Digitale Souveränität: Welche Open Source Alternativen gibt es?

Open Source Alternativen (Ausschnitt). Quelle: https://digital-sovereignty.net/recommendations/product-recom

In den letzten Jahrzehnten haben wir uns an alle möglichen Tools gewöhnt. Dazu gehören z.B. alle Microsoft-, Google-, Meta-Produkte. Es fällt vielen Privatpersonen und Organisationen sehr schwer, sich aus dieser Abhängigkeit zu befreien (Pfadabhängigkeit). Dennoch merken in letzter Zeit viele Privatpersonen und Organisationen, dass es Zeit wird, Alternativen zu suchen.

Es stellt sich allerdings die Frage: Welche Open Source Alternativen gibt es?

Wer sich bisher mit dem Thema noch nicht wirklich auseinandergesetzt hat, wird über die von Prof. Wehners zusammengestellte Liste an Open Source Alternativen überrascht sein. In der Abbildung ist nur ein Ausschnitt zu sehen. Darin habe ich hervorgehoben (grün umrahmt), welche der genannten Tools wir selbst schon einsetzen. Bei den Videokonferenzen sollte noch das in NEXTCLOUD intergierte TALK mit aufgenommen werden.

Schauen Sie sich die Liste an und überlegen Sie, welche Alternative Sie einmal ausprobieren wollen. Bei Fragen können Sie uns ansprechen. Wir teilen Ihnen gerne unsere Erfahrungen mit.

Künstliche Intelligenz: Von der Produktentwicklung wieder (zurück) zur Prozessentwicklung?

Künstliche Intelligenz wird unseren individuellen Alltag, Unternehmen/Organisationen und letztendlich die gesamte Gesellschaft in verschiedenen Anwendungsformen immer stärker beeinflussen.

Dabei deutet sich in den Unternehmen/Organisationen eine interessante Entwicklung an.

Organisationen waren in den letzten 100 Jahren der Industrialisierung darauf fokussiert, ihre Prozesse (oftmals Routineprozesse) immer weiter zu optimieren, effektiver und effizienter zu machen. Diese Prozesslandschaften haben dann zu den bekannten Qualitätsmanagement-Systemen oder auch Projektmanagement-Systemen geführt. Gerade im Projektmanagement hat sich diese Vorgehensweise (Vorgehensmodelle) bei Projekten im Entwicklungsbereichen (Innovationen) zu einer Arbeitsform (Vorgehensmodell) entwickelt, die eher produktorientiert ist. Paradebeispiel dafür ist das Scrum-Framework mit den zu erzielenden Increments am Ende des Sprints oder das Minimum Viable Product (MVP), das wir aus dem Lean Start-up-Ansatz kennen.

Dieser Trend wird aktuell durch Künstliche Intelligenz scheinbar wieder umgekehrt. Wie kommt das?

Schauen wir uns einmal an, wie stark Künstliche Intelligenz den gesamten Lebenszyklus der Software-Entwicklung beeinflusst, so können wir erahnen, dass die Zyklen, in denen ein (Software-)Ergebnis (Increment, MVP) produziert werden kann, immer kürzer werden. Möglicherweise so kurz, dass es sich gar nicht mehr lohnt, den gesamten Scrum-Zyklus mit den vorgesehenen Artefakten und Events durchzuführen, und es zu einem kontinuierlichen Fluss an Ergebnissen (Produkten) kommt. In meinem Beitrag Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban? hatte ich das schon einmal angedeutet. Es freut mich daher, dass der Gedanke durchaus auch von anderen Autoren vertreten wird:

“Der Fokus essenzieller Design- und Architekturentscheidungen verschiebt sich in der Digitalisierung genau wie einst in der Industrialisierung von der Produktentwicklung hin zur Prozessentwicklung. Hier schließt sich auch der Kreis zu Scrum, denn zwei der wichtigsten Scrum-Pioniere Hirotaka Takeuchiund Ikujiro Nonaka kamen ursprünglich aus industriellen Produktions- und Innovationskontexten, nicht aus der Softwareentwicklung” (Immich, T.(2025): KI-Agenten Teil 2: Von der Produktentwicklung zur Prozessoptimierung, in Heise Online vom 27.05.2025).

