Wie hängen Nebenfolgen, Pfadabhängigkeit und Innovation zusammen?

Image by bertvthul from Pixabay

Ulrich Beck hat in seinen Überlegungen zu einer Risikogesellschaft, und letztendlich zur Reflexiven Modernisierung, darauf hingewiesen, dass die in der klassischen Risikobewertung wenig beachteten Nebenfolgen deutliche Wirkungen zeigen: „Nebenfolgen entwerten Kapital, zerstören Vertrauen, lassen Märkte zusammenbrechen…“ (Beck 1996:54, zitiert in Ortmann 2009:11). Ortmann wiederum sieht in der Verkettung von Nebenfolgen gefährliche Pfadabhängigkeiten.

Pfadabhängigkeit’ heißt ja: Prozesse sind nicht durch unsere Entscheidungen und Pläne zu determinieren, sondern nehmen ihren erst Schritt für Schritt näher bestimmten Verlauf in einem spezifischen Wechsel von Kontingenz und Notwendigkeit – in Folge von lauter intendierten und nicht-intendierten Effekten, schließlich in Folge von Selbstverstärkungseffekten, vor denen sich die Entscheidungsgewalt der Entscheider vollends blamiert (Ortmann 2009:11).

Interessant dabei ist, dass diese Theorie der Pfadabhängigkeit im Innovationsmanagement schon lange beachtet wird. Beispielsweise kann die Ausrichtung auf Kernkompetenzen solche (intendierten und nicht-intendierten) Nebenfolgen) haben und Innovationen blockieren.

Siehe dazu auch Freund, R.; Tisgkas, A. (2007): How to improve Customer Interaction through the concept of Multiple Competences. 4th Worldconference on Mass Customization and Personalization MCPC2007, 07.-10.10.2007, MIT Cambridge/Boston, USA (Veröffentlichungen).

Hybrid Work is the New Normal

In Zeiten von Corona ist Remote Work, also das Arbeiten nicht am Arbeitsplatz, sondern z.B. auch im Home Office, beliebt geworden. Immerhin braucht ein Arbeitnehmer nicht zum Arbeitsplatz hin und zurück zu pendeln, und spart somit Lebenszeit. Der Arbeitgeber spart dadurch Bürofläche, was scheinbar für alle eine Win-Win-Situation darstellt.

In der Zwischenzeit melden sich allerdings auch immer stärker kritische Stimmen: 5 Dinge, die an Remote Work nerven. Letztendlich weist auch das Whitepaper Die Arbeit der Zukunft ist Remote (PDF) auf den Seiten 5ff. darauf hin, dass es nicht nur die beiden Pole “Arbeiten am Arbeitsplatz” oder “Remote arbeiten”, sondern viele verschiedene Mischformen gibt, die als Hybrides Arbeiten bezeichnet werden können.

In dem Artikel Hybrid Work Is the New Remote Work der Boston Consulting Group vom 22.09.2020 wird aufgezeigt, was das heisst: “Hybrid work models, done right, will allow organizations to better recruit talent, achieve innovation, and create value for all stakeholders. By acting boldly now, they can define a future of work that is more flexible, digital, and purposeful”.

Hybride Arbeitsmodelle ermöglichen es Personen, Teams, Organisationen und Netzwerke, Ungewissheit und Unsicherheit zu bewältigen. Analysieren Sie, welche Tätigkeiten gut remote, und welche eher kollaborativ im persönlichen Kontakt im Unternehmensumfeld bearbeitet werden können/sollten. Die Diskussion darüber wird wertvolle Ergebnisse bringen, und zu ihrem persönlichen Modell des hybriden Arbeitens führen. Dabei sollten immer wieder die neuen Arbeits-Anforderungen und die neuen technischen Möglichkeiten überprüft, und das hybride Arbeiten angepasst werden – möglichst in kurzen Zyklen und iterativ. Siehe dazu auch Von hybriden Produkten über hybride Wertschöpfung zur hybriden Wettbewerbsstrategie.

