Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Image by AIAC Interactive Agency from Pixabay

Das Bild zeigt ein Glas mit einer Flüssigkeit. Es ist allerdings nicht genau zu erkennen, um welchen Inhalt es sich handelt. Es könnte also sein, dass die Flüssigkeit gut für Ihre Gesundheit ist, oder auch nicht. Vertrauen Sie dieser Situation? Vertrauen Sie demjenigen, der das Glas so hingestellt hat?

Würden Sie aus diesem Glas trinken?

So ähnlich ist die Situation bei Künstlicher Intelligenz. Die Tech-Unternehmen veröffentlichen eine KI-Anwendung nach der anderen. Privatpersonen, Unternehmen, ja ganze Verwaltungen nutzen diese KI-Apps als Black Box, ohne z.B. zu wissen, wie die Daten in den Large Language Models (LLM) zusammengetragen wurden – um nur einen Punkt zu nennen.

Der Vergleich von dem Glas mit Künstlicher Intelligenz hinkt zwar etwas, doch erscheint mir die Analogie durchaus bemerkenswert, da der erste Schritt zur Anwendung von Künstlicher Intelligenz Vertrauen sein sollte.

Step 1: It All Starts with Trust
“Think about it: the glass is opaque, you can’t even see inside it! The water inside that glass could pure spring water, but it could also be cloudy and murky puddle water, or even contaminated water! If you couldn’t see inside that glass, would you still drink what’s inside it after adding tons of high-quality sugar and lemon to it? Probably not, so why would you do this with one of your company’s most previous assets—your data?” (Thomas et al. 2025).

Vertrauen Sie der Art von Künstlicher Intelligenz, wie sie von den etablierten Tech-Giganten angeboten wird? Solche Closed Source Modelle sind nicht wirklich transparent, und wollen es auch weiterhin nicht sein. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

Vertrauen Sie besser wirklichen Open Source AI – Anwendungen: Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

All Our Ideas: Künstliche Intelligenz, Online-Umfragen und Crowdsourcing kombinieren

Quelle: https://all-our-ideas.citizens.is/domain/1/

Aktuell wird alles mit Künstlicher Intelligenz (AI: Artificial Intelligence) in Verbindung gebracht. Die Neukombination von bestehenden Ansätzen kann dabei zu interessanten Innovationen führen.

Die Website ALL Our Ideas verbindet beispielsweise Online-Umfragen mit Crowdsourcing und Künstlicher Intelligenz.

“All Our Ideas is an innovative tool that you can use for large-scale online engagements to produce a rank-ordered list of public input. This “Wiki Survey” tool combines the best of survey research with crowdsourcing and artificial intelligence to enable rapid feedback” (ebd.).

Ein kurzes Tutorial ist gleich auf der Website zu finden. Darin wird erläutert, wie Sie die Möglichkeiten selbst nutzen können. Starten Sie einfach mit einer eigenen Online-Umfrage.

Die Idee und das Konzept finde ich gut, da auch der Code frei verfügbar ist: Open Source Code. Damit kann alles auf dem eigenen Server installiert werden. Bei der Integration von KI-Modellen schlage ich natürlich vor, Open Source KI (Open Source AI) zu nutzen.

Innovationen: Das Europäische Paradox

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Wenn es um Innovationen geht, sind wir in Deutschland und in der EU immer sehr bemüht zu betonen, was alles dafür getan wird, dass wir in diesem Bereich führend sein wollen – aber nicht sind. Denn: Alle aktuell wichtigen Innovationen kommen nicht aus Deutschland, bzw. der EU. Wenn dem nicht so wäre, wären wir beispielsweise bei der Digitalisierung nicht so abhängig von den Tech-Konzernen aus den USA.

Obwohl wir in Deutschland (in der EU) sehr viel Geld in die Förderung von Forschung & Entwicklung stecken, und auch unser Bildungssystem, sowie die gesamte Infrastruktur gut sind, sieht es bei den wichtigen Innovationen eher schlecht aus. Wir bekommen die guten Ansätze nicht wirklich umgesetzt – doch genau das macht Innovationen aus. Die Europäische Kommission hat diese Situation 1995 schon als Europäisches Paradox bezeichnet.

“In 1995, the European Commission firstly used the term ‘European Paradox’ (European Commission 1995) to define the phenomenon of having good higher education systems, well established research infrastructure but failing to translate this into markable innovations. (…) Additionally, the EU in comparison to the USA was unable to compete although education, research and science were very well established in the EU.”

