Lernkultur und organisatorische Leistungsfähigkeit hängen zusammen

Image by Ronald Carreño from Pixabay

Lernen wird immer noch zu sehr Schulen, Universitäten oder der beruflichen Weiterbildung zugeordnet. Man tut gerade so, als ob man außerhalb dieser Institutionen nicht lernen würde. In Abwandlung des Zitats “Man kann nicht nicht kommunizieren” des Kommunikationswissenschaftlers Paul Watzlawick kann man auch formulieren:

Man kann nicht nicht lernen“.

Gerade in Zeiten tiefgreifender Veränderungen kommt dem Lernen, z.B. in der Arbeitswelt, eine besondere Bedeutung zu. Lernen kann als eine Veränderung des Verhaltens eines Individuums durch Erfahrung und Training (vgl. E. A. Gates) gesehen werden. Solche Veränderungen in der Arbeitswelt hängen mit der Lernkultur zusammen. Siehe dazu auch Was hat der Wandel am Arbeitsplatz mit Lernkultur zu tun?

Dabei werden Kulturen oft in Bildern/Metaphern deutlich. Beispielsweise werden in traditionellen Arbeits- und Lernkulturen oft Zahnräder verwendet, wenn es um die Zusammenarbeit geht. In moderneren Organisationen würden eher verwobene Netze als Bild verwendet – was wiederum Auswirkungen auf das dazugehörende Lernen hat.

“Kulturen sind in undurchschaubarer Weise verwobene Netze von Handlungen, Gegenständen, Bedeutungen, Haltungen und Annahmen. Und eben keine mechanischen Uhrwerke, bei denen voraussehbar ist, welche Veränderung sich ergibt, wenn man bei einem Zahnrad die Anzahl der Zähne vergrößert oder verkleinert” (Meier 2022).

Eine moderne Lernkultur hat dann auch Auswirkungen auf die organisatorische Leistungsfähigkeit. Dieser Zusammenhang wurde schon vor mehr als 20 Jahren aufgezeigt:

“Daher überrascht es nicht, dass im Kontext von tiefgreifenden Veränderungen in der Arbeitswelt Lernkultur zu einem Thema wird (Foelsing und Schmitz 2021) und dass empirische Studien einen Zusammenhang von Lernkultur und organisationaler Leistungs- fähigkeit aufzeigen (McHargue 2003; Ellinger et al. 2003” (Meier 2022).

Siehe dazu auch Wie hängen Immaterielle Werte, Lernkultur, Kompetenzentwicklung und Organisationales Lernen zusammen?

Es wundert mich daher immer noch, dass Führungskräfte in Organisationen oftmals nichts (oder sehr wenig) über das Lernen von einzelnen Mitarbeitern, Teams, der gesamten Organisation und in Netzwerken wissen. Gerade in Zeiten von Künstlicher Intelligenz kommt dem schnellen, selbstorganisierten Lernen eine Schlüsselrolle bei den erforderlichen Transformationsprozessen zu.

Digitale Souveränität: Wie kann ein KI-Modell aus LocalAI in den Nextcloud Assistenten eingebunden werden?

Um digital souveräner zu werden, haben wir seit einiger Zeit Nextcloud auf einem eigenen Server installiert – aktuell in der Version 32. Das ist natürlich erst der erste Schritt, auf den nun weitere folgen – gerade wenn es um Künstliche Intelligenz geht.

Damit wir auch bei der Nutzung von Künstlicher Intelligenz digital souverän bleiben, haben wir zusätzlich LocalAI installiert. Dort ist es möglich, eine Vielzahl von Modellen zu testen und auszuwählen. In der folgenden Abbildung ist zu sehen, dass wir das KI-Modell llama-3.2-3B-instruct:q4_k_m für einen Chat ausgewählt haben. In der Zeile “Send a massage” wurde der Prompt “Nenne wichtige Schritte im Innovationsprozess” eingegeben. Der Text wird anschließend blau hinterlegt angezeigt. In dem grünen Feld ist ein Teil der Antwort des KI-Modells zu sehen.

LocalAI auf unserem Server: Ein Modell für den Chat ausgewählt

Im nächsten Schritt geht es darum, das gleiche KI-Modell im Nextcloud Assistant zu hinterlegen. Der folgende Screenshot zeigt das Feld (rot hervorgehoben). An dieser Stelle werden alle in unserer LocalAI hinterlegten Modelle zur Auswahl angezeigt, sodass wir durchaus variieren könnten. Ähnliche Einstellungen gibt es auch für andere Funktionen des Nextcloud Assistant.

Screenshot: Auswahl des Modells für den Nextcloud Assistenten in unserer Nextcloud – auf unserem Server

Abschließend wollen wir natürlich auch zeigen, wie die Nutzung des hinterlegten KI-Modells in dem schon angesprochenen Nextcloud Assistant aussieht. Die folgende Abbildung zeigt den Nextcloud Assistant in unserer Nextcloud mit seinen verschiedenen Möglichkeiten – eine davon ist Chat mit KI. Hier haben wir den gleichen Prompt eingegeben, den wir schon beim Test auf LocalAI verwendet hatten (Siehe oben).

