Künstliche Intelligenz: Von der Produktentwicklung wieder (zurück) zur Prozessentwicklung?

Künstliche Intelligenz wird unseren individuellen Alltag, Unternehmen/Organisationen und letztendlich die gesamte Gesellschaft in verschiedenen Anwendungsformen immer stärker beeinflussen.

Dabei deutet sich in den Unternehmen/Organisationen eine interessante Entwicklung an.

Organisationen waren in den letzten 100 Jahren der Industrialisierung darauf fokussiert, ihre Prozesse (oftmals Routineprozesse) immer weiter zu optimieren, effektiver und effizienter zu machen. Diese Prozesslandschaften haben dann zu den bekannten Qualitätsmanagement-Systemen oder auch Projektmanagement-Systemen geführt. Gerade im Projektmanagement hat sich diese Vorgehensweise (Vorgehensmodelle) bei Projekten im Entwicklungsbereichen (Innovationen) zu einer Arbeitsform (Vorgehensmodell) entwickelt, die eher produktorientiert ist. Paradebeispiel dafür ist das Scrum-Framework mit den zu erzielenden Increments am Ende des Sprints oder das Minimum Viable Product (MVP), das wir aus dem Lean Start-up-Ansatz kennen.

Dieser Trend wird aktuell durch Künstliche Intelligenz scheinbar wieder umgekehrt. Wie kommt das?

Schauen wir uns einmal an, wie stark Künstliche Intelligenz den gesamten Lebenszyklus der Software-Entwicklung beeinflusst, so können wir erahnen, dass die Zyklen, in denen ein (Software-)Ergebnis (Increment, MVP) produziert werden kann, immer kürzer werden. Möglicherweise so kurz, dass es sich gar nicht mehr lohnt, den gesamten Scrum-Zyklus mit den vorgesehenen Artefakten und Events durchzuführen, und es zu einem kontinuierlichen Fluss an Ergebnissen (Produkten) kommt. In meinem Beitrag Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban? hatte ich das schon einmal angedeutet. Es freut mich daher, dass der Gedanke durchaus auch von anderen Autoren vertreten wird:

“Der Fokus essenzieller Design- und Architekturentscheidungen verschiebt sich in der Digitalisierung genau wie einst in der Industrialisierung von der Produktentwicklung hin zur Prozessentwicklung. Hier schließt sich auch der Kreis zu Scrum, denn zwei der wichtigsten Scrum-Pioniere Hirotaka Takeuchiund Ikujiro Nonaka kamen ursprünglich aus industriellen Produktions- und Innovationskontexten, nicht aus der Softwareentwicklung” (Immich, T.(2025): KI-Agenten Teil 2: Von der Produktentwicklung zur Prozessoptimierung, in Heise Online vom 27.05.2025).

Digitale Souveränität: Souveränitätsscore für KI Systeme

Souveränitätsscore für KI-Systeme – Ausschnitt (Quelle: https://digital-sovereignty.net/score/score-ai)

In der Zwischenzeit sind sehr viele KI-Modelle (AI Model) verfügbar, sodass es manchmal zu etwas unscharfen Beschreibungen kommt. Eine erste Unterscheidung ist, Closed Source AI, Open Weights AI und Open Source AI nicht zu verwechseln. In dem Beitrag AI Kontinuum wird das erläutert.

“OpenAI” wurde beispielsweise als Muttergesellschaft von ChatGPT 2015 als gemeinnützige Organisation gegründet, seit 2019 ist “OpenAI” gewinnorientiert und wird von Microsoft dominiert. Durch geschicktes Marketing wird oftmals suggeriert, dass von kommerziellen Anbietern bereitgestellte Modelle “Open Source AI” sind.

Dabei stellt sich natürlich gleich die Frage, nach einer entsprechenden Definition, die es auch seit 2024 gibt: Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht.

Wenn Sie sich also für AI Modelle interessieren, können Sie dieses Modell gegenüber den in der Definition genannten Kriterien prüfen.

Weiterhin können Sie den Souveränitätsscore für KI Systeme von Prof. Wehner nutzen (Abbildung). Schauen Sie sich auf der Website auch noch weiter um – es lohnt sich.