Quelle: Banholzer, Volker M. (2022). From „Industry 4.0“ to „Society 5.0“ and „Industry 5.0“: Value- and Mission-Oriented Policies: Technological and Social Innovations – Aspects of Systemic Transformation. IKOM WP Vol. 3, No. 2/2022. Nürnberg: Technische Hochschule Nürnberg Georg Simon Ohm).

Interessant dabei ist, dass sich scheinbar in den letzten 30 Jahren (1995-2025) nicht viel verbessert hat. Möglicherweise ist die Schere bei den wichtigsten aktuellen Innovationsbereichen sogar noch größer geworden. Wie kommt das?

Verstehen wir Innovation immer noch falsch?

Messen wir die falschen Parameter?

Haben wir gerade in Deutschland mehr Innovationspreise als wirkliche Innovationen?

Anmerkung: Das Bild zum Blogbeitrag habe ich nur beispielhaft ausgewählt. Es geht mir bei hier nicht nur um die Situation bei der Künstlichen Intelligenz..

Warum wird GESCHÄFTSMODELL + AI nicht ausreichen?

Organisationen und Privatpersonen befassen sich mit Künstlicher Intelligenz (GenAI) und sind fasziniert von den Möglichkeiten. Dabei setzen fast alle Organisationen auf die Formel

GESCHÄFTSMODELL +AI

Gut zu erkennen ist das beispielsweise in dem Beitrag Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung. Man geht von dem üblichen Softwareentwicklungsprozess aus und überlegt, wie Künstliche Intelligenz in den einzelnen Schritten (einzelnen Tasks) genutzt werden kann. Ähnlich ist es im Projektmanagement, z.B. nach DIN 69901 mit den vorgeschlagenen Minimum-Prozessen usw. usw. In dem Zusammenhang habe ich folgenden Text gefunden:

“(…) if you’re content to sit on your +AI mindset, things aren’t going to go well for your business (or you personally) because you will lack the agility and capability that come with the next generation of AI” (Thomas et al. 2025).

In Zukunft bietet Künstliche Intelligenz, und hier meine ich speziell auch Agentic AI (KI-Agenten), ganz neue, andere Möglichkeiten. Wir sollten daher mittel- und langfristig von einem anderen Ansatz (Mindset) ausgehen:

AI+

Dieser Blick sollte sich von den bestehenden Geschäftsmodellen lösen, und von den (neuen) Möglichkeiten der KI ausgehen. Das ist dann nicht mehr evolutionär, sondern eher disruptiv und wird ganze Bereiche verändern.

Mein Vorschlag ist es hier, nicht auf Closed Source AI oder Open Weighted AI, sondern auf Open Source AI zu setzen – auch bei Agentic AI. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

Von GenAI zu Agentic AI bedeutet, eine andere Perspektive einzunehmen, und andere Kompetenzen zu entwickeln

WEF (2024): Navigating the AI Frontier. A Primer on the Evolution and Impact of AI Agents

Alle reden und schreiben über KI (Künstliche Intelligenz / AI: Artificial Intelligence) und meinen damit meistens GenAI. Bei den verschiedenen KI-Anwendungen geht es mehrheitlich darum, Abläufe mit ihren verschiedenen Tasks zu unterstützen. Siehe dazu beispielsweise Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung. Ähnliches findet man auch bei anderen Branchen wie z.B. der Kommunikationsbranche usw.

Diese vielfältigen Möglichkeiten faszinieren Menschen und Organisationen so sehr, dass sie das auch bei den entsprechenden Kompetenzentwicklungen als einen der Schwerpunkte sehen. Hervorheben möchte ich hier beispielsweise das oft erwähnte Prompt-Engineering.

Betrachten wir allerdings neuere KI-Entwicklungen, so wird immer deutlicher, dass es in der nahen Zukunft immer mehr darum gehen wird, mit KI-Agenten (Agentic AI) umzugehen. Dabei verändern sich allerdings die Perspektiven auf die Nutzung von KI grundlegend. Der folgende Absatz zeigt das deutlich auf:

“Quite simply, today, most people use AI in a task-oriented workflow (for example, to finish a code stub or summarize a document), whereas agents are goal oriented. You give an AI agent a task, and it will get it done and even plan future actions without needing your explicit guidance or intervention. Working with agents requires a change in perspective: instead of designing an AI driven app to run some specific tasks, you use an agentic approach that focuses on outcomes and objectives. An agent will try to achieve a desired outcome and will figure out on its own which tasks are necessary” (Thomas, R.; Zikopoulos, P.; Soule, K. 2025).

Die in dem Zusammenhang mit KI thematisierten Kompetenzen waren und sind immer noch zu sehr auf den “task-oriented workflow” ausgerichtet. Dabei benötigen wird bei der eher “goal oriented”, also ergebnisorientierten (zielorientierten) Herangehensweise, andere Kompetenzen.

Ich bin gespannt, wie die vielen KI-Kompetenzmodelle diese Entwicklungen abfangen werden. Denn: Kaum ist das eher task-oriented Kompetenzmodell veröffentlicht, muss schon nachgebessert werden. In der Logik dieser Kompetenzmodelle wird es wohl bald eine Weiterentwicklung geben, die in Zukunft “AI Agentic” – Kompetenzen in den Mittelpunkt stellt, usw. usw. Ob das für Menschen und Organisationen einen guten (stabilen) Rahmen für ein modernes Kompetenzmanagement bietet?

Wie Sie als Leser meines Blogs wissen, stehe ich diesen KI-Kompetenzmodellen etwas kritisch gegenüber, da sie zu “Bindestrich”-Kompetenzen (Digitale Kompetenzen, Agile Kompetenzen, KI-Kompetenzen) führen, die sich in großen Teilen verändern müssen. Meines Erachtens ist es besser, allgemein von Kompetenzen von Selbstorganisationsdispositionen zu sprechen – und zwar auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – natürlich auch unter dem Aspekt der Nutzung von KI. Siehe dazu Kompetenzmanagement.

GWA Whitepaper (2025): Künstliche Intelligenz (KI) in der Kommunikationsbranche

Image by Alexa from Pixabay

Wie in dem Beitrag Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung zu erahnen, wird Künstliche Intelligenz (KI) alle Prozesse in Organisationen beeinflussen.

Dass das auch die Medienbranche/Kreativbranche betrifft, sollte jedem klar sein, der in diesem Umfeld arbeitet. Es ist daher gut, dass der Gesamtverband Kommunikationsagenturen (GWA) in einem KI-Whitepaper 2025 viele Perspektiven zu dem Thema beschrieben hat. Darin findet sich auch der folgende Hinweis:

“Die Kreativbranche sollte sich aktiv für Open- Source-KI einsetzen und dabei Unterstützung von allen erhalten, die von kreativer Arbeit profitieren. Wir alle, auch Marken und Produktanbieter, profitieren von offenen Systemen, da diese ihre eigenen visuellen Konzepte und Produkte in Form von „Custom-Modellen“ integrieren können, wie es bereits mit „LoRA Models“ in Stable Diffusion und Flux möglich ist” (GWA KI-Whitepaper 2025).

In den fast 100 Seiten des Whitepapers wird der Gedanke leider nicht weiter erläutert. Es wäre gut gewesen, auf die inzwischen vorliegende Definition zu Open Source AI und auf das Das Kontinuum zwischen Closed Source AI und Open Source AI hinzuweisen, denn hier gibt es für die Branche noch sehr viele neue Möglichkeiten, die sich vom Mainstream der KI-Anwendungen unterscheiden.

Digitale Souveränität: Souveränitätsscore für KI Systeme

Souveränitätsscore für KI-Systeme – Ausschnitt (Quelle: https://digital-sovereignty.net/score/score-ai)

In der Zwischenzeit sind sehr viele KI-Modelle (AI Model) verfügbar, sodass es manchmal zu etwas unscharfen Beschreibungen kommt. Eine erste Unterscheidung ist, Closed Source AI, Open Weights AI und Open Source AI nicht zu verwechseln. In dem Beitrag AI Kontinuum wird das erläutert.

“OpenAI” wurde beispielsweise als Muttergesellschaft von ChatGPT 2015 als gemeinnützige Organisation gegründet, seit 2019 ist “OpenAI” gewinnorientiert und wird von Microsoft dominiert. Durch geschicktes Marketing wird oftmals suggeriert, dass von kommerziellen Anbietern bereitgestellte Modelle “Open Source AI” sind.

Dabei stellt sich natürlich gleich die Frage, nach einer entsprechenden Definition, die es auch seit 2024 gibt: Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht.

Wenn Sie sich also für AI Modelle interessieren, können Sie dieses Modell gegenüber den in der Definition genannten Kriterien prüfen.

Weiterhin können Sie den Souveränitätsscore für KI Systeme von Prof. Wehner nutzen (Abbildung). Schauen Sie sich auf der Website auch noch weiter um – es lohnt sich.

Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung

High-level software development life cycle (McKinsey (2024): The gen AI skills revolution: Rethinking your talent strategy)

Wie in dem Beitrag von McKinsey (2024) ausführlich erläutert wird, beeinflusst Künstliche Intelligenz (GenAI) alle Schritte/Phasen der Softwareentwicklung. Drüber hinaus werden in Zukunft immer mehr KI-Agenten einzelne Tasks eigenständig übernehmen, oder sogar über Multi-Agenten-Systeme ganze Entwicklungsschritte.