Screenshot von dem Nextcloud Assistant mit der Funktion Chat mit KI und der Antwort auf den eigegebenen Prompt

Der Prompt ist auf der linken Seite zu erkennen, die Antwort des KI-Modells (llama-3.2-3B-instruct:q4_k_m) ist rechts daneben wieder auszugsweise zu sehen. Weitere “Unterhaltungen” können erstellt und bearbeitet werden.

Das Zusammenspiel der einzelnen Komponenten funktioniert gut. Obwohl wir noch keine speziellen KI-Server hinterlegt haben, sind die Antwortzeiten akzeptabel. Unser Ziel ist es, mit wenig Aufwand KI-Leistungen in Nextcloud zu integrieren. Dabei spielen auch kleine, spezielle KI-Modelle eine Rolle, die wenig Rechenkapazität benötigen.

Alles natürlich Open Source, wobei alle Daten auf unseren Servern bleiben.

Wir werden nun immer mehr kleine, mittlere und große KI-Modelle und Funktionen im Nextcloud Assistant testen. Es wird spanned sein zu sehen, wie dynamisch diese Entwicklungen von der Open Source Community weiterentwickelt werden.

Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Wissensarbeit: Bestehen 60% der Gesamtarbeit aus “Arbeit rund um die Arbeit”?

Industriearbeit wurde in der Vergangenheit akribisch (Stichwort: REFA) auf Verschwendungspotenziale untersucht. Ganze Wertstromanalysen wurden beispielsweise betrachtet, um Lean Production oder später Lean Management in der Organisation zu etablieren. Auch das Agile Arbeiten, beispielsweise in Form des Agilen Projektmanagements, hat das Ziel, sich nur auf den Value für den User (Scrum) zu fokussieren. Das Scrum-Framework entstand immerhin aus der Überlegungen, Wissensarbeit besser zu organisieren (Hirotaka Takeuchi und Ikujiro Nonaka).

Es verwundert daher doch etwas, dass aus einer Studie von Asana aus dem Jahr 2023 hervorgeht, dass der Anteil der “Arbeit rund um die Arbeit” bei Wissensarbeit immer noch erheblich ist. In der genannten Studie wurden fast 10.000 Wissensarbeiter befragt.

Dabei wird der Begriff “Arbeit rund um die Arbeit” wie folgt beschrieben: “Tätigkeiten, die der wichtigen Arbeit Zeit entziehen, darunter die Kommunikation über die Arbeit, die Suche nach Informationen, das Wechseln zwischen verschiedenen Apps, die Bewältigung wechselnder Prioritäten und die Statusnachverfolgung von Arbeitsvorgängen” (Asana 2025).

“Laut dem Bericht zur Anatomie der Arbeit von Asana [Anmerkung Robert Freund: aus dem Jahr 2023] werden 60 % der Arbeitszeit einer Person für „Arbeit rund um die Arbeit“ und nicht für Facharbeit aufgewendet” (ebd.).

Bei Studien sollte man immer etwas kritisch sein, denn Asana ist selbst Anbieter einer Work-Management Plattform mit vielen Apps – möglicherweise tragen diese sogar auch zu dem Verschwendungspotenzial bei.

KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie

Wenn es darum geht, die Auswirkungen der Künstlichen Intelligenz auf den Arbeitsmarkt zu prognostizieren, kommt es – wie immer – darauf an, wen man fragt.

Die eher technikorientierten Unternehmen verkaufen die angestrebte AGI (Artificial General Intelligence) als das non plus ultra der Intelligenzentwicklung. Dabei prognostizieren diese Unternehmen, dass AGI den menschlichen Fähigkeiten (Intelligenzen) überlegen sein wird. Daraus folgt zwingend, dass KI wohl alle arbeitsbezogenen Tätigkeiten in der nahen Zukunft übernehmen kann. Diese Argumentation erinnert mich an so viele Versprechen der Technik-Unternehmen; beispielsweise an die Unsinkbarkeit der Titanic oder die “100%-ige” Sicherheit von Kernkraftwerken, oder an die Verheißungen der Internetpioniere. Technologie muss wohl in dieser Form verkauft werden (Storytelling) – immerhin geht es ja um Investoren und sehr viel Geld. Ich weiß natürlich, dass diese Vergleiche “hinken”, dennoch …

Betrachten wir Künstliche Intelligenz mit seinen Möglichkeiten aus der eher gesamtgesellschaftlichen Perspektive, so sieht das etwas anders aus. Hier geht es darum, mit Hilfe der Künstlichen Intelligenz gesellschaftliche Probleme zu lösen, zum Wohle aller. Die Idee der japanischen Society 5.0 kommt diesem Anspruch sehr nahe. Da ich darüber schon verschiedene Blogbeiträge veröffentlich habe, gehe ich darauf nicht weiter ein. Siehe dazu beispielhaft Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wie ist es dennoch möglich herauszufinden, wie sich Künstliche Intelligenz auf dem Arbeitsmarkt bemerkbar macht, bzw. machen wird?

Als Leser unseres Blogs wissen Sie, dass ich bei solchen Fragestellungen immer dazu tendