Menschliche Intelligenz und Künstliche Intelligenz: Ein Idealszenario der Arbeitsteilung

Künstliche Intelligenz durchdringt alle Bereiche der Gesellschaft, und somit auch die Arbeitswelt. Für die Arbeitswelt hat Künstliche Intelligenz insofern starke Auswirkungen, als dass repetitive oder auch Routineaufgaben wohl als erstes durch leistungsfähige KI-Anwendungen ersetzt werden. Dadurch können sich wiederum Menschen mit ihren Potenzialen auf komplexere Problemlösungen konzentrieren. Ob das ein Vorteil oder Nachteil ist, liegt wie immer an der Perspektive. Der folgende Abschnitt beschreibt dazu ein Idealszenario.

“Die Maschine nimmt uns die komplizierten, berechenbaren (und oft langweiligen) Routineaufgaben entweder komplett ab oder liefert die passende Zuarbeit für weitere Arbeitsschritte und Entscheidungen. Dadurch wird der Fachkräftemangel gelindert und Menschen werden von repetitiven Tätigkeiten entlastet. Sie können sich dadurch den Aufgaben zuwenden, die auf Kreativität, Empathie, Kontextualisierung in volatilem Umfeld sowie auf zwischenmenschliche Interaktion angewiesen sind. Die Trennung von Kopf, Hand und Herz – wie sie die Arbeit der letzten 100 Jahre vorantrieb – kann so rückgängig gemacht oder verringert werden. Menschen können im Idealfall mehr schöpferisch und nach persönlichen Neigungen wirken. Sie können ihr Potenzial entfalten und zur Verfügung stellen” (Hertling, S. (2024), in RKW-Magazin 1/2024).

Der Artikel thematisiert in seiner Überschrift auch auf Menschliche Intelligenz, fokussiert im Text allerdings sehr stark auf die Künstliche Intelligenz. Den Begriff Menschliche Intelligenz thematisiert der Autor leider nur indirekt, indem er Begriffe wie “Empathie”, “Kreativität“, “zwischenmenschliche Interaktionen” oder auch “Skills” verwendet. Unklar bleibt, von welchem Intelligenzverständnis hier ausgegangen wird. Ist es die Perspektive eines Intelligenz-Quotienten (IQ), oder die Perspektive einer Emotionalen Intelligenz oder aber die Perspektive von Multiplen Intelligenzen nach Howard Gardner? Erst durch diese Klärung würde ein “in-Beziehung-setzen” von Menschlicher Intelligenz und Künstlicher Intelligenz Sinn machen. Erste Hinweise auf ein angemessenes Intelligenz-Konstrukt habe ich bei Funke gefunden:

Funke (2006) hat dazu einen ausführlichen Beitrag zum ersten Intelligenztest (PDF) geschrieben. Auf Seite 38 steht: “Inhaltlich hat sich das Intelligenzkonzept in den letzten 100 Jahren ausdifferenziert (vgl. Funke u. Vatterodt-Plünnecke 2004): An der Stelle einer einzigen Intelligenzdimension (´general intelligence´, g-Faktor) ist heute die Konzeption Multipler Intelligenzen im Sinne unterschiedlicher Teilkompetenzen (z.B. logisches Schlussfolgern, verbale Intelligenz, kreatives Problemlösen, emotionale Kompetenz, Körperbeherrschung) getreten, für die jeweils andere Erfassungsinstrumente benötigt werden.”

Projektmanagement: Nudging zur Verbesserung der Entscheidungsfindung nutzen

© pixabay/magnetme

Manchmal benötigt man einen kleinen Schubs oder Denkanstoß, um eine Entscheidung zu treffen. Dieser Schubs (Nudge) wird in der Marketing-Kommunikation beispielsweise auch mit Hilfe von Sozialen Netzwerken genutzt. Da das Nudging aus der Verhaltensökonomie kommt, kann es Verhalten in komplexen Entscheidungsprozessen unterstützen, und damit die Entscheidungsfindung verbessern.