Die Softwareentwicklung hat dazu beigetragen, dass Anwendungen der Künstlichen Intelligenz heute überhaupt möglich sind. Es kann allerdings sein, dass Künstliche Intelligenz viele Softwareentwickler und deren Unternehmen überflüssig macht.

Möglicherweise ist in Zukunft auch jeder Einzelne Mensch in der Lage, sich mit Künstlicher Intelligenz kleine erste Programme schreiben zu lassen – ohne dass Programmierkenntnisse erforderlich sind. Ganz im Sinne von Low Code, No Code und Open Source.

So eine Entwicklung kann als Reflexive Innovation bezeichnet werden: “Die Revolution frisst ihre eigenen Kinder” (Quelle). Siehe dazu ausführlicher Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Quelle: https://alia.gob.es/

Es ist schon erstaunlich, wie unreflektiert viele Privatpersonen, Organisationen oder auch Öffentliche Verwaltungen Künstliche Intelligenz (AI / GenAI) von den bekannten Tech-Unternehmen nutzen. Natürlich sind diese Closed Source AI Models, oder auch Open Weights Models, sehr innovativ und treiben durch immer mehr neue Funktionen die Anwender vor sich her. Viele kommen dabei gar nicht richtig zum Nachdenken. Möglicherweise ist das ja auch so gewollt….

Die Notwendigkeit, Open Source AI zu nutzen wird gerade im Hinblick auf die europäischen Rahmenbedingungen immer wichtiger. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Hinzu kommt noch, dass es immer mehr länderspezifische KI-Modelle gibt, die den sprachlichen Kontext, und damit die sprachlichen Besonderheiten besser abbilden. Die wichtigsten LLM (Closed Source AI) sind mit englischsprachigen Daten trainiert und übersetzen dann in die jeweilige Sprache. Das klappt zwar recht gut, doch fehlt es gerade bei Innovationen, oder kulturellen regionalen Besonderheiten, an der genauen Passung.

Die spanische Verwaltung hat nun die Initiative ALIA gestartet, die 100% öffentlich finanziert ist, und eine KI-Ressource für alle Spanisch sprechenden Menschen sein soll. Dazu gehören auch frei verfügbare AI Modelle (LLM) (…)

“(…) to generate ethical and trustworthy AI standards, with open-source and transparent models, guaranteeing the protection of fundamental rights, the protection of intellectual property rights and the protection of personal data, and developing a  framework of best practices in this field (Vasquez in OSOR 2025).

“ALIA es una iniciativa pionera en la Unión Europea que busca proporcionar una infraestructura pública de recursos de IA, como modelos de lenguaje abiertos y transparentes, para fomentar el impulso del castellano y lenguas cooficiales -catalán y valenciano, euskera y gallego- en el desarrollo y despliegue de la IA en el mundo” (ALIA Website)

Es freut mich zu sehen, wie die einzelnen europäischen Regionen oder Länder Initiativen starten, die die europäischen, oder auch regionalen Besonderheiten berücksichtigen – und das alles auf Open Source Basis. Siehe dazu auch

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Das Kontinuum zwischen Closed Source AI und Open Source AI

In dem Beitrag AI: Was ist der Unterschied zwischen Open Source und Open Weights Models? hatte ich schon einmal darauf hingewiesen, dass es zwischen den Polen Closed Source AI und Open Source AI ein Kontinuum weiterer Möglichkeiten gibt.

Die Grafik illustriert den Zusammenhang noch einmal anhand der zwei Dimensionen Degree of Openness und Completeness. Man sieht hier deutlich, dass der Firmenname OpenAI dazu führen kann, z.B. ChatGPT von OpenAI als Open Source AI zu sehen, obwohl es komplett intransparent ist und somit in die Kategorie Closed Source AI gehört. Die Open Weights Models liegen irgendwo zwischen den beiden Polen und machen es nicht einfacher, wirkliche Open Source AI zu bestimmen.

Eine erste Entscheidungshilfe kann die Definition zu Open Source AI sein, die seit 2024 vorliegt. Anhand der (recht wenigen) Kriterien kann man schon eine erste Bewertung der Modelle vornehmen.

In der Zwischenzeit hat sich auch die Wissenschaft dem Problem angenommen und erste Frameworks veröffentlicht. Ein erstes Beispiel dafür ist hier zu finden:

White et al. (2024): The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence | Quelle).