Gedanken zu einfachen Problemen und Standardisierungen

Image by Tammy Duggan-Herd from Pixabay

In der heutigen Diskussion um das “Management” geht es oft um das “Management von Unsicherheit/Ungewissheit”. In Organisationen gibt es allerdings auch einfache Probleme, die tagtäglich zu lösen sind. Ein Ansatz dafür sind Standardisierungen mit entsprechenden Entscheidungsfindungen.

Bei einfachen Problemen mit standardisierten Lösungswegen sind Entscheidungsfindungen eher unkompliziert. Dies darf jedoch nicht darüber hinwegtäuschen, dass Standardisierungen an sich nicht gleichbedeutend sind mit perfekter Information und Rationalität. Standardisierungen reduzieren ohne Zweifel Komplexität und befähigen somit zu „eindeutigen“ Handlungen. Gerade durch diese Komplexitätsreduktion klammern Standardisierungen jedoch einen Teil der Umweltrealität aus, sie können daher nicht ohne weiteres den Anspruch erheben, umfassende und in diesem Sinne perfekt rationale Praxis zu erzeugen. Im Gegenteil existieren viele Standardisierungen, weil es eben keine „bessere“ Möglichkeit der Prozessierung von Problemen gibt (Neumer 2009:8, Fußnote 6).

Wenn es also schon bei einfachen Problemlösung (sps: simple problem solving) keine Eindeutigkeit gibt, wie sieht es dann erst aus, wenn es um komplexe Problemlösungen (cps: complex problem solving) geht? Wenn wir also Standardisierungen als eine “bessere” – und nicht als perfekte Möglichkeit – für einfache Problemlösungen anerkennen, so wird deutlich, dass es zwischen den beiden Polen (sps-cps) ein Kontinuum der Problemlösungsmöglichkeiten gibt, das unternehmensspezifisch anzupassen ist.

Erste Schritte in diese Richtung zeigen die vielen Hybrid-Ansätze auf, die sich im Management immer stärker als pragmatische Alternative etablieren. Solche Themen besprechen wir auch in dem von uns entwickelten Blended Learning Lehrgang Projektmanager/in Agil (IHK). Informationen dazu finden Sie auf unserer Lernplattform.

Warum sollten wir das In-Beziehungen-Denken neu lernen?

Image by Gordon Johnson from Pixabay

Ein gutes Beispiel dafür, was in komplexen Systemen passiert ist das Gehirn, da es das das komplexeste und leistungsfähigste Organ ist, das wir kennen.

Und diese Leistungsfähigkeit liegt – nach allem, was wir bislang aus der Hirnforschung wissen – nicht zuletzt daran, dass die Verknüpfungen wichtiger als die Teile sind. Das Gehirn funktioniert, weil etwas zwischen den Neuronen passiert – elektrische und chemische, möglicherweise auch rhythmische Verbindungen, Vernetzungen, Beziehungen. Es existiert keine zentrale Instanz, (…) (Mutius 2004:27).

Es erscheint also in komplexen Systemen wie Gesellschaften, Märkten und Organisationen wichtig zu sein, auf „Muster, die verbinden“ (Gregory Bateson) zu achten. Neu zu lernen wäre also das In-Beziehungen-Denken (Mutius 2004:17), was uns nicht leicht fällt, da wir es seit dem 18. Jahrhindert gewohnt sind, von stetigem Fortschritt, Beherrschbarkeit der Natur usw. auszugehen (Einfache Modernisierung). Dieses Mindset zu ändern ist in der heutigen Reflexiven Modernisierung die Aufgabe in allen Bereichen unserer Gesellschaft.

