Innovationen machen sich Veränderungen zunutze, die schon stattgefunden haben. Was haben Konferenzen damit zu tun?

In den letzten Jahrzehnten habe ich weltweit an vielen Konferenzen teilgenommen. Beispielhaft möchte ich hier nur die erste Weltkonferenz zu Mass Customization and Personalization MCPC 2001 an der Hong Kong University of Science and Technology (HKUST), die MCPC 2003 in München, die MCPC 2007 am MIT in Boston, die MCPC 2015 in Montreal usw. nennen..

Überall konnte ich sehen, welche Themen die Forscher in ihren Veröffentlichungen vorstellten. Konferenzen sind daher ein vorlaufender Indikator für aktuelle und zukünftige Entwicklungen, auch für Innovationen. Solche Zusammenhänge hat Peter Drucker schon vor vielen Jahren aufgezeigt:

„Es wird allgemein angenommen, dass Innovationen grundsätzlich Veränderungen herbeiführen – doch nur die wenigsten leisten das. Erfolgreiche Innovationen machen sich Veränderungen zunutze, die schon stattgefunden haben. Sie nutzen beispielsweise den Time-lag – in der Wissenschaft macht dieser oft zwanzig bis dreißig Jahre aus – zwischen der Veränderung an sich und deren Auf- und Annahme. Während dieses Zeitraums muss der Nutznießer dieses Wandels kaum, wenn überhaupt, Konkurrenz befürchten“ (Drucker 1996).

Manche Themen wie die Entwicklung und Nutzung von Konfiguratoren im Rahmen der Hybriden Wettbewerbsstrategie Mass Customization, Problemlösungen zur Verschwendung in der Massenproduktion durch Personalisierung, oder die Nutzung von Additive Manufacturing (3D-Druck), usw. wurden in den letzten Jahrzehnten schon auf Konferenzen vorgestellt. Es dauerte dann doch noch viele Jahre, bis die Entwicklungen im Mainstream der Unternehmen ankamen.

Es ist eine Kunst, die auf Konferenzen aufgezeigten Themen und Problemlösungen für die eigene Organisation zum richtigen Zeitpunkt nutzbar zu machen, also als Innovationen anzubieten. Die von Drucker angesprochene Zeitspanne von 20-30 Jahren bietet hier die Möglichkeit, das richtige Timing zu finden. Zu früh mit Innovationen auf den Markt zu gehen, kann genau so negativ sein, wie Innovationen zu spät anzubieten.

Auf der Konferenz MCP 2026 haben Sie im September wieder die Möglichkeit, sich über die Themen (Mass) Customization und Personalization, sowie Open Innovation aus erster Hand zu informieren. Die von mir initiierte Konferenzreihe findet in diesem Jahr das 12. Mal statt, und zwar in Balatonfüred (Ungarn). Wir werden auch dabei sein.

Von KI-Agenten zu Personalized AI Twins

Die aktuelle Diskussion zu Künstlicher Intelligenz befasst sich u.a. mit den Möglichkeiten generativer Künstlicher Intelligenz (GenAI) und den Entwicklungen bei KI-Agenten (AI Agents). KI-Agenten können in Zukunft viele Tätigkeiten/Jobs in Organisationen übernehmen, und so deren Effektivität und Effizienz steigern.

Solche Entwicklungen sind allerdings nicht alleine auf Organisationen begrenzt. Auf der individuellen, persönlichen Ebene entwickeln sich KI-Agenten immer mehr zu persönlichen Agenten, oder sogar zu Personal AI Twins:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Die hier angesprochene Entwicklung von generischen KI-Agenten zu personalisierten KI-Agenten (personal ai twins) ist bemerkenswert. Es stellt sich natürlich gleich die Frage, ob eine Person solche Personal AI Twins nur für ihre Arbeit, oder auch für alle ihre Aktivitäten nutzen möchte. Dabei kommt es immer wieder zu Überschneidungen zwischen der beruflichen Domäne und den privaten Kontexten.

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins ihre eigenen Ideen besser selbst entwickeln oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Added Values: Nutzendimensionen, Wert und Werte

Krieg/Groß/Bauernhansl (2024) (Hrsg.): Einstieg in die Mass Personalization. Perspektiven für Entscheider

Wenn es um den Nutzen, oder den Wert, eines Produktes oder einer Dienstleistung geht, sollten grundsätzlich zwei Punkte beachtet werden.