“Nudges können als eine Architektur der Entscheidungsfindung definiert werden, die das Verhalten der Menschen vorhersehbar verändert, ohne Barrieren zu beseitigen oder wesentliche wirtschaftliche Anreize zu verändern. Diese Nudges sind kosten- und konflikteffiziente Techniken, die bestimmte Vorurteile ausnutzen, um die individuelle Entscheidungsfindung zu verbessern. Zu den allgemeinen Komponenten eines Nudge gehören: (1) ein Eingriff in die Mittel der Entscheidungsfindung und nicht in die Ziele; (2) die Freiheit, eine alternative Wahl zu treffen; und (3) eine Belohnungs- oder Kostenkomponente, die im Vergleich zu Handlungsalternativen gering ist. Die drei Haupttypen von Nudges untergliedern sich in: Entscheidungsinformationen, Entscheidungsstrukturen und Entscheidungshilfen. Diese repräsentieren verschiedene Aspekte des Entscheidungsprozesses. Nudges können die menschlichen Fähigkeiten in mindestens einer der drei Typologien verbessern” (Lächelt/Portillo/Braun (2024), in projektmanagementaktuell 2/2024).

Da es auch im Projektmanagement viele komplexe Entscheidungsprozesse gibt, kann Nudging in diesem Kontext genutzt werden – zukünftig auch mit Hilfe der Künstlichen Intelligenz.

Solche Zusammenhänge berücksichtigen wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Projektmanagement: Verzerrungen bei Entscheidungsprozessen

Ein Projekt ist durch die “Einmaligkeit der Bedingungen in ihrer Gesamtheit” gekennzeichnet (DIN 69901). Im einfachsten Fall können Projekte in der Stacey-Matrix positioniert werden, um das geeignete Vorgehensmodell (plangetrieben, hybrid, agil) abzuleiten. Daraus leitet sich wiederum ab, dass es in Projekten zu ambiguen Situationen kommt, in denen Entscheidungen getroffen werden müssen. Doch diese Entscheidungsprozesse sind oftmals durch Verzerrungen geprägt. Doch was ist eine Verzerrung?

“Als Verzerrung ist eine systematische Diskrepanz zwischen dem durchschnittlichen Urteil einer Person und einem wahren Wert oder einer Norm zu verstehen” (Lächelt/Portillo/Braun (2024) in Anlehnung an Gigerenzer (2018), in projektmanagementaktuell 2/2024).

Die folgende Übersicht zeigt, wie vielfältig diese Verzerrungen sein können (ebd.):

Strategische Falschdarstellung („strategic misrepresentation“)

Optimismusverzerrung („optimism bias“)

Eskalation des Commitments („escalation of commitment“)

Verfügbarkeitsverzerrung („availability bias“)

Prävalenzfehler („base rate fallacy“)

Einsichtsverzerrung („hindsight bias“)

Selbstüberschätzung („overconfidence bias“)

Verankerung („anchoring“)

Einzigartigkeitsverzerrung („uniqueness bias“)

Planungsirrtum („planning fallacy“)

Es ist für alle Projektbeteiligten wichtig, sich diese Verzerrungen klar zu machen, um dann Strategien zu entwickeln, diese zu bewältigen. Dazu bieten sich verhaltensbasierte oder auch KI-unterstütze Techniken an.

Solche Zusammenhänge berücksichtigen wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

“Fachkräftemangel”: Ist der jeweilige Bezugspunkt richtig?

Überall ist wieder zu hören und zu lesen, dass es einen Fachkräftemangel gibt. Ich formuliere es bewusst so, da diese Diskussion schon vor ca. 20 Jahren in der Merkel-Ära auf die politische Agenda gesetzt wurde. Überall wurden Arbeitskreise gebildet, um das Problem zu lösen. In dieser Zeit war ich beispielsweise selbst in einem Projektbeirat eingebunden. Da die Diskussionen in eine aus meiner Sicht falsche Richtung liefen, habe ich mich aus dem Projektbeirat allerdings wieder verabschiedet. Um meine Gedanken etwas konkreter zu begründen, möchte ich folgenden Text beispielhaft zitieren:

“Diesem würden nach Schätzungen des Deutschen Beamtenbundes (DBB) bei einer Beibehaltung der aktuellen Strukturen bereits heute circa 360.000 Fachkräfte fehlen; bis zum Jahr 2030 werden zudem circa 1,3 Millionen Beschäftigte des öffentlichen Dienstes in den Ruhestand gehen (Klenner 2022). Gerade im öffentlichen Dienst gäbe es allerdings grundsätzlich viele hochgradig standardisierbare Abläufe und Tätigkeiten, die automatisiert werden könnten (Achleitner, Schmidt et al. 2023). Eine digitalisierte öffentliche Verwaltung würde die Grundlage für KI-basierte Automatisierung im öffentlichen Dienst schaffen. Doch die meisten Behörden haben zum heutigen Zeitpunkt in wesentlichen Aspekten der Digitalisierung Aufholbedarf”(Schmidt, C. M., ; Stich, A.; Suchy, O. et al. (2024): KI für die Fachkräftesicherung nutzen. Lösungsansätze für Automatisierung, Teilhabe und Wissenstransfer).

Wenn wir also die aktuellen Strukturen beibehalten, ergeben sich die genannten Zahlen. Die aktuellen Strukturen sind also der Bezugspunkt für die Aussage, dass ein Mangel an Mitarbeitern bestehen könnte. Es ist eben alles relativ, um es in Anlehnung an Albert Einstein auf den Punkt zu bringen. Das ist auch beim Ärztemangel, beim Lehrermangel oder bei der Anzahl der Apotheken (“Apothekensterben”) usw. so, da der Bezug die aktuelle Struktur ist.

Was ist, wenn wir die Strukturen endlich einmal anpassen?

Beispielsweise, indem wir Verwaltungsstrukturen auf allen Ebenen (Land, Stadt, Gemeinde) anders organisieren, da wir durch die neuen technologischen Möglichkeiten auch neue Möglichkeiten haben, Abläufe für die Burger zu vereinfachen und zu verbessern, und damit Werte für die Allgemeinheit schaffen. Es macht keinen Sinn, bestehende, nicht mehr zeitgemäße Strukturen digital abzubilden. Das ist nicht nur bei der Öffentlichen Verwaltung so, sondern auch in vielen Unternehmen der Fall.

Da sich das Umfeld von Gesellschaften stark verändert – und auch in Zukunft verändern wird – ist es eine gesellschaftliche Aufgabe, mit diesen Veränderungen Schritt zu halten, und dabei möglichst alle Menschen mitzunehmen. Diese Entwicklungen sind nicht alle 20 Jahre “auf einmal da”, sondern sind eine permanente Aufgabe. Es macht keinen Sinn, Themen wie Fachkräfte, Klima, Demographie, Technologie etc. einzeln zu betrachten, da diese miteinander vernetzt sind.

Welchen Beitrag kann Künstliche Intelligenz (KI) zur Fachkräftesicherung leisten?

KI-Beiträge zur Fachkräftesicherung (Schmidt, C. M., ; Stich, A.; Suchy, O. et al. (2024))

Der Einsatz von Künstlicher Intelligenz (KI) ist – wie bei neuen Technologien immer – ambivalent. Es kommt darauf an, Künstliche Intelligenz (KI) zum Wohle von Gesellschaften zu nutzen und nicht nur für die Geschäftsmodelle einiger großer Unternehmen.

In dem Whitepaper Schmidt, C. M., ; Stich, A.; Suchy, O. et al. (2024): KI für die Fachkräftesicherung nutzen. Lösungsansätze für Automatisierung, Teilhabe und Wissenstransfer (PDF) wird herausgearbeitet, wie Künstliche Intelligenz zur Fachkräftesicherung beitragen kann. In dem Beitrag werden grundsätzlich drei Richtungen herausgestellt (Abbildung), die ich hier nur auszugsweise nennen kann.

Automatisierung und KI-basierte Assistenz: Die KI-basierte Automatisierung von Tätigkeiten kann den künftigen Bedarf an Fachkräften zum Teil mindern.

Integration in den Arbeitsmarkt: Das Reservoir an potenziellen Beschäftigten muss noch besser genutzt werden, um den konkreten Bedarf an Fachkräften zu erfüllen, und mit passenden Rahmenbedingungen in die Lage versetzt werden, am Arbeitsmarkt zu partizipieren.

Wissenstransfer in die Zukunft: KI kann beim Up-Skilling von Beschäftigten unterstützen. Wichtige Elemente können individualisierte Weiterbildungspläne, KI-basierter Wissenstransfer sowie lern- und erfahrungsförderliche Arbeitsumgebungen (mit und durch KI) sein.

Den Autoren ist selbstverständlich klar, dass Künstliche Intelligenz (KI) nicht alleine dafür sorgen kann, die anstehenden Veränderungen bei den Fachkräften abzufangen, dennoch kann Künstliche Intelligenz (KI) ein wichtiger Baustein sein.

Entscheidungen unter Unsicherheit: Schnelles Denken und Langsames Denken

Kahneman, D. (2014): Schnelles Denken, Langsames denken (2. Auflage) – Eigenes Foto (c) Dr. Robert Freund

Daniel Kahneman ist Professor für Psychologie und hat den Nobelpreis für Wirtschaft erhalten. In seinem ursprünglichen, englischsprachigen Buch Kahneman, D. (2011): Thinking Fast and Slow wurden viele wissenschaftliche Untersuchungen zusammengetragen, die u.a. zu dem Schluss führten, dass beim Denken zwei Systeme zusammenspielen. Das System 1 ist intuitiv, schnell und assoziativ, wohingegen das System 2 eher analytisch, langsam und aufmerksam ist. Die deutschsprachige Fassung Kahneman, D. (2014): Schnelles Denken, Langsames denken (2. Auflage) ist über 600 Seiten stark . Weiterhin stellt der Autor heraus, wie man unter Unsicherheit entscheidungsfähig, und daher handlungsfähig bleiben kann.

“Die zentrale Botschaft von „Schnelles Denken, Langsames Denken“ ist also, dass sowohl System 1 als auch System 2 benötigt werden, um unter Unsicherheit handlungsfähig zu sein. Es werden dort Erkenntnisse dargestellt, wie Intuition und Rationalität wirken und Handlungsempfehlungen gegeben, wie beide zu kombinieren sind, um stabile Entscheidungen herbeizuführen. – Im Angesicht von Unsicherheit benötigen wir Intuition und Rationalität” (Oswald/Köhler (2013): Schnelles und langsames Denken in Projekten, Teil 1, in projektmanagementaktuell 5/2013).

Es geht also nicht darum entweder das System 1 oder das System 2 zu bevorzugen, sondern (wie so oft) um das sinnvolle Zusammenwirken von Intuition (System 1) und Rationalität (System 2). Gerade bei der Projektarbeit (Planbasiert, Hybrid, Agil) ist das ein wichtiger Aspekt, da Projekte komplexe Systeme darstellen, in denen unter Unsicherheit Entscheidungen zu fällen sind.

Solche Zusammenhänge thematisieren wir auch in dem von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Von Mass Customization and Personalization zu KI-basierter Personalisierung von beruflicher Weiterbildung

Die moderne Arbeitswelt benötigt die permanente, individuelle Unterstützung von Lernprozessen in der jeweiligen beruflichen Domäne. Das Lernen im Prozess der Arbeit wird in Zukunft immer wichtiger im Rahmen der Kompetenzentwicklung auf der individuellen Ebene, der Teamebene, der organisationalen Ebene und der Netzwerkebene.

Eine mögliche konkrete Umsetzung kann durch die Modularisierung von Inhalten und eine entsprechende Konfiguration erfolgen. Beide hervorgehobenen Begriffe sind Bestandteile der Hybriden Wettbewerbsstrategie Mass Customization and Personalization – hier übertragen auf den Bereich der beruflichen Weiterbildung.

Es wundert mich immer noch, dass diese Erkenntnisse heute noch hervorgehoben werden. Beispielhaft möchte ich den im letzten Jahr veröffentlichten Leitfaden Pabst et al. (2023): Modularisierung berufsbezogener Weiterbildung (PDF) erwähnen, der Modulare Bildung als Antwort auf den Wandel der Arbeitswelt herausstellt.