Diese soziologisch seit Jahren gut beschriebene Situation mit ihren Auswirkungen der Kontingenz, der Entgrenzungen, der stärkeren Selbstorganisation usw. usw. wird von betriebswirtschaftlich ausgerichteten Marktteilnehmern oft genutzt, um Geschäfte zu machen. Dabei wird allerdings kaum – oder gar nicht – auf die vielfältigen Vorarbeiten aus der Soziologie eingegangen. Auch hier wäre ein In-Beziehungen-denken angebracht.

Growth Mindset, Agilität und Multiple Intelligenzen

Image by Free-Photos from Pixabay

Im Zusammenhang mit der Transformation/Transitionen von traditionellen Organisationen zu Agilen Organisationen wird immer wieder das “Agile Mindset” hervorgehoben. Hans-Gerd Serevatius hat 2018 dazu Wege zu einem agilen Mindset beschrieben. Darin definiert er das agile Mindset als “bewegliche Denkweise eines Menschen, die auch sein Verhalten prägt.”. Diese Denkweise kann als relativ stabil oder als veränderbar angenommen werden.

Carol Dweck (2006) beschreibt diese Zusammenhänge als Fixed Mindset oder Growth Mindset. Ein Fixed Mindset geht davon aus, dass Kreativität, Intelligenz und Talent unveränderbar sind.

Wie wichtig es ist, dass die an der Förderung des Lernens Beteiligten nicht an die Konstanz, sondern stattdessen an die Veränderbarkeit der Intelligenz glaubten, hat Carol Dweck (1986, 1990) in zahlreichen Untersuchungen überzeugend belegt (Mietzel 2003:253).

Gerade in einem VUCA-Umfeld ist es wichtig, von einem Growth Mindset auszugehen, bei dem Kreativität, Intelligenz und Talent veränderbar sind. Interessant ist in diesem Zusammehnag, dass In dem Artikel Bokas, A.; Rock, R. (2016): Changing the Mindset of Education: Every Learner is Unique wird ein Zusammenhang hergestellt, zwischen dem Growth Mindset und der Theorie der Multiplen Intelligenzen von Howard Gardner.

Die formale Organisation verkennt ihre Funktion als Struktur eines großen Sozialsystems

Das Umfeld von Organisationen hat sich in den letzten 150 Jahren deutlich verändert, doch strukturieren gerade große Organisationen sich immer noch so, als könnten komplexe Problemlösungprozesse in formalen Organisationen abgebildet werden. Die formale Organisation verkennt dabei allerdings einen wichtigen Aspekt.

Es gehört zur Logik der formalen Organisation, dass sie keine Widersprüche anerkennt. Ihre allgemeinen Regeln erheben den Anspruch, in jeder einzelnen Situation verbindlich zu sein. Was vorgeschrieben ist, soll so ausgeführt werden, wie es vorgeschrieben ist. (…) Diese Auffassung versteht die formale Organisation als ein Netz von Handlungsvorschriften, die möglichst getreu ins Handeln übertragen werden müssen; sie verkennt ihre Funktion als Struktur eines großen Sozialsystems (Luhmann 1999:297-298).

Diese Erkenntnis hat weitreichende Folgen: Beispielsweise ist damit die Methapher des “Unternehmens als Maschine” nicht mehr angemessen. Auch Mitarbeiter als “Zahnräder” zu beschreiben ist nicht mehr angebracht – wird allerdings immer noch verwendet. Darüber hinaus ist die allgemeine Sicht auf die “Berechenbarkeit von allem” eher hinderlich, zukunftsorientiert zu arbeiten. Diese Arten der Fremdorganisation von Arbeit werden nun immer mehr abgelöst von der Selbstorganisation des Arbeitshandelns abgelöst (Agile Ansätze). Die Organisation als “komplexen Sozialsystems” hat eine Passung zur Lebenswirklichkeit, mit weitreichenden Veränderungen. Komplexe Sozialsysteme zu verstehen, gehört bisher noch nicht zu den Kernkompetenzen von Unternehmen…

Emotionale Intelligenz: Ursprung und der Bezug zu Multiplen Intelligenzen

Image by StockSnap from Pixabay

Wenn es um Emotionale Intelligenz geht, wird häufig Daniel Goleman genannt, der dieses Konstrukt bekannt gemacht hat. Dabei geht leider oft verloren, dass es John D. Mayer und Peter Salovey waren, die schon 1990 beschrieben haben, was sie unter Emotionaler Intelligenz verstehen.