(1) Die verschiedenen Dimensionen von Nutzen (Added Values)
In der Abbildung ist zu erkennen, dass Added Values fünf Dimensionen beinhalten. Neben dem funktionalen Nutzen, sind das natürlich der wirtschaftliche Nutzen, ein prozessoraler Nutzen und ein emotionaler Nutzen, Die Dimension, die stärker in den Fokus rücken sollte, ist der soziale Nutzen (eigene Hervorhebung in der Abbildung). Am Beispiel der Anwendung von Künstlichen Intelligenz wird deutlich, dass der Fokus in der aktuellen Diskussion zu sehr auf dem wirtschaftlichen Nutzen liegt, und zu wenig den sozialen Nutzen thematisiert.

(2) Nutzen, Wert und Werte
Bei einer ausgewogenen Betrachtung zur Nutzung Künstlicher Intelligenz auf der persönlichen Ebene, auf der Team-Ebene, auf der organisationalen Ebene oder auf gesellschaftlicher Ebene können Werte als Ordner dienen. „Der Begriff »Werte« unterscheidet sich vom Begriff »Wert« dadurch, dass der erste Begriff die Gründe beschreibt, warum etwas für jemanden wichtig ist. Werte repräsentieren normative Grundlagen, die als Leitprinzipien für individuelles Verhalten und gesellschaftliche Strukturen dienen. Sie bilden die Basis für die Bewertung von Wert und beeinflussen die Art und Weise, wie Individuen und Gesellschaften Güter, Dienstleistungen oder Handlungen priorisieren“ (Hämmerle et al. 2025, Fraunhofer HNFIZ).

Siehe dazu auch

Künstliche Intelligenz und Werte für das Zusammenleben in der Europäischen Union

Agile Organisation: Werte und Prinzipien als Hebelwirkung

Wirkungstreppe bei Not-for-Profit-Projekten: Output, Outcome und Impact

MCP: Konferenz zu Mass Customization and Personalization im September 2026

MCP Week 2026 am Balaton in Ungarn

https://mcp-ce.org/

We are delighted to announce and honored to invite you to the Customization and Personalization Week from September 16-19, 2026 in Balatonfured, Hungary as a result of two decades of excellence in research, innovation, and collaboration in the field of mass customization and personalization.    

12th International Conference on Customization and Personalization    
7th Doctoral Students Workshop    
4th Professionals Panels & MEA KULMA Innovation Festival  

For the past 22 years, our conference with accompanying events has been at the forefront of innovation in the fields of customization and personalization. 

We are looking forward to seeing you at Danubius Hotel Marina, Balatonfüred, Hungary!

Website: https://mcp-ce.org/

MCP-CE 2026: 12th International Conference on Customization and Personalization

Screenshot von der Konferenzwebsite https://mcp-ce.org/

Manchmal kann ich es gar nicht glauben: Die MCP-CE – Konferenzreihe findet in 2026 zum 12. Mal statt. Seit 2004 gibt es alle 2 Jahre die Möglichkeit, sich zu den Themen Customization und Personalization auszutauschen.

Die Idee zu der Konferenzreihe hatte ich 2001 auf der ersten Weltkonferenz MCP2001 in Hong Kong, an der ich teilgenommen habe. Damals haben mir viele gesagt, dass das wohl kaum funktionieren würde. Doch gemeinsam mit vielen Kollegen aus verschiedenen Ländern ist es gelungen, die Konferenzreihe zu etablieren. An dieser Stelle: Herzlichen Dank an alle, die uns unterstützt haben.

In 2026 werden wir uns mit den verschiedenen internationalen Kollegen aus Forschung und Wirtschaft in Ungarn treffen. Vom 16.-19.09.2026 finden in Balatonfüred insgesamt drei Events statt:

Die Konferenz mit spannenden Beiträgen und Diskussionen.

Ein Workshop für Doktoranden, der schon zum 7. Mal durchgeführt wird.

