Was macht eine Arbeitsgesellschaft, der die Arbeit ausgeht?

Der Titel meines Beitrags bezieht sich auf die Philosophin Hannah Arendt, die vor Jahren die Frage stellte, was eine Arbeitsgesellschaft anstelle, der die Arbeit ausgehe (Arendt, H. (1981): Vita activa. Vom tätigen Leben, München),

Dabei ist zunächst einmal zu klären, was unter Arbeit zu verstehen ist, denn auch hier hat sich über die Zeit einiges verändert, was die Abkürzungen Arbeit 1.0, Arbeit 2.0, Arbeit 3.0 und Arbeit 4.0 beschreiben.

Ein wesentlicher Teil des heutigen Arbeitsverständnisses bezieht sich immer noch auf die Sicherung und Erweiterung des Lebensunterhaltes.

„Unter Arbeit verstehen wir die Vielfalt menschlicher Handlungen, deren Zweck die Sicherung und Erweiterung des Lebensunterhaltes der arbeitenden Individuen und ihrer Angehöriger ebenso beinhaltet wie die Reproduktion des gesellschaftlichen Zusammenhanges der Arbeitsteilung und hierüber der Gesellschaft selbst, Arbeit ist vergesellschaftetes Alltagsleben (von Ferber 1991)“ (Peter, G. (1992): Situation-Institution-System als Grundkategorien einer Arbeitsanalyse. In: ARBEIT 1/1992, Auszug aus S. 64-79. In: Meyn, C.; Peter, G. (Hrsg.) (2010)).

Dieses Verständnis von Arbeit kann dem Denken in einer Industriegesellschaft zugeordnet werden. Dazu gehören auch Entlohnungs-Systeme, Sozial-Systeme, Rechts-Systeme, Gesundheits-Systeme, Bildungs-Systeme usw.

Wenn sich also am Verständnis von Arbeit etwas ändert, hat das erhebliche Auswirkungen auf all die genannten, und nicht-genannten, gesellschaftlichen Systeme. Am Beispiel der Landwirtschaft kann das gut nachvollzogen werden: Nachdem hier automatisiert/industrialisiert wurde, gab es zwar weniger Arbeit in dem Bereich, doch mehr Arbeit in einem neuen Bereich, eben der Industrie.

Genau hier setzt ein neueres Verständnis Von Arbeit an, das sich aus dem Strukturbruch zwischen einfacher und reflexiver Modernisierung ableitet, und Arbeit ganzheitlicher betrachtet:

Arbeit, und zwar das „Ganze der Arbeit“ (Biesecker 2000), sollte deshalb neu bestimmt werden, zunächst verstanden als „gesamtgesellschaftlicher Leistungszusammenhang“ (Kambartel 1993) der Reproduktion, woraus sich spezifische Rechte und Pflichten, Einkommen sowie Entwicklungschancen für die Mitglieder einer Gesellschaft ergeben. Von einem Ende der Arbeitsgesellschaft ist nämlich keine Rede mehr, wohl aber von einem Epochenbruch und der Notwendigkeit einer umfassenden Neugestaltung der gesellschaftlichen Arbeit“ (Peter/Meyn 2010).

Wenn Arbeit nun eher als „gesamtgesellschaftlicher Leistungszusammenhang“ gesehen werden sollte, bedeutet das natürlich, dass die auf dem früheren Begriff der Arbeit basierenden gesellschaftlichen Systeme (Gesundheits-System, Sozial-System Wirtschafts-System usw.) angepasst werden sollten.

Hinzu kommt, dass schon die nächste, von den Möglichkeiten der Künstlicher Intelligenz getriebene, Entwicklung ansteht. Dabei wird KI viele bisher bekannte Tätigkeitsportfolios verändern, und auch neue Tätigkeitsportfolios schaffen – und das relativ schnell. Siehe dazu KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie.

Aktuell hat man den Eindruck, dass alle gesellschaftlichen Systeme von den technologischen Entwicklungen getrieben werden, ganz im Sinne von Technology first. Es ist an der Zeit, Prioritäten zu verschieben – und zwar in Richtung Human first. Das ist möglich. Wie? Ein Beispiel:

„By comparison, Society 5.0 is “A human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Auch hier geht es um einen menschenzentrierten Ansatz, der allerdings nicht auf den Industriearbeiter begrenzt ist, sondern alle Bürger generell mitnehmen will. Dabei sollen die konkreten Probleme der Menschen (endlich) gelöst werden.

Da gibt es noch viel zu tun. So verstandene Arbeit geht nicht aus, und sollte in allen gesellschaftlichen Bereichen angemessen entlohnt werden.

Weltweite Übersicht zum Umgang mit Künstlicher Intelligenz

Quelle: https://regulations.ai/map

In dem Blogbeitrag Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century hatte ich darauf hingewiesen, dass es falsch ist zu behaupten, dass die USA innovativ sind, und die Europäische Union nur reguliert. Diese Plattitüde wird immer wieder von den Tech-Giganten aus den USA verwendet – allerdings wird die Aussage dadurch nicht richtiger.

Auch Japan (Society 5.0) oder Indien (IndiaAI) gehen dazu über, Künstliche Intelligenz in einer Form zu regulieren, dass die Gesellschaft die Vorteile nutzen kann, und die Nachteile reduziert werden. Doch nicht nur die EU und diese beiden Länder sind in Sachen Künstlicher Intelligenz aktiv. Stellt man die Aktivitäten weltweit zusammen, ist es erstaunlich zu sehen, wie vielfältig mit Künstlicher Intelligenz umgegangen wird.

In diesem Zusammenhang ist die Website Regulations.AI interessant, da dort die Informationen zum jeweiligen Stand in einer Region oder in einem Land übersichtlich zusammengefasst sind. Die Website wird von dem schweizer Unternehmen Smittek GmbH betrieben: Terms of Use.

Neben einer interaktiven Grafik wurde am 17.12.2025 auch ein Global Report (PDF) veröffentlicht.

Künstliche Intelligenz und die ursprüngliche Bedeutung von Bildung

Image by dumcarreon from Pixabay

Es ist deutlich zu erkennen, dass Künstliche Intelligenz in seinen verschiedenen Formen (GenAI, AI Agenten usw.) Berufsbilder, Lernen, Wissens- und Kompetenzentwicklung beeinflusst, bzw. in Zukunft noch stärker beeinflussen wird. Siehe dazu beispielsweise WEF Jobs Report 2025.

Auch Strukturen im Bildungsbereich müssen sich daher fragen, welche Berechtigung sie noch in Zukunft haben werden, da sich der aktuelle Bildungssektor in fast allen Bereichen noch stark an den Anforderungen der Industriegesellschaft orientiert. Wenn es beispielsweise um Schulen geht, hat sich seit mehr als 100 Jahren nicht viel geändert. Siehe dazu Stundenplan von 1906/1907: Geändert hat sich bis heute (fast) nichts. Dazu passt folgendes Zitat:

„Every time I pass a jailhouse or a school, I feel sorry for the people inside.“
— Jimmy Breslin, Columnist, New York Post (Quelle)

Wohin sollen sich die Bildungsstrukturen – hier speziell Schulen – entwickeln?

(1) Wir können die Technologischen Möglichkeiten von Künstlicher Intelligenz in den Mittelpunkt stellen, und Menschen als nützliches Anhängsel von KI-Agenten verstehen. Dabei werden Menschen auf die KI-Technologie trainiert,, weiter)gebildet, geschult.

(2) Wir können alternativ Menschen und ihr soziales Zusammenleben in den Mittelpunkt stellen, bei dem Künstliche Intelligenz einen wertvollen Beitrag liefern kann. Ganz im Sinne einer Society 5.0.

Aktuell dominiert fast ausschließlich die Nummer (1) der genannten Möglichkeiten, was dazu führen kann, dass der Bildungsbereich Menschen so trainiert, dass sie zu den von Tech-Giganten entwickelten Technologien passen.

Möglicherweise hilft es in der Diskussion, wenn man den Ursprung des Wortes „Schule“ betrachtet. Der Begriff geht auf das griechische Wort „Skholè“ zurück, was ursprünglich „Müßiggang“, „Muße“, bedeutet und später zu „Studium“ und „Vorlesung“ wurde (Quelle: Wikipedia).

Bei Forschungen zur Künstlichen Intelligenz sind Autoren genau darauf eingegangen, weil sie vermuten, dass gerade diese ursprüngliche Perspektive besser zu den aktuellen Entwicklung passen kann:

„We find this etymology deeply revealing because it undercovers a profound truth about education´s original purpose: it wasn´t about preparing workers for jobs, but about providing space for thoughtful reflection and exploration of life´s fundamental questions. What inspires us about the ancient´s Greek approach is how they saw education as a means to help people find their purpose and develop their full potential as human beings“ (Bornet et al. 2025).

Wir behandeln oftmals Menschen wie Roboter und Künstliche Intelligenz wie Kreative

In den letzten Jahren wird immer deutlicher, dass Künstliche Intelligenz unser wirtschaftliches und gesellschaftliches Leben stark durchdringen wird. Dabei scheint es so zu sein, dass die Künstliche Intelligenz der Menschlichen Intelligenz weit überlegen ist. Beispielsweise kann Künstliche Intelligenz (GenAI) äußerst kreativ sein, was in vielfältiger Weise in erstellten Bildern oder Videos zum Ausdruck kommt. In so einem Zusammenhang behandeln wir Künstliche Intelligenz (AI: Artificial Intelligence) wie Kreative und im Gegensatz dazu Menschen eher wie Roboter. Dazu habe ich folgenden Text gefunden:

„We are treating humans as robots and ai as creatives. it is time to flip the equation“ (David de Cremer in Bornet et al. 2025).

David de Cremer ist der Meinung, dass wir die erwähnte „Gleichung“ umstellen sollten. Dem kann ich nur zustimmen, denn das aktuell von den Tech-Giganten vertretene Primat der Technik über einzelne Personen und sogar ganzen Gesellschaften sollte wieder auf ein für alle Beteiligten gesundes Maß reduziert werden. Damit meine ich, dass die neuen technologischen Möglichkeiten einer Künstlichen Intelligenz mit den Zielen von Menschen/Gesellschaften und den möglichen organisatorischen und sozialen Auswirkungen ausbalanciert sein sollten.

Der japanische Ansatz einer Society 5.0 ist hier ein sehr interessanter Ansatz. Auch in Europa gibt es Entwicklungen, die in diese Richtung gehen: Beispielsweise mit den Möglichkeiten von EuroLLM, einem Europäischen Large Language Model (LLM) auf Open Source Basis. Siehe dazu auch Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI.

KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie

Wenn es darum geht, die Auswirkungen der Künstlichen Intelligenz auf den Arbeitsmarkt zu prognostizieren, kommt es – wie immer – darauf an, wen man fragt.

Die eher technikorientierten Unternehmen verkaufen die angestrebte AGI (Artificial General Intelligence) als das non plus ultra der Intelligenzentwicklung. Dabei prognostizieren diese Unternehmen, dass AGI den menschlichen Fähigkeiten (Intelligenzen) überlegen sein wird. Daraus folgt zwingend, dass KI wohl alle arbeitsbezogenen Tätigkeiten in der nahen Zukunft übernehmen kann. Diese Argumentation erinnert mich an so viele Versprechen der Technik-Unternehmen; beispielsweise an die Unsinkbarkeit der Titanic oder die „100%-ige“ Sicherheit von Kernkraftwerken, oder an die Verheißungen der Internetpioniere. Technologie muss wohl in dieser Form verkauft werden (Storytelling) – immerhin geht es ja um Investoren und sehr viel Geld. Ich weiß natürlich, dass diese Vergleiche „hinken“, dennoch …

Betrachten wir Künstliche Intelligenz mit seinen Möglichkeiten aus der eher gesamtgesellschaftlichen Perspektive, so sieht das etwas anders aus. Hier geht es darum, mit Hilfe der Künstlichen Intelligenz gesellschaftliche Probleme zu lösen, zum Wohle aller. Die Idee der japanischen Society 5.0 kommt diesem Anspruch sehr nahe. Da ich darüber schon verschiedene Blogbeiträge veröffentlich habe, gehe ich darauf nicht weiter ein. Siehe dazu beispielhaft Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wie ist es dennoch möglich herauszufinden, wie sich Künstliche Intelligenz auf dem Arbeitsmarkt bemerkbar macht, bzw. machen wird?