“Emotional intelligence is a type of sociali ntelligence that involves the ability to monitor one’s own and others’ emotions to discriminate among them, and to use the information to guide one’s thinking and actions (Salovey & Mayer 1990)”, zitiert in Mayer/Salovay 1993, p. 433.

Interessant dabei ist, dass beide Autoren erwähnen, dass sie statt Emotional Intelligence auch Emotional Competence hätten wählen können, doch haben sie sich bewusst für Emotional Intelligence entschiedenen, da sich Emotional Intelligence “overlaps with Gardner´s (1983) ´(intra) personal intelligence´ (ebd. p. 433).

The core capacity at work here is access to one’s own feeling life – one’s range of affects or emotions; the capacity instantly to effect discriminations amongt these feelings and eventually, to label them, to enmesh them in symbolic codes, to draw upon them as a means of undentanding and guiding one’s behavior. In its most primitive form, the intrapenonal intelligence amounts to little more than the capacity to distinguish a feeling of pleasure from one of pain (…). At its most advanced level, intrapersonal knowledge allows one to detect and to symbolize complex and highly differentiated set of feelings (…) to attain a deep knowledge of (…) feeling life (ebd. p. 239).

Die Anlehnung an Gardner´s Theorie der Multiplen Intelligenzen ist bemerkenswert, und auch der Bezug zum Begriff “Competence”. Beide Perspektiven habe ich in meinem Buch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe und Organisation weiter analysiert und in ein Gesamtkonzept überführt.

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Image by Gordon Johnson from Pixabay

Wenn alles nicht so einfach ist, also alles miteinander vernetzt ist, es Rückkopplungen gibt, und wir in diesem Sinne von einem komplexen sozialen System sprechen können, kommt es auch darauf an, die Phasenübergänge (Bifurkationspunkte) zu kennen. Doch, wie können wir uns diese Situation vorstellen, bzw. sogar damit umgehen?

Phasenübergänge führen fern des thermischen Gleichgewichts zu Emergenz und Selbstorganisation von Ordnung wachsender Komplexität. Allgemein können durch zufällige Wechselwirkungen der Systemelemente auf der Mikroebene neue Strukturen auf der Makroebene entstehen, die durch die Mikrozustände der Elemente nicht erklärbar sind. Wenige instabile Systemelemente geraten an den Instabilitätspunkten in starke Schwingungen, die schließlich auch die Mehrzahl der stabilen Systemelemente mitreißen. Sie zwingen ihnen ihr Verhalten auf oder – mit den Worten von Hermann Haken – „versklaven“ sie. Dadurch kommt es zu makroskopischen Veränderungen mit Ordnungs- und Musterbildungen. Es genügt also, das Verhalten der wenigen instabilen Systemelemente zu erkennen, um den Entwicklungstrend des gesamten Systems und seine makroskopischen Muster zu bestimmen. Die Größen, mit denen das Verteilungsmuster der Mikrozustände eines Systems charakterisiert wird, heißen nach dem russischen Physiker Lew D. Landau „Ordnungsparameter“ (Mainzer 2008:43-44).