In den letzten mehr als zwei Jahrzehnten habe ich – neben verschiedenen anderen Autoren – dazu mehrere Konferenzpaper veröffentlicht, von denen ich hier nur einige wenige beispielhaft nennen möchte (Siehe Veröffentlichungen):

Freund, R.; Piotrowski, M. (2005): Mass Customization and Personalization in Adult Education and Training. In: Shyam Sunder Kambhammettu (Ed.): Mass Customization. Concepts and Applications, Le Magnus University Press, Hyderabad, India.

Freund, R.; Piotrowski, M. (2003): Mass Customization and Personalization in Adult Education and Training. 2nd Worldcongress on Mass Customization and Personalization MCPC2003, Munich, Germany.

Freund, R. (2003): Mass Customization in Education and Training, ELearnChina 2003, Edinburgh, Scotland.

Freund, R. (2001): Mass Customization in der beruflichen Bildung. Vortrag an der PH Freiburg im Rahmen der Weiterbildung zum Experten für neue Lerntechnologien (FH).

Dabei kam es mir immer darauf an, Customization und Personalization zu unterscheiden. In den Diskussionen um die Modularisierung von Inhalten, beispielsweise durch sogenannte Learning Objects usw., sollte m.E. deutlicher gemacht werden, dass es nicht Objekte sind, die lernen, sondern Personen (Learning Persons). Um Lernen auf allen Ebenen selbstgesteuert und selbstorganisiert zu ermöglichen, können Technologien wie Konfiguratoren, und jetzt natürlich auch Künstliche Intelligenz (KI) helfen.

In dem Praxisleitfaden Fischer et al (2023): KI-basierte Personalisierung berufsbezogener Weiterbildung stellen die Autoren verschiedene Aspekten vor. Der Bezug zur Hybriden Wettbewerbsstrategie Mass Customization and Personalization wird leider nicht hergestellt – schade.


Projektmanagement: Bauchgefühl, Intelligenz und Erfahrung

Image by reallywellmadedesks from Pixabay

In mehreren Blogbeiträgen habe ich schon über das Phänomen des Bauchgefühls in komplexen Problemlösungsprozessen geschrieben. Siehe dazu beispielsweise Das “Bauchgefühl”: Eine unbewusste Intelligenz? oder auch Kann Intuition als Brücke zwischen impliziten und expliziten Wissen gesehen werden? Darüber hinaus habe ich auch etwas mit Verbindung zum Projektmanagement gefunden:

Bauchgefühle sind gewissermaßen Äußerungen unserer unbewussten Intelligenz. Das Unterbewusstsein ordnet unsere Einfälle, je nachdem wie erfolgreich sie in der Vergangenheit waren. Deshalb kommen Fachleuten die besten Ideen meist zuerst. Und auch deshalb ist es so wichtig, seinem Bauch nur zu trauen in Bereichen, in denen man Erfahrung hat. Beispielsweise beim Schachspielen, beim Sport – oder beim Projektmanagement beispielsweise. (… ) „Take the Best“-Faustregel schlägt komplexe Entscheidungsmethodik” (Interview mit Prof. Gerd Gigerenzer in projektmanagementaktuell 3/2008).

Mitarbeiter mit Erfahrungen werden auch als Experten bezeichnet, die in komplexen Problemlösungsprozessen Muster erkennen – oder auch erspüren – die andere einfach nicht sehen/erspüren. Diese Expertise in einem beruflichen Umfeld (einer beruflichen Domäne) scheint – zusammen mit einer inneren Intelligenz – komplexen Methoden zur Entscheidungsfindung überlegen zu sein. Gigerenzer klärt an dieser Stelle allerdings nicht, was er unter der inneren Intelligenz versteht. Ich gehe hier von Howard Gardner´s Theorie der Multiplen Intelligenzen aus.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Warum braucht “Führung” heute sozialwissenschaftliche Expertise?