Künstliche Intelligenz: Ein gesellschaftlicher Bifurkationspunkt mit der Chance für einen Pfadwechsel?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

In unserer heutigen Welt, in der alles und jeder miteinander vernetzt ist, ist die Komplexität in allen Systemen nicht nur Theorie, sondern hat auch für jeden Einzelnen praktische Auswirkungen. Dabei scheint es eine gewisse gesellschaftliche Ohnmacht gegenüber den vielfältigen globalen Problemen zu geben. Denn obwohl es Belege für diese Probleme gibt, wird nicht/kaum gehandelt. Siehe dazu z.B. Nassehi (2020) mit der entsprechenden Begründung aus der Systemtheorie.

In “Zeiten von Corona” allerdings haben wir deutlich erkennen können, dass es den jeweiligen Staaten durchaus gelungen ist, für die Menschen und deren Überleben zu handeln. Dabei wurde auf die Unternehmen und Finanzinstitutionen im Markt weniger Rücksicht genommen. Solche historischen Punkte können also Wendepunkte (Bifurkationspunkte) dafür sein, von bekannten Wegen – also einer Pfadabhängigkeit – abzuweichen, und neue Wege/Pfade zu gehen.

“In bestimmten Konstellationen aber, zu bestimmten Zeitpunkten im historischen Verlauf, die als geschichtliche „Bifurkationspunkte“ begriffen werden können, eröffnen sich plötzlich Chancen auf einen Pfadwechsel, weil aufgetretene Anomalien nicht mehr ignoriert werden können (vgl. Knöbl 2010; Goldstone 1998). Es handelt sich um Krisenmomente, in denen die Fortsetzung der institutionellen Operationen in Frage steht, in denen eben nicht klar ist, wie es weitergeht, weil die Prozessketten gerissen sind. An solchen Gabelungen erscheint es vielen Akteuren wünschenswert, auf den alten Pfad zurückzukehren und so schnell wie möglich die eingespielten Routinen wiederzubeleben. Es ist aber auch möglich, einen neuen Pfad einzuschlagen” (Rosa, H. Pfadabhängigkeit, Bifurkationspunkte und die Rolle der Soziologie. Ein soziologischer Deutungsversuch der Corona-Krise. Berlin J Soziol 30, 191–213 (2020). https://doi.org/10.1007/s11609-020-00418-2).

Stehen wir möglicherweise mit dem Aufkommen Künstlicher Intelligenz wieder vor so einem Wendepunkt, einem Bifurkationspunkt, der staatliche Organisationen dazu aufruft, ihre tradierten, marktorientierten Entscheidungen wieder mehr auf das Wohl der Menschen auszurichten? Siehe dazu auch

Der Strukturbruch zwischen einfacher und reflexiver Modernisierung

“Pfadabhängigkeit” in Organisationen

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Hybrides Projektmanagement: “Emergent Practice” und Bifurkationspunkte

Worin unterscheiden sich Industry 5.0 und Society 5.0?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung

High-level software development life cycle (McKinsey (2024): The gen AI skills revolution: Rethinking your talent strategy)

Wie in dem Beitrag von McKinsey (2024) ausführlich erläutert wird, beeinflusst Künstliche Intelligenz (GenAI) alle Schritte/Phasen der Softwareentwicklung. Drüber hinaus werden in Zukunft immer mehr KI-Agenten einzelne Tasks eigenständig übernehmen, oder sogar über Multi-Agenten-Systeme ganze Entwicklungsschritte.

Die Softwareentwicklung hat dazu beigetragen, dass Anwendungen der Künstlichen Intelligenz heute überhaupt möglich sind. Es kann allerdings sein, dass Künstliche Intelligenz viele Softwareentwickler und deren Unternehmen überflüssig macht.

Möglicherweise ist in Zukunft auch jeder Einzelne Mensch in der Lage, sich mit Künstlicher Intelligenz kleine erste Programme schreiben zu lassen – ohne dass Programmierkenntnisse erforderlich sind. Ganz im Sinne von Low Code, No Code und Open Source.