Das 4. Ideen-Forum: Man weiß nie, was sich aus den vielen Ideen, die auf der Konferenz ausgetauscht werden, entsteht…

Sprechen Sie mich bitte an, wenn Sie weitere Informationen zur Konferenz benötigen.

KI-Modelle: Von „One Size Fits All“ über Variantenvielfalt in die Komplexitätsfalle?

In letzter Zeit gibt es immer mehr Meldungen, dass der Einsatz von Künstlicher Intelligenz in allen gesellschaftlichen Bereichen steigt. Doch nicht immer sind KI-Projekte erfolgreich und werden daher eingestellt – was bei neuen Technologien ja nicht ungewöhnlich ist. Siehe dazu beispielsweise Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner).

Dennoch ist deutlich zu erkennen, dass es immer mehr Anbieter in allen möglichen Segmenten von Künstlicher Intelligenz – auch bei den Language Models – gibt. Wenn man sich alleine die Vielzahl der Modelle bei Hugging Face ansieht: Heute, am17.09.2025, stehen dort 2,092,823 Modelle zur Auswahl, und es werden jede Minute mehr. Das erinnert mich an die Diskussionen auf den verschiedenen (Welt-) Konferenzen zu Mass Customization and Personalization. Warum?

Large Language Models (LLM): One Size Fits All
Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Diese Einschätzung wird natürlich von den Tech-Unternehmen vertreten, die aktuell mit ihren Closed Source Models das große Geschäft machen, und auch für die Zukunft wittern. Die Argumentation ist, dass es nur eine Frage der Zeit ist, bis das jeweilige Large Language Model die noch fehlenden Features bereitstellt – bis hin zur großen Vision AGI: Artificial General Intelligence. Storytelling eben…

Small Language Models (SLM): Variantenvielfalt
In der Zwischenzeit wird immer klarer, dass kleine Modelle (SLM) viel ressourcenschonender, in speziellen Bereichen genauer, und auch wirtschaftlicher sein können. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs) und Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, ForbesLINK.

Komplexitätsfalle
Es wird deutlich, dass es nicht darum geht, noch mehr Möglichkeiten zu schaffen, sondern ein KI-System für eine Organisation passgenau zu etablieren und weiterzuentwickeln. Dabei sind erste Schritte schon zu erkennen: Beispielsweise werden AI-Router vorgeschlagen, die verschiedene Modelle kombinieren – ganz im Sinne eines sehr einfachen Konfigurators. Siehe dazu Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Mit Hilfe eines KI-Konfigurators könnte man sich der Komplexitätsfalle entziehen. Ein Konfigurator in einem definierten Lösungsraum (Fixed Solution Space) ist eben das zentrale Element von Mass Customization and Personalization.

Die Lösung könnte also sein, massenhaft individualisierte KI-Modelle und KI-Agents dezentralisiert für die Allgemeinheit zu schaffen. Am besten natürlich alles auf Open Source Basis – Open Source AI – und für alle in Repositories frei verfügbar. Auch dazu gibt es schon erste Ansätze, die sehr interessant sind. Siehe dazu beispielsweise (Mass) Personalized AI Agents für dezentralisierte KI-Modelle.

Genau diese Überlegungen erinnern – wie oben schon angedeutet – an die Hybride Wettbewerbsstrategie Mass Customization and Personalization. Die Entgrenzung des definierten Lösungsraum (Fixed Solution Space) hat dann weiter zu Open Innovation (Chesbrough und Eric von Hippel) geführt.

MCPC 2025 vom 09.-12. September in Siegen

Die MCPC-Konferenzreihe ist 2001 in Hong Kong gestartet – und ich habe daran teilgenommen. Dieses Event hat mich dazu motiviert, mich stärker mit dem Thema zu beschäftigen. In der Folge habe ich dann an vielen Weltkonferenzen teilgenommen und Paper vorgestellt. Ein Highlight war die Special Keynote auf der MCPC2015 in Montreal.

In Hong Kong 2001 ist damals bei mir auch die Idee gereift, eine eigene Konferenzreihe zu initiieren. Mit der Unterstützung vieler Kollegen konnte das auch erreicht werden. Seit 2004 gibt es alle 2 Jahre die MCP-CE, an der wir zuletzt 2024 teilgenommen haben.

Die nächste Weltkonferenz MCPC 2025 findet nun vom 09.-12. September in Siegen statt.

„The conference offers a setting for experts from academia, industry and research institutes alike to discuss and exchange the latest scientific contributions related to customized products and their associated business and production systems.“ (Quelle: Call for Papers|PDF).

Siehe dazu auch

Konferenzen und Veröffentlichungen

MCP CENTRAL EUROPE AWARD

Ist die Verwendung von Persona das Gegenteil von Mass Customization?

Gerade im Agilen Projektmanagement werden Anforderungen häufig für Persona formuliert. Diese sind nach dem IREB (International Requirements Engineering Board) fiktive Charaktere, mit deren Hilfe Werte für die User geschaffen werden sollen. Dieses Vorgehen erinnert an eine Art Segmentierung aus dem traditionellen Marketing.

Mass Customization auf der anderen Seite ist eine hybride Wettbewerbsstrategie, die individuelle Produkte und Dienstleistungen für jeden Abnehmer – also massenhaft – anbietet, bei Preisen, die denen der massenhaft produzierten Standardprodukten ähneln. Dabei ist der Konfigurator ein wichtiges Element, das passende Produkt in einem Fixed Solution Space (Definierter Lösungsraum) zu erstellen. Die dahinterliegende Idee eines „Market of One“ passt nicht so recht mit der Persona-Idee zusammen. Dazu habe ich folgendes gefunden:

„In many ways, a persona is the opposite of mass customization. It’s more traditional marketing thinking about how to deal with a larger number of segments. A “persona of one” is turning the persona idea to its opposite“ Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

In Zeiten von Künstlicher Intelligenz wird es immer mehr Möglichkeiten geben, Produkte und Dienstleistungen massenhaft zu individualisieren und zu personalisieren. Ob die Verwendung von Persona in solchen eher agil durchzuführenden Projekten dann noch angemessen ist, scheint fraglich zu sein. Siehe dazu auch 

Society 5.0 und Mass Customization

Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

Wir sind dabei: 20 Jahre MCP-CE vom 24.-27.09.2024

Künstliche Intelligenz: Vorwissen, Wissenszuwachsvorhersage, Wissenszuwachs und Markov-Ketten

Beispielhafte Darstellung der Wissenszuwachsvorhersage (Fischer et al. 2023)

Künstliche Intelligenz beeinflusst auf verschiedenen Ebenen auch die berufliche Weiterbildung. Ein wichtiger Bereich ist dabei die Personalisierung von Inhalten und Lernprozessen. In der Vergangenheit wurde das schon mit der Modularisierung von Inhalten zusammen mit entsprechenden Konfiguratoren umgesetzt. Kurz zusammenfasst lautet hier die Formel: Konfiguration von Learning Objects. Der ganze Bereich kann als Mass Customization and Personalization in der beruflichen Bildung gesehen werden.

Eines meiner ersten Paper dazu habe ich 2003 auf der ElearnChina vorgestellt. Dabei ging es mir schon damals darum, dass nicht das Objekt lernt (Learning Objects), sondern die jeweilige Person. Daher habe ich schon damals eine Verbindung zur Multiple Intelligenzen Theorie von Howard Gardner hergestellt.

Freund, R. (2003): Mass Customization in Education and Training, ELearnChina 2003, Edinburgh, Scotland. Download | Flyer | Speaker. Weitere Paper finden Sie in meinen Veröffentlichungen.

In der Zwischenzeit bietet die Künstliche Intelligenz darüber hinausgehend weitreichende Verbesserungen, z,B. durch die Verwendung von Markov-Ketten.

„Beispielsweise lassen sich über klassische Verfahren des maschinellen Lernens automatisiert Lernmaterialien oder Kurse empfehlen, die vor dem Hintergrund der bisherigen Bildungshistorie von Teilnehmenden häufig gewählt wurden (Markov-Ketten), besonders erfolgsversprechend sind (gewichtete Markov-Ketten) und/oder angesichts des Vorwissens und ggf. weiterer Variablen den größtmöglichen Wissenszuwachs versprechen (Wissenszuwachsvorhersage)“ (Fischer et al. (2023).