Pfadabhängigkeit etwas genauer betrachtet

Die Konstitution und Entwicklung von Pfaden (Schäcke 2006:31)

In mehreren Blogbeiträgen habe ich im Zusammenhang mit Innovationen den Begriff der Pfadabhängigkeit thematisiert. Siehe dazu “Pfadabhängigkeit” in Organisationen, Führt “Agilität” auch wieder zu einer Pfadabhängigkeit? , Wie hängen Nebenfolgen, Pfadabhängigkeit und Innovation zusammen?, Zu Kernkompetenzen und Pfadabhängigkeiten in der Automobilindustrie.

In allen Beiträgen liegt der Schwerpunkt darauf, Effizienz als das prägende Element zu betrachten, um zu entscheiden: Bleibe ich in dem gewohnten Pfad, oder wechsle ich in einen anderen Pfad?

Dass es auch einen anderen Blick auf Pfadabhängigkeit gibt, hat Jürgen Beyer in seinem Artikel ausführlich dargestellt. Dabei stellt er fest, dass Pfadabhängigkeit nicht gleich Pfadabhängigkeit ist.

Beyer, J. (2005): Pfadabhängigkeit ist nicht gleich Pfadabhängigkeit! Wider den impliziten Konservatismus eines gängigen Konzepts, in Zeitschrift für Soziologie, Jg. 34, Heft 1, Februar 2005, S. 5–21 | PDF

Der Autor zeichnet zunächst den Verlauf der wissenschaftlichen Diskussionen zum Thema nach und zeigt, dass sich die Pfadabhängigkeits-These durchaus verändert und weiterentwickelt hat. Dabei wird deutlich, dass die für die These herangezogenen Stabilitätsgründe (wie “”increasing returns“, Komplementaritäten, Machtkonstellationen oder andere Grundlagen der Pfadabhängigkeit” ebd.) durchaus anfällig für einen grundlegenden Wandel sein können.

Das deutet wiederum darauf hin, dass es nach einem “lock-in” bei der Pfadabhängigkeit doch auch dazu kommen kann, dass “Akteure jeweils einen Schlüssel finden können, um das Schloss wieder aufzuschließen” (ebd.).

Künstliche Intelligenz: Ein gesellschaftlicher Bifurkationspunkt mit der Chance für einen Pfadwechsel?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

In unserer heutigen Welt, in der alles und jeder miteinander vernetzt ist, ist die Komplexität in allen Systemen nicht nur Theorie, sondern hat auch für jeden Einzelnen praktische Auswirkungen. Dabei scheint es eine gewisse gesellschaftliche Ohnmacht gegenüber den vielfältigen globalen Problemen zu geben. Denn obwohl es Belege für diese Probleme gibt, wird nicht/kaum gehandelt. Siehe dazu z.B. Nassehi (2020) mit der entsprechenden Begründung aus der Systemtheorie.

In “Zeiten von Corona” allerdings haben wir deutlich erkennen können, dass es den jeweiligen Staaten durchaus gelungen ist, für die Menschen und deren Überleben zu handeln. Dabei wurde auf die Unternehmen und Finanzinstitutionen im Markt weniger Rücksicht genommen. Solche historischen Punkte können also Wendepunkte (Bifurkationspunkte) dafür sein, von bekannten Wegen – also einer Pfadabhängigkeit – abzuweichen, und neue Wege/Pfade zu gehen.

