigurators. Siehe dazu Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Mit Hilfe eines KI-Konfigurators könnte man sich der Komplexitätsfalle entziehen. Ein Konfigurator in einem definierten Lösungsraum (Fixed Solution Space) ist eben das zentrale Element von Mass Customization and Personalization.

Die Lösung könnte also sein, massenhaft individualisierte KI-Modelle und KI-Agents dezentralisiert für die Allgemeinheit zu schaffen. Am besten natürlich alles auf Open Source Basis – Open Source AI – und für alle in Repositories frei verfügbar. Auch dazu gibt es schon erste Ansätze, die sehr interessant sind. Siehe dazu beispielsweise (Mass) Personalized AI Agents für dezentralisierte KI-Modelle.

Genau diese Überlegungen erinnern – wie oben schon angedeutet – an die Hybride Wettbewerbsstrategie Mass Customization and Personalization. Die Entgrenzung des definierten Lösungsraum (Fixed Solution Space) hat dann weiter zu Open Innovation (Chesbrough und Eric von Hippel) geführt.