So eine Entwicklung kann als Reflexive Innovation bezeichnet werden: “Die Revolution frisst ihre eigenen Kinder” (Quelle). Siehe dazu ausführlicher Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Vergleich zwischen Google Drive und Nextcloud im Rahmen der Bewertung mithilfe des Souveränitätsscores
.

Der Souveränitätsscore von Prof. Wehnes stellt verschiedene Kriterien auf, anhand derer Angebote verglichen werden können. In der Abbildung ist zu erkennen, dass Google Drive und Nextcloud (Open Source) gegenübergestellt wurden. Das Ergebnis ist eindeutig.

Google Drive erfüll kein einziges Kriterium, wohingegen Nextcloud 5 von insgesamt 6 Kriterien erfüllt. Daraus ergibt sich für Google Drive ein Souveränitätsscore von 0 und für Nextcloud ein Souveränitätsscore von 1.

Diese einfache Gegenüberstellung zeigt, dass die Digitale Souveränität mit Nextcloud erreicht werden kann.

Fangen Sie an, und machen Sie den ersten Schritt zu Ihrer eigenen Digitalen Souveränität, indem Sie auf Open Source Anwendungen setzen, bei denen Sie die Kontrolle über Ihre eigenen Daten haben – z.B. mit Nextcloud.

Wir nutzen seit 2022 auf unserem Server Nextcloud und in der Zwischenzeit auch LocalAI. Dabei können wir innerhalb von Nextcloud auf KI-Modelle zurückgreifen – alle Daten bleiben dabei auf unserem Server. Der nächste Schritt ist, KI-Agenten auf unserem Server zu entwickeln. Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften und

Souveränitätsscore: Zoom und BigBlueButton im Vergleich.

Perspektiven auf Innovation: Von “eng” zu “erweitert” bis gesellschaftlich “zielgerichtet”

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Der Blick auf Innovation ist immer noch sehr eng (narrow) und geprägt von dem Ansatz Schumpeters aus dem Jahr 1934. Dabei geht es bei Innovationen darum, vorwiegend technische Ideen zu kommerzialisieren, also für den Markt nutzbar zu machen. Die Gesellschaft war und ist dabei Empfänger der neuen Produkte und Dienstleistungen.

Eine etwas breitere (broader) Sicht auf Innovation erweitert den ursprünglichen Ansatz, indem nicht rein technologische, sondern auch Konzepte (Business Model Innovation), soziale Innovationen usw. hinzukommen.

In der Zwischenzeit geht man bei der Betrachtung von Innovation noch einen Schritt weiter und stellt den gesellschaftlichen Zweck (purposive) in den Mittelpunkt. Im Zusammenspiel zwischen Wissenschaft, Technologie und Innovationen soll es dadurch zu gesellschaftlichen Transformationen kommen.

“Within narrow understandings of innovation, in which innovation is defined as the commercialisation of research, emphasis is placed on the roles of science, academia, industry, and national governments in supporting scientific and technical knowledge. Society is frequently viewed as passively adopting innovations introduced by science and large corporations (Joly, 2019). Conversely, according to broad-based understandings, innovation encompasses the entire process of conceiving and actualising a novel concept or idea; it is not limited to technological advancements (Godin & Lane 2013). (…) Moreover, according to purposive understandings, innovation should be transformative in nature and result in sustainable change” (Nordling, N. 2024).

Es geht heute also darum, mit Innovationen Probleme in der Gesellschaft, zum Wohle (eigene Bemerkung) der Menschen und seiner Umwelt zu lösen. Siehe dazu auch Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wir sollten dazu kommen, Technologie – heute ist es die Künstliche Intelligenz – für die Gesellschaft einzusetzen, und nicht vorwiegend zum wirtschaftlichen Vorteil von einigen wenigen Tech-Konzernen, die die sozialen Folgen den Gesellschaften überlassen.

Dabei kommt es zu einer Friktion bei den beiden Geschwindigkeiten: Technik (KI) verändert sich in Sekunden, Gesellschaften – und mit ihnen das gesamte gesellschaftliche System – eher langsam. Wenn wir die Menschen mitnehmen wollen, sollte der Staat – und hier meine ich eher die Europäische Union – den Rahmen setzen, denn die Tech-Giganten werden sich nicht zurückhalten. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Künstliche Intelligenz und Kompetenz

Wenn ein neues Thema aufkommt, geht es dabei oft auch darum, entsprechende Kompetenzen zu entwickeln. Als beispielsweise immer klarer wurde, dass die Digitalisierung alle Bereiche unseres Lebens beeinflussen wird, wurde schnell von Digitalen Kompetenzen gesprochen und geschrieben, die alle und jeder entwickeln sollte/müsste. In dem Beitrag “Digitale Kompetenzen” oder besser “Kompetenzen in digitalen Kontexten”? habe ich erläutert, warum es in diesem Fall besser ist, von Kompetenzen in digitalen Kontexten zu sprechen. Solche Bindestrich-Kompetenzen gibt es in sehr vielen Facetten – nun auch bei dem Thema Künstliche Intelligenz.

Auch hier wird schnell von KI-Kompetenzen gesprochen, ohne zu reflektieren, dass es grundsätzlich Kompetenzen sind, die im Kontext der Künstlichen Intelligenz entwickelt (nicht vermittelt!) werden sollen. In diesem Zusammenhang verweise ich gerne darauf, Kompetenzen als Selbstorganisationsdispositionen zu sehen. Diese Perspektive geht auf Erpenbeck und Heyse zurück:

“Die Handlungskompetenztheorie von Erpenbeck und Heyse (Erpenbeck 2012, Erpenbeck & Sauter 2015, Heyse & Erpenbeck 2007) wiederum betont die Bedeutung von selbstorganisiertem und werteorientiertem Handeln in komplexen Situationen, was sich auch auf den Bereich der KI übertragen lässt. Personen mit hoher Handlungskompetenz
sind dann in der Lage, Handlungen zu entwickeln, um erfolgreich handlungsfähig zu sein und zu bleiben” (Ehler et al. 2025).

Siehe dazu auch

Hybridisierung von Kompetenzen: Kompetenzmanagement in Zeiten von Künstlicher Intelligenz

Persönlichkeitseigenschaften, -fähigkeiten und Kompetenzen

Projektmanagement: KI-Unterstützung der ICB 4.0 Kompetenzen

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Quelle: https://alia.gob.es/

Es ist schon erstaunlich, wie unreflektiert viele Privatpersonen, Organisationen oder auch Öffentliche Verwaltungen Künstliche Intelligenz (AI / GenAI) von den bekannten Tech-Unternehmen nutzen. Natürlich sind diese Closed Source AI Models, oder auch Open Weights Models, sehr innovativ und treiben durch immer mehr neue Funktionen die Anwender vor sich her. Viele kommen dabei gar nicht richtig zum Nachdenken. Möglicherweise ist das ja auch so gewollt….

Die Notwendigkeit, Open Source AI zu nutzen wird gerade im Hinblick auf die europäischen Rahmenbedingungen immer wichtiger. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Hinzu kommt noch, dass es immer mehr länderspezifische KI-Modelle gibt, die den sprachlichen Kontext, und damit die sprachlichen Besonderheiten besser abbilden. Die wichtigsten LLM (Closed Source AI) sind mit englischsprachigen Daten trainiert und übersetzen dann in die jeweilige Sprache. Das klappt zwar recht gut, doch fehlt es gerade bei Innovationen, oder kulturellen regionalen Besonderheiten, an der genauen Passung.

Die spanische Verwaltung hat nun die Initiative ALIA gestartet, die 100% öffentlich finanziert ist, und eine KI-Ressource für alle Spanisch sprechenden Menschen sein soll. Dazu gehören auch frei verfügbare AI Modelle (LLM) (…)

“(…) to generate ethical and trustworthy AI standards, with open-source and transparent models, guaranteeing the protection of fundamental rights, the protection of intellectual property rights and the protection of personal data, and developing a  framework of best practices in this field (Vasquez in OSOR 2025).

“ALIA es una iniciativa pionera en la Unión Europea que busca proporcionar una infraestructura pública de recursos de IA, como modelos de lenguaje abiertos y transparentes, para fomentar el impulso del castellano y lenguas cooficiales -catalán y valenciano, euskera y gallego- en el desarrollo y despliegue de la IA en el mundo” (ALIA Website)

Es freut mich zu sehen, wie die einzelnen europäischen Regionen oder Länder Initiativen starten, die die europäischen, oder auch regionalen Besonderheiten berücksichtigen – und das alles auf Open Source Basis. Siehe dazu auch

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Das Kontinuum zwischen Closed Source AI und Open Source AI

In dem Beitrag AI: Was ist der Unterschied zwischen Open Source und Open Weights Models? hatte ich schon einmal darauf hingewiesen, dass es zwischen den Polen Closed Source AI und Open Source AI ein Kontinuum weiterer Möglichkeiten gibt.

Die Grafik illustriert den Zusammenhang noch einmal anhand der zwei Dimensionen Degree of Openness und Completeness. Man sieht hier deutlich, dass der Firmenname OpenAI dazu führen kann, z.B. ChatGPT von OpenAI als Open Source AI zu sehen, obwohl es komplett intransparent ist und somit in die Kategorie Closed Source AI gehört. Die Open Weights Models liegen irgendwo zwischen den beiden Polen und machen es nicht einfacher, wirkliche Open Source AI zu bestimmen.

Eine erste Entscheidungshilfe kann die Definition zu Open Source AI sein, die seit 2024 vorliegt. Anhand der (recht wenigen) Kriterien kann man schon eine erste Bewertung der Modelle vornehmen.

In der Zwischenzeit hat sich auch die Wissenschaft dem Problem angenommen und erste Frameworks veröffentlicht. Ein erstes Beispiel dafür ist hier zu finden:

White et al. (2024): The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence | Quelle).

Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen

Mass Customization ist ein Oxymoron, das von Davis verwendet, und das vor über 30 Jahren von B. Joseph Pine als hybride Wettbewerbsstrategie bekannt gemacht wurde. Siehe dazu auch Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

In der Zwischenzeit hat sich viel bei den technischen Möglichkeiten bei der Herstellung von Produkten und Dienstleistungen getan, sodass Mass Customization in einem neuen Licht gesehen werden kann. Unter anderem sind die Kosten zur Herstellung von Produkten und Dienstleistungen drastisch gesunken (Additive Manufacturing – 3D-Druck, Maker-Bewegung, Robotics etc.). Weiterhin bietet Künstliche Intelligenz mit Large Language Models (LLM) und KI-Agenten ganz neue Möglichkeiten, Mass Customization umzusetzen. Frank Piller hat das in einem Interview an einem Beispiel sehr gut dargestellt:

“An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see opportunity to use the data out there for what I call smart
customization” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

Frank Piller geht dabei immer noch von der Perspektive eines Unternehmens aus, das die neuen KI-Technologien nutzt, um mass customized products herzustellen. Ich stelle mir dabei allerdings die Frage, ob es nicht für jeden Einzelnen in Zukunft möglich sein wird, mit Hilfe von KI-Agenten viele der alltäglichen Probleme selbst, und/oder zusammen mit anderen in Communities, zu lösen.

Benötigen wir in Zukunft also für alle benötigten Produkte und Dienstleistungen noch Unternehmen?

Immerhin hat ein Unternehmen dann seine Berechtigung, wenn es geringere Transaktionskosten hat. Diese Marktberechtigung gerät durch die neuen technischen Möglichkeiten ins Wanken. Die Technologien, mit denen Unternehmen immer geringere Transaktionskosten generieren, und der User immer mehr selbst machen soll/kann, führt zu einer Art Reflexiven Innovation. Diese schlägt auf die Unternehmen zurück. Siehe dazu beispielsweise aus meinen Veröffentlichungen:

Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe. 4th International Conference for Entrepreneurship, Innovation, and Regional Development (ICEIRD 2011), 05.-07. May, Ohrid, Macedonia.

Immerhin stellen wir alle in unserem Alltag fest, dass die die von den Unternehmen angebotenen Produkte und Dienstleistungen oft nicht den eigenen Anforderungen entsprechen.

Siehe dazu Von Democratizing Innovation zu Free Innovation oder auch Megatrend: Mass Personalization.