Um das Gesamtsystem zu steuern, reicht es also aus, sich um die wenigen instabilen Systemelemente zu kümmern, um makroskopische Muster zu bestimmen. Es ist also nicht erforderlich alle Daten/Informationen im Sinne von Vollständigkeit vorliegen zu haben – was sowieso nicht möglich ist (Blogbeitrag). Weniger ist hier mehr. Entscheidend sind angemessene Maßnahmen an den richtigen Stellen. Aktuell habe ich eher den Eindruck, dass viele Unternehmen einem Datenfetischismus hinterherrennen, und die Chancen einer angemessenen Systemsteuerung nicht erkennen.

Welchen Bezug gibt es zwischen Kompetenz und Performanz?

Image by Sasin Tipchai from Pixabay

Wenn es um die Bewältigung komplexer Probleme geht, kommt der Kompetenzbegriff ins Spiel, der nach Erpenbeck/Heyse Kompetenz als Selbstorganisationsdisposition aufzufassen ist. Etwas vereinfacht ausgedrückt ist Selbstorganisation eine “Strukturbildung von selbst” (Heyse/Erpenbeck 1997:29). Kompetenz stellt somit eine Art Vermögen dar, das noch im Kontext realisiert werden muss. Der Komplementärbegriff zu “Kompetenz” ist dabei “Performanz”, deren Bezug zueinander zunächst in der Linguistik durch Chomsky thematisiert wurde.

“Kompetenz“ und „Performanz“ sind dieser linguistischen Tradition zufolge bekanntlich als Komplementärbegriffe zu begreifen. Kompetenz meint hier „das Befolgen von Regeln oder Gesetzmäßigkeiten der Kombinatorik auf der Basis einer kalkulierbaren Zahl von Elementen“, während unter Performanz „die konkrete Realisierung von Ausdrucksmitteln und Formen in einer bestimmten Situation durch individuelle Akzente“ zu verstehen ist, allerdings eben die „Realisierung systemisch angelegter (Tiefen-)Strukturen“ (Soeffner 2003: 663) (Pfadenhauer 2010:159).

Siehe dazu auch Dresselhaus, G. (1979): Langue/Parole und Kompetenz/Performanz und Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Was sind eigentlich mögliche Aufgabengebiete der Künstlichen Intelligenz?

Group of people with devices in hands working together as symbol of networking and communication

Die Geburtsstunde von “Künstlicher Intelligenz” geht auf einen Konferenzbeitrag von McCarthy im Jahr 1955 zurück. In der Zwischenzeit gibt es durch die vielen neuen technischen Möglichkeiten zwar immer wieder Definitionsversuche, doch immer noch keine einheitliche und anerkannte Definition. Was allerdings klar erscheint sind die verschiedenen Aufgabengebiete, die für eine Künstliche Intelligenz geeignet erscheinen. Russell und Norvig unterscheiden hier acht Aufgabengebiete (vgl. Russell und Norvig 2012; Peissner et al. 2019), zitiert in Fraunhofer IAO 2020:11-12):

  • Lernen
  • Problemlösung durch Suchen
  • Planen
  • Robotik
  • Entscheidung
  • Wissensrepräsentation
  • Wahrnehmung
  • Spracherkennung

Anhand dieser Auflistung wird deutlich, dass Künstliche Intelligenz viele Tätigkeiten in unserem gesellschaftlichen und wirtschaftlichen Leben beeinflussen kann. Es geht hier allerdings nicht immer um komplette Jobs, die infrage gestellt werden, sondern auch um Tätigkeitsportfolios, die in einzelnen Jobs oder in Prozessketten von KI profitieren können. Hier ein Beispiel:

Populär wurden in jüngster Zeit Anwendungen wie beispielsweise KI-gestützte »Chatbots«. Dies sind Programme, die eine Konversation mit Nutzern führen können. Social Chatbots agieren in sozialen Netzwerken wie Facebook und Twitter (vgl. Edwards 2016). Anwendungsgebiete sind u.a. Bestellungen (z.B. Pizza-Service), Antworten auf Kundenanfragen zu Prozessen (Paketdienste) und Bearbeitung von Beschwerden (Fraunhofer IAO 2020:13).