Die Abbildung zeigt das prinzipielle Vorgehen. Diese Verfahren sind bei einer großen Datenbasis durchaus gut einsetzbar. Neben den content-bezogenen Möglichkeiten bieten solche Ansätze auch Unterstützung bei den jeweiligen Kollaborationssituationen.

Experten allerdings nutzen am Arbeitsplatz für die Problemlösung oftmals ihr “Gefühl/Gespür”, oder man sagt, sie haben einen “guten Riecher” für die Situation gehabt. Gerade in komplexen Problemlösungssituationen zeigen sich Grenzen der rationalen, scheinbar objektiven Analyse. Es kommt dann stattdessen auch auf die subjektiven Fähigkeiten eines Menschen an. Siehe dazu auch Kann Intuition als Brücke zwischen impliziten und expliziten Wissen gesehen werden?

In der objektiven Arbeitssituation (Domäne, Kontext) bedarf es einer Subjektivierung des Arbeitshandelns, das uns vom Begriff des Wissens weiter zum Begriff der Kompetenz führt. Genauer: Zur Kompetenzentwicklung im Prozess der Arbeit. Siehe dazu Persönlichkeitseigenschaften, -fähigkeiten und Kompetenzen und Wissensmanagement und Kompetenzmanagement: Welche Gemeinsamkeiten/Unterschiede gibt es?

Es wird spannend sein zu sehen, wie Künstliche Intelligenz hier nützlich sein kann, wenn man nicht die Technik in den Mittelpunkt stellt, sondern die menschenzentrierte, komplexe, kontextspezifische Problemlösungssituation. Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Megatrend: Mass Personalization

Quelle: https://www.masspersonalization.de/

Leser unseres Blogs wissen, dass wir uns seit sehr vielen Jahren mit den Möglichkeiten von Mass Customization and Personalization (MCP) befassen (Konferenzen, Veröffentlichungen) und MCP Central Europe Award). Zu Beginn lag der Schwerpunkt auf Mass Customization, einer hybriden Wettbewerbsstrategie, in deren Mittelpunkt ein definierter Lösungsraum (fixed Solutionspace) steht, in dem mit Hilfe von Konfiguratoren Produkte (hauptsächlich) und Dienstleistungen an die Wünsche der Kunden angepasst werden konnten und können. Dabei sollten die Preise nicht wesentlich höher sein, als die von massenhaft produzierten Standardprodukten und Dienstleistungen. So weit so gut.

Verschiedene technologische und gesellschaftliche Entwicklungen führen nun zum Megatrend Mass Personalization. Das Leistungszentrum Mass Personalization (LZMP) des Fraunhofer Instituts befasst sich genau mit dieser Entwicklung und stellt praktische Umsetzungsformate vor. Dabei spielen natürlich die neuen technischen Möglichkeiten wie Künstliche Intelligenz, 3D-Druck (Additive Manufacturing) usw. eine bedeutende Rolle. Doch zunächst muss natürlich klar sein, was das LZMP unter dem Begriff „Mass Personalization“ versteht. Dazu habe ich folgendes gefunden:

„Mass Personalization ist ein eigenständiges radikal nutzerzentriertes und dennoch nachhaltiges und ressourceneffizientes Konzept, das als Toolbox oder plattformtechnologische Anwendung in der Produktion von morgen fungieren kann“ (Krieg/Groß/Bauernhansl (2024) (Hrsg.): Einstieg in die Mass Personalization. Perspektiven für Entscheider).

Personalisierung mit seiner Nutzerzentriertheit drückt sich dabei durch einen zusätzlichen Wert (Added Value) für Nutzer aus, der als funktionaler Nutzen, wirtschaftlicher Nutzen, prozessoraler Nutzen, emotionaler Nutzen und sozialer Nutzen auftritt.

Dabei stellt sich mir die Frage, ob stark wirtschaftlich ausgerichtete Unternehmen Interesse daran haben, einen emotionalen oder sozialen Nutzen zu generieren. Werden Unternehmen auch diese Dimensionen beachten, oder stärker auf die anderen drei Dimensionen von Added Value fokussieren? Mein Eindruck: Gerade die Diskussionen um den Klimawandel und um Nachhaltigkeit werden die Unternehmen immer stärker dazu zwingen, sich mit allen Dimensionen des Added Value zu befassen.