Als Leser unseres Blogs wissen Sie, dass ich bei solchen Fragestellungen immer dazu tendiere, belastbare wissenschaftliche Studien von unabhängigen Forschern heranzuziehen. Eine dieser Studie ist folgende. Darin sind sehr ausführlich Vorgehensweise, Datenanalysen und Erkenntnisse dargestellt, mit einer zu beachtenden Einschränkung: Es geht um den amerikanischen Arbeitsmarkt.

„First, we find substantial declines in employment for early-career workers in occupations most exposed to AI, such as software development and customer support.

Second, we show that economy-wide employment continues to grow, but employment growth for young workers has been stagnant.

Third, entry-level employment has declined in applications of AI that automate work, with muted effects for those that augment it.

Fourth, these employment declines remain after conditioning on firm-time effects, with a 13% relative employment decline for young workers in the most exposed occupations

Fifth, these labor market adjustments are more visible in employment than in compensation.

Sixth, we find that these patterns hold in occupations unaffected by remote work and across various alternative sample constructions“

Source: Brynjolfsson et al. (2025): Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence | PDF

Herausheben möchte ich hier, dass gerade junge Menschen, die in den Arbeitsmarkt kommen und noch keine domänenspezifische Expertise entwickeln konnten, von Künstlicher Intelligenz betroffen sind. Das ist in mehrerer Hinsicht bemerkenswert.

Einerseits scheint Expertise nicht so leicht durch KI ersetzbar zu sein, was wiederum für erfahrene, auch ältere Mitarbeiter spricht. Diese sollten natürlich Künstliche Intelligenz nutzen und nicht ablehnen.

Weiterhin sind es ja gerade junge Menschen, die in ihren Jobs mit Digitalisierung und auch mit Künstlicher Intelligenz arbeiten möchten. Die Innovation „Künstliche Intelligenz“ kann anhand der genannten Effekte durchaus als reflexiv angesehen werden. Siehe dazu auch  Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

CAIRNE: Non-Profit Organisation mit einer europäischen Perspektive auf Künstliche Intelligenz

Screenshot von der Website https://cairne.eu/

Die viele Informationen zu Künstlicher Intelligenz (KI, AI: Artificial Intelligence) sollen in den meisten Fällen eine bestimmte Blickrichtung auf das Thema herausstellen. In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich werden beispielsweise die drei großen Perspektiven auf die digitale Souveränität dargestellt.

In Europa scheint es einen – im Vergleich zu den USA und China – etwas anderen Ansatz zu geben, der einerseits die Rechte einzelner Bürger und auch von Organisationen berücksichtigt, und nicht so sehr technologiezentriert, sondern human-centred ist. Die europäische Non-Profit Organisationen CAIRNE (Confederation of Laboratories for Artificial Intelligence Research in Europe) möchte mit ihrer Arbeit folgende Punkte erreichen:

> „bring widespread and significant benefits to citizens, industry and society, in the form of alignment with shared values and of the global competitiveness of our economies;
> make major contributions to solving the grand challenges of our time, notably climate change, health and inequality;
> bring into existence AI systems that satisfy the seven trustworthiness criteria defined by the European Union;
> bring critical technology and infrastructure under European democratic control“
CAIRNE and euROBOTICS (2023): Moonshot in Artificial Intelligence: Trustworthy, Multicultural Generative AI Systems for Safe Physical Interaction with the Real World | PDF.

Den oben erwähnten Human-Centered-Ansatz wird nicht nur in Europa immer stärker favorisiert. Auch Japan hat in seiner Vision Society 5.0 auf diesen Schwerpunkt bei der Entwicklung von KI-Systemen hingewiesen:

“By comparison, Society 5.0 is A human-centered society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Menschliches Verhalten operiert mit einem speed limit von 10 bits/s. Was bedeutet das?

Jede Sekunde prasseln auf uns eine Unmenge an Daten ein. Zheng und Meister (2024) vom California Institute of Technology haben in ihrem Paper The Unbearable Slowness of Being: Why do we live at 10 bits/s? (PDF) dazu analysiert, dass der gesamte menschliche Körper eine Datenmenge von 109 bits/s absorbieren kann. Die Autoren nennen das „outer brain„.

Dabei stellt sich natürlich gleich die Frage, ob ein Mensch diese Menge auch zeitgleich verarbeiten kann. Die Antwort: Das ist nicht der Fall. Um existieren/leben zu können, müssen wir viele der äußeren Reize / Daten ausblenden. Doch wie viele Daten benötigen wir Menschen bei unserem Verhalten („inner brain„, ebd.) pro Sekunde? Auch hier geben die Autoren eine deutliche Antwort:

„Human behaviors, including motor function, perception, and cognition, operate at a speed limit of 10 bits/s. At the same time, single neurons can transmit information at that same rate or faster. Furthermore, some portions of our brain, such as the peripheral sensory regions, clearly process information dramatically faster“ (Zheng und Meister 2024).

Die Evolution hat gezeigt, dass es für den Menschen von Vorteil ist, gegenüber der absorbierbaren Datenflut (outer brain) ein innerliches Regulativ (inner brain) zu haben. Wir haben in der Vergangenheit auch unsere gesamte Infrastruktur (Straßen, Brücken usw.) auf die 10 bits/s ausgerichtet. Was ist, wenn wir die Infrastruktur auf die neuen technologischen Möglichkeiten ausrichten? Ist der Mensch dann darin eher ein Störfaktor?

Meines Erachtens sollten wir nicht immer versuchen, den Menschen an die neuen technologischen Möglichkeiten anzupassen, sondern die technologischen Möglichkeiten stärker an die menschlichen (inkl. Umwelt) Erfordernisse adaptieren. Aktuell geht die weltweite Entwicklung immer noch zu stark von der Technologie und den damit verbundenen „Märkten“ aus. Eine mögliche Alternative sehe ich in der von Japan vor Jahren schon propagierten Society 5.0.

Wie hängen Wandel, Energie und Prozess zusammen?

Image by Michael Heck from Pixabay

In der heutigen Diskussion um technologische und gesellschaftliche Veränderungen kommt immer wieder der Begriff Wandel auf, der früher eher gemächlich war und heute als turbulent empfunden wird.

Es geht um den demographischen Wandel, den Klimawandel usw.. Der Begriff „Wandel“ wird in diesen Zusammenhängen oft negativ besetzt – dabei gibt es durchaus auch positive Seiten eines Wandels. Um es klarzustellen: Ich leugne nicht die wissenschaftlich belegten großen Veränderungen unseres Klimas. Dennoch bin ich auch jemand, der gerne möglichst viele Facetten eines Themas beleuchtet.

Wie kann man sich also dem Begriff „Wandel“ etwas unvoreingenommener nähern? Ich habe dazu einen Text gefunden, der das durchaus ermöglicht:

„Ein Prozess ist Bewegung oder naturwissenschaftlich ausgedrückt, eine „zeitliche Änderung des Zustandes eines physikalischen Systems“ (o.V., spektrum.de). Bewegung wiederum ist nur möglich durch Energie, insofern ist Bewegung ein Energieprozess. Um ein physikalisches System zu verändern, ein Ziel, ein Ergebnis, einen neuen Zustand oder Ort zu erreichen, muss ein Energieprozess ablaufen. In einem Energieprozess wird kontinuierlich eine Energieform in eine andere umgewandelt, insofern ist ein Prozess eine dauerhafte Energieumwandlung“ (Zangel 2024, in Koller et al. 2024: Die Zukunft der Grenzenlosen Unternehmung).

Wandel als einen Prozess der Energieumwandlung zu verstehen, der schon seit dem Urknall erfolgt, ist eine interessante Perspektive, die zeigt, dass so ein Wandel nicht zu stoppen ist. Das heißt allerdings nicht, dass man nichts machen kann.

Diese (Energie-) Umwandlung zum Wohle aller zu beeinflussen, sollte unser aller Anspruch sein. Dazu kann jeder Einzelne einen Teil beitragen – beispielsweise auch, indem wir von anderen lernen. Japan hat mit der Society 5.0 ein erstes, aus meiner Sicht gutes, Zielbild für eine menschenzentrierte Gesellschaft skizziert, in der die neuen Technologien eine wichtige Rolle spielen. Mit diesem Ansatz grenzt sich Society 5.0 von der Industry 5.0 ab.

Society 5.0 und Mass Customization

Über Society 5.0 habe ich hier schon mehrfach geschrieben. Zu beachten ist, dass Society 5.0 sich von dem im deutschsprachigen Raum geläufigen Industry 4.0 oder Industry 5.0 unterscheidet. Siehe dazu Worin unterscheiden sich Industry 5.0 und Society 5.0?