“In bestimmten Konstellationen aber, zu bestimmten Zeitpunkten im historischen Verlauf, die als geschichtliche „Bifurkationspunkte“ begriffen werden können, eröffnen sich plötzlich Chancen auf einen Pfadwechsel, weil aufgetretene Anomalien nicht mehr ignoriert werden können (vgl. Knöbl 2010; Goldstone 1998). Es handelt sich um Krisenmomente, in denen die Fortsetzung der institutionellen Operationen in Frage steht, in denen eben nicht klar ist, wie es weitergeht, weil die Prozessketten gerissen sind. An solchen Gabelungen erscheint es vielen Akteuren wünschenswert, auf den alten Pfad zurückzukehren und so schnell wie möglich die eingespielten Routinen wiederzubeleben. Es ist aber auch möglich, einen neuen Pfad einzuschlagen” (Rosa, H. Pfadabhängigkeit, Bifurkationspunkte und die Rolle der Soziologie. Ein soziologischer Deutungsversuch der Corona-Krise. Berlin J Soziol 30, 191–213 (2020). https://doi.org/10.1007/s11609-020-00418-2).

Stehen wir möglicherweise mit dem Aufkommen Künstlicher Intelligenz wieder vor so einem Wendepunkt, einem Bifurkationspunkt, der staatliche Organisationen dazu aufruft, ihre tradierten, marktorientierten Entscheidungen wieder mehr auf das Wohl der Menschen auszurichten? Siehe dazu auch

Der Strukturbruch zwischen einfacher und reflexiver Modernisierung

“Pfadabhängigkeit” in Organisationen

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Hybrides Projektmanagement: “Emergent Practice” und Bifurkationspunkte

Worin unterscheiden sich Industry 5.0 und Society 5.0?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung

High-level software development life cycle (McKinsey (2024): The gen AI skills revolution: Rethinking your talent strategy)

Wie in dem Beitrag von McKinsey (2024) ausführlich erläutert wird, beeinflusst Künstliche Intelligenz (GenAI) alle Schritte/Phasen der Softwareentwicklung. Drüber hinaus werden in Zukunft immer mehr KI-Agenten einzelne Tasks eigenständig übernehmen, oder sogar über Multi-Agenten-Systeme ganze Entwicklungsschritte.

Die Softwareentwicklung hat dazu beigetragen, dass Anwendungen der Künstlichen Intelligenz heute überhaupt möglich sind. Es kann allerdings sein, dass Künstliche Intelligenz viele Softwareentwickler und deren Unternehmen überflüssig macht.

Möglicherweise ist in Zukunft auch jeder Einzelne Mensch in der Lage, sich mit Künstlicher Intelligenz kleine erste Programme schreiben zu lassen – ohne dass Programmierkenntnisse erforderlich sind. Ganz im Sinne von Low Code, No Code und Open Source.

So eine Entwicklung kann als Reflexive Innovation bezeichnet werden: “Die Revolution frisst ihre eigenen Kinder” (Quelle). Siehe dazu ausführlicher Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Welche betrieblichen Probleme können durch ein modernes Wissensmanagement gelöst werden?

Nicht alles, was in Organisationen so passiert, wird vom Management beachtet. Doch gibt es immer wiederkehrende betriebliche Probleme, die dann doch in den Fokus des Managements rücken. Oft kommen entsprechende Impulse/Hinweise aus den betriebswirtschaftlichen Kennzahlen, den KPIs. Die folgenden Punkte stellen dabei keine Rangfolge dar:

– Project teams exhibit slow progress due to insufficient collaboration among individuals or business units
– Frequent reinvention of solutions due to inefficient information retrieval or lack of oversight
– High rate of specialist retirements
– Prolonged onboarding time for new employees
– Need for upskilling through cross-domain knowledge or information transfer
– Lack of comprehensive oversight for effective action Increasing complexity in process coordination due to insufficient communication between administrative units
– Customers struggle to find answers independently, leading to excessive reliance on human support
– Inefficient information retrieval
– High turnover of knowledge workers
Source: Kraus & Bornemann (2024)

Die Autoren argumentieren in ihrem Paper (Konferenzbeitrag), dass ein modernes Wissensmanagement dazu beitragen kann, die Aufmerksamkeit des Managements (C-Level) zu gewinnen, und dazu beiträgt, die genannten Probleme zu lösen / zu verbessern.

Siehe dazu Ein neuer Wissensbegriff und meine vielen Blogbeiträge zum Thema.

Perspektiven auf Innovation: Von “eng” zu “erweitert” bis gesellschaftlich “zielgerichtet”

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Der Blick auf Innovation ist immer noch sehr eng (narrow) und geprägt von dem Ansatz Schumpeters aus dem Jahr 1934. Dabei geht es bei Innovationen darum, vorwiegend technische Ideen zu kommerzialisieren, also für den Markt nutzbar zu machen. Die Gesellschaft war und ist dabei Empfänger der neuen Produkte und Dienstleistungen.

Eine etwas breitere (broader) Sicht auf Innovation erweitert den ursprünglichen Ansatz, indem nicht rein technologische, sondern auch Konzepte (Business Model Innovation), soziale Innovationen usw. hinzukommen.

In der Zwischenzeit geht man bei der Betrachtung von Innovation noch einen Schritt weiter und stellt den gesellschaftlichen Zweck (purposive) in den Mittelpunkt. Im Zusammenspiel zwischen Wissenschaft, Technologie und Innovationen soll es dadurch zu gesellschaftlichen Transformationen kommen.

“Within narrow understandings of innovation, in which innovation is defined as the commercialisation of research, emphasis is placed on the roles of science, academia, industry, and national governments in supporting scientific and technical knowledge. Society is frequently viewed as passively adopting innovations introduced by science and large corporations (Joly, 2019). Conversely, according to broad-based understandings, innovation encompasses the entire process of conceiving and actualising a novel concept or idea; it is not limited to technological advancements (Godin & Lane 2013). (…) Moreover, according to purposive understandings, innovation should be transformative in nature and result in sustainable change” (Nordling, N. 2024).

Es geht heute also darum, mit Innovationen Probleme in der Gesellschaft, zum Wohle (eigene Bemerkung) der Menschen und seiner Umwelt zu lösen. Siehe dazu auch Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wir sollten dazu kommen, Technologie – heute ist es die Künstliche Intelligenz – für die Gesellschaft einzusetzen, und nicht vorwiegend zum wirtschaftlichen Vorteil von einigen wenigen Tech-Konzernen, die die sozialen Folgen den Gesellschaften überlassen.

Dabei kommt es zu einer Friktion bei den beiden Geschwindigkeiten: Technik (KI) verändert sich in Sekunden, Gesellschaften – und mit ihnen das gesamte gesellschaftliche System – eher langsam. Wenn wir die Menschen mitnehmen wollen, sollte der Staat – und hier meine ich eher die Europäische Union – den Rahmen setzen, denn die Tech-Giganten werden sich nicht zurückhalten. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Hybrides Innovationsmanagement: Free Innovation und Producer Innovation

Source: The free innovation paradigm and the producer innovation paradigm. (von Hippel 2017)

Alles ist ja heute hybrid. Es gibt beispielsweise Hybrides Arbeiten, Hybrides Projektmanagement, Hybrides Wissensmanagement, und die Hybride Wettbewerbsstrategie Mass Customization. Das verwundert nicht wirklich, da es in der Reflexiven Modernisierung zu Entgrenzungen auf allen Ebenen der Gesellschaft kommt – so auch bei den Management-Prozessen. Management-Berater verkaufen alles jetzt als neue Entwicklung, doch ist diese schon sehr lange – beispielsweise in den Sozialwissenschaften – bekannt.

Den Run auf die Entgrenzung von Innovationsprozessen hat Henry Chesbrough (2003) mit Open Innovation ausgelöst (Innovation als Kontinuum zwischen Closed Innovation und Open Innovation). Sein Ansatz bezog sich dabei auf auf Innovationsprozesse in Organisationen, die nun langsam aber sicher angefangen haben, Wissen auch von Außen zu integrieren. In der Grafik ist das der untere große Pfeil (Producer Innovation Paradigm), mit dem Abschluss “Market diffusion”. Dieser auf Schumpeter zurückgehende Blick auf Innovation, und dessen Öffnung zeigt sich auch in den dazugehörenden Definitionen (Oslo Manual 2018) oder auch in den jeweiligen Statistiken, die eben Innovationen nur dann erfassen, wenn sie von Organisationen im Markt positioniert worden sind.

