Künstliche Intelligenz und Kompetenz

Wenn ein neues Thema aufkommt, geht es dabei oft auch darum, entsprechende Kompetenzen zu entwickeln. Als beispielsweise immer klarer wurde, dass die Digitalisierung alle Bereiche unseres Lebens beeinflussen wird, wurde schnell von Digitalen Kompetenzen gesprochen und geschrieben, die alle und jeder entwickeln sollte/müsste. In dem Beitrag “Digitale Kompetenzen” oder besser “Kompetenzen in digitalen Kontexten”? habe ich erläutert, warum es in diesem Fall besser ist, von Kompetenzen in digitalen Kontexten zu sprechen. Solche Bindestrich-Kompetenzen gibt es in sehr vielen Facetten – nun auch bei dem Thema Künstliche Intelligenz.

Auch hier wird schnell von KI-Kompetenzen gesprochen, ohne zu reflektieren, dass es grundsätzlich Kompetenzen sind, die im Kontext der Künstlichen Intelligenz entwickelt (nicht vermittelt!) werden sollen. In diesem Zusammenhang verweise ich gerne darauf, Kompetenzen als Selbstorganisationsdispositionen zu sehen. Diese Perspektive geht auf Erpenbeck und Heyse zurück:

“Die Handlungskompetenztheorie von Erpenbeck und Heyse (Erpenbeck 2012, Erpenbeck & Sauter 2015, Heyse & Erpenbeck 2007) wiederum betont die Bedeutung von selbstorganisiertem und werteorientiertem Handeln in komplexen Situationen, was sich auch auf den Bereich der KI übertragen lässt. Personen mit hoher Handlungskompetenz
sind dann in der Lage, Handlungen zu entwickeln, um erfolgreich handlungsfähig zu sein und zu bleiben” (Ehler et al. 2025).

Siehe dazu auch

Hybridisierung von Kompetenzen: Kompetenzmanagement in Zeiten von Künstlicher Intelligenz

Persönlichkeitseigenschaften, -fähigkeiten und Kompetenzen

Projektmanagement: KI-Unterstützung der ICB 4.0 Kompetenzen

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk

Open Source: Nextcloud-Assistent und Künstliche Intelligenz (KI)

Bei den verschiedenen kommerziellen Anwendungen ist es fast schon Standard, dass Assistenten eingeblendet und angewendet werden, um Künstliche Intelligenz in den jeweiligen Prozess oder Task zu nutzen. Dabei ist immer noch weitgehend unklar, welche Trainingsdaten bei den verschiedenen Trainingsdatenbanken (LLM: Large Language Models) genutzt werden, und was beispielsweise mit den jeweils eigenen Eingaben (Prompts) passiert. Nicht zuletzt werden sich die kommerziellen Anbieter die verschiedenen Angebote mittelfristig auch gut bezahlen lassen.

Es kann daher nützlich sein, Open Source AI zu nutzen.

Praktisch kann das mit NEXTCLOUD und dem darin enthaltenen Nextcloud-Assistenten umgesetzt werden. Jede Funktion (Abbildung) kann man mit einer Traingsdatenbank verbinden, die wirklich transparent und Open Source ist. Solche Trainingsdatenbanken stehen beispielsweise bei Hugging Face zur Verfügung. Darüber hinaus bleiben alle Daten auf dem eigenen Server – ein heute unschätzbarer Wert . Wir werden diesen Weg weitergehen und in Zukunft dazu noch verschiedene Blogbeiträge veröffentlichen. Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Open Source AI: Common Corpus als größte offene Trainingsdatenbank veröffentlicht.