Bei Society 5.0 steht der Mensch im Mittelpunkt, wobei die technologischen Möglichkeiten helfen sollen, die vielfältigen / multiplen komplexen Probleme zu lösen.

Das Konzept Society 5.0 wurde 2016 in Japan grob skizziert und 2019 konzeptionell veröffentlicht. Es ist erstaunlich, dass sich auch die Europäische Union daran orientieren will. Ein wichtiger Bestandteil der Society 5.0 ist auch Mass Customization, ein Konzept, das vor mehr als 30 Jahren von B. Joseph Pine skizziert wurde. Siehe dazu auch Freund, R. (2009): Kundenindividuelle Massenproduktion (PDF).

Ich finde es deshalb erstaunlich, da Mass Customization auf den jeweiligen Konferenzen immer wieder als Lösungsansatz dargestellt wurde, allerdings in vielen Bereichen nicht wirklich zu einem Durchbruch geführt hat. Die Hybride Wettbewerbsstrategie hat sich über die vielfältigen Konfiguratoren nur indirekt durchgesetzt. Was Mass Customization and Personalization im Kern bedeutet, ist vielen Organisationen immer noch nicht so ganz klar. Das sollte es aber, denn Mass Customization ist ein Eckpfeiler von Society 5.0:

Japan’s National Institute of Advanced Industrial Science and Technology report lists the following six topics as basic technologies for realizing Society 5.0:
– Technology for enhancing human capabilities, fostering sensitivity, and enabling control within Cyber-Physical Systems (CPS).
– AI hardware technology and AI application systems.
– Self-developing security technology for AI applications.
– Highly efficient network technology along with advanced information input and output devices.
– Next-generation manufacturing system technology designed to facilitate mass customization.
– New measurement technology tailored for digital manufacturing processes.
Quelle: Wikipedia

Worin unterscheiden sich Industry 5.0 und Society 5.0?

Quelle: https://www8.cao.go.jp/cstp/english/society5_0/index.html (Abgerufen am 01.11.2024)

Wir haben uns an die verschiedenen Beschreibungen industriellen Fortschritts gewöhnt, indem wir beispielsweise von Industry 4.0, oder jetzt auch Industry 5.0 sprechen. Was ist darunter zu verstehen?

Industry 5.0 recognises the power of industry to achieve societal goals beyond jobs and growth to become a resilient provider of prosperity by making production respect the boundaries of our planet and placing the well-being of the industry worker at the centre of the production process” (Breque et al., 2021:14, zitiert in Nielsen & Brix 2023).

Es wird deutlich, dass hier ein menschenzentrierter Ansatz zu erkennen ist, der allerdings auf den Industriearbeiter fokussiert ist. Erweiternd hat sich ein Gedanke etabliert, der schon vor einigen Jahren in Japan mit dem Begriff Society 5.0 beschrieben wurde, und in der Zwischenzeit auch in Europa Beachtung findet.

„By comparison, Society 5.0 is “A human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Auch hier geht es um einen menschenzentrierten Ansatz, der allerdings nicht auf den Industriearbeiter begrenzt ist, sondern alle Bürger generell mitnehmen will. Dabei sollen die konkreten Probleme der Menschen (endlich) gelöst werden, wobei die neuen Technologien eine große Bedeutung haben. Innovationen müssen letztendlich in diesem Zusammenhang auf soziale und gesellschaftliche Innovationen erweitert werden.

Nielsen und Brix (2023) beschreiben diese Zusammenhänge ausführlich und stellen ein entsprechendes Modell vor, das im Raum Aalborg (Dänemark) auch schon erfolgreich umgesetzt wurde. Interessant dabei ist, dass beide Autoren vorschlagen, den Weg zu einer Society 5.0 nicht Top-Down – also nur von den politischen EU-Gremien aus -sondern von „unten“ – also von den Bürgern aus – anzugehen. Daher nennen Nielsen und Brix dieses Vorgehensweise auch „bottom-up ‘society transition model’“.

Ich mag diesen Bottom-Up-Gedanken sehr, da es mit den Überlegungen von Eric von Hippel (Democratizing Innovation, Free Innovation) und den vielfältigen Open Source Initiativen zusammenpasst.