In den letzten mehr als 20 Jahren ist gerade von Eric von Hippel allerdings deutlich nachgewiesen worden, dass es auch viele Innovationen von einzelnen Personen gibt, die nicht zwingend im Markt, sondern beispielsweise innerhalb von interessierten Gruppen ausgetauscht werden (Free Innovation Paradigm). Dabei wird hier schon klar, dass solche Innovationen nach der Oslo-Definition gar keine Innovationen sind, und somit auch in keiner traditionellen Statistik vorkommen. In den verschiedenen Paper von Eric von Hippel allerdings schon. Siehe dazu ausführlicher Eric von Hippel (2005): Democratizing Innovation und Eric von Hippel (2017): Free Innovation.

In der Abbildung ist allerdings auch zu erkennen, dass es durchaus Sinn machen kann, nicht von einem Entweder-oder, sondern von einem Sowohl-als-auch zu sprechen. Beide Extrempositionen können sich an verschiedenen Stellen der jeweiligen Prozesse ergänzen, beispielsweise durch einen Innovation support vom Producer Innovation Paradigm zum Free Innovation Paradigm und umgekehrt durch Innovation Designs.

Ein so verstandenes Hybrides Innovationsmanagement, oder auch ein entsprechendes Innovations-Kontinuum, bieten gerade für Kleine und Mittlere Unternehmen (KMU) viele Chancen.

Nextcloud FLOW: Automatisieren von Abläufen

Eigener Screenshot

Viele persönliche, bzw. organisatorische Abläufe sind Routineprozesse, die sich häufig wiederholen. Sobald dazugehörende Unterlagen digital vorliegen, können diese mit Hilfe von definierten Abläufen automatisiert werden.

Auf unserem Server haben wir Nextcloud (Open Source) installiert, sodass alle Daten geschützt sind. Mit der App Nextcloud FLOW können wir auf alle Daten zugreifen, und einfache, oder auch etwas komplexere Abläufe automatisieren.

In der Abbildung ist beispielhaft zu sehen, dass in der linken Navigationsleiste “Ablauf”, also “Flow”, angeklickt wurde. In der rechten Hälfte ist zu erkennen, dass wir den Ablauf “PDF-Umwandlung” hinterlegt haben. Nun können wir anhand der verschiedenen Auswahlfelder bestimmen, unter welchen Bedingungen Dateien automatisiert in PDF umgewandelt werden können.

Das ist natürlich nur ein kleines und einfaches Beispiel für die Nutzung von Nextcloud FLOW, doch sind auch Anwendungen bei IKBD (Information, Kommunikation, Berichtswesen und Dokumentation) in Projekten denkbar, usw. usw. Den Möglichkeiten, sind fast keine Grenzen gesetzt.

Darüber hinaus kann es Sinn machen, auch noch den Nextcloud ASSISTENT oder sogar KI-Agenten zu nutzen – alles auf Open Source Basis, sodass alle Daten auf dem eigenen Server bleiben.

MCPC 2025 vom 09.-12. September in Siegen

Die MCPC-Konferenzreihe ist 2001 in Hong Kong gestartet – und ich habe daran teilgenommen. Dieses Event hat mich dazu motiviert, mich stärker mit dem Thema zu beschäftigen. In der Folge habe ich dann an vielen Weltkonferenzen teilgenommen und Paper vorgestellt. Ein Highlight war die Special Keynote auf der MCPC2015 in Montreal.

In Hong Kong 2001 ist damals bei mir auch die Idee gereift, eine eigene Konferenzreihe zu initiieren. Mit der Unterstützung vieler Kollegen konnte das auch erreicht werden. Seit 2004 gibt es alle 2 Jahre die MCP-CE, an der wir zuletzt 2024 teilgenommen haben.

Die nächste Weltkonferenz MCPC 2025 findet nun vom 09.-12. September in Siegen statt.

“The conference offers a setting for experts from academia, industry and research institutes alike to discuss and exchange the latest scientific contributions related to customized products and their associated business and production systems.” (Quelle: Call for Papers|PDF).

Siehe dazu auch

Konferenzen und Veröffentlichungen

MCP CENTRAL EUROPE AWARD