Die aktuelle gesellschaftliche Entwicklung kann als Strukturbruch zwischen Einfacher und Reflexiver Modernisierung gesehen werden. Bisher war Führung damit konfrontiert, Arbeit effektiv und effizient eher fremdorganisiert zu organisieren. Arbeit 4.0 ist allerdings viel stärker selbstorganisiert, und benötigt daher eine andere Art von Führung.

Selbstorganisation in komplexen sozialen Systemen (Organisationen) wird dabei oft auf technische und/oder ökonomische Dimensionen reduziert. Eine moderne Führung zeichnet sich in einer Reflexiven Modernisierung allerdings dadurch aus, dass Führung selbst reflexiv ist, und sozialwissenschaftliche Expertise erfordert.

“Ohne eine sozialwissenschaftliche Expertise kann eine solche selbstreflexive Führung auch in Lehr-Lern-Prozessen nicht gelingen. Soziale Systeme funktionieren nämlich nicht allein nach Maßgabe technisch-ökonomischer, sondern auch – und vielleicht sogar: vornehmlich – nach Maßgabe sozialer Mechanismen” (Arnold 2017).

Siehe dazu auch Vom Zwei-Welten-Modell von Führung zu einem Multiple-Welten-Modell von Führung? und Wirtschaftspsychologie und Wirtschaftssoziologie sind vielen Führungskräften wenig bekannt.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Wissensmanagement: Kompetenzrad für Wissensmanager nach GfWM

Kompetenzrad eines Wissensmanagers (GfWM e. V. (2024): Wissensmanagement-Kompetenzkatalog | PDF)

Wissen, und der Umgang mit Wissen (Wissen managen, Wissens-System managen) sind in einem turbulenten Umfeld zu wichtigen Wettbewerbsfaktoren von Organisationen geworden. Dabei hat sich das Verständnis von und über Wissen mit der Zeit verändert. Siehe dazu beispielsweise Reflexive Modernisierung und “reflexives Wissen” als neue Wissensform.

Personen, die sich mit Wissen beruflich befassen wollen/sollen, müssen daher entsprechende Kompetenzen mitbringen, bzw. entwickeln. Die Gesellschaft für Wissensmanagement e.V. (GfWM e.V.) hat zu diesem Thema im Januar 2024 einen Wissensmanagement-Kompetenzkatalog (Version 2.2| PDF) veröffentlicht. In der dazugehörenden Excel-Datei (XLSX) können Sie Ihr SOLL- und IST-Profil erfassen. Ein Beispiel dazu sehen Sie in der Abbildung weiter oben, die aus dem Kompetenzkatalog entnommen ist.

Der eine oder andere Punkt irritiert mich hier allerdings. Beispielsweise werden die Begriffe “Fertigkeiten”, Fähigkeiten” und “Kompetenzen” in dem Beispiel-Kompetenzrad dargestellt, obwohl der Schluss von Persönlichkeitseigenschaften (Fähigkeiten/Fertigkeiten) möglicherweise falsch ist (vgl. Erpenbeck).

Weiterhin kommt der Begriff “Emotion” im gesamten Wissensmanagement-Kompetenzkatalog überhaupt nicht vor. Möglicherweise ist das Thema indirekt in den Kompetenzen zu finden, allerdings nicht so prominent, wie es sein sollte.

John Erpenbeck hat in seinen Forschungen dazu festgestellt, dass für den Kompetenzerwerb eine Emotionale Intelligenz/Kompetenz elementar ist. Siehe dazu auch Kompetenz und Intelligenz: Eine Gegenüberstellung. Das Konstrukt der Emotionalen Intelligenz geht dabei auf Salovey/Mayer (1990) zurück. Populär gemacht hat den Begriff Goleman mit seinen verschiedenen Veröffentlichungen.

Arnold, R. (2005:123) formuliert es so: “Emotional kompetent ist jemand, der um die ´Selbstgemachtheit´ emotionaler Reaktionen weiß, die Fülle möglicher Gefühlzustände aus eigenem Erleben kennt (´emotional literacy´) und über ´Techniken´ verfügt, diese mit situationsangemessenem Verhalten in Einklang zu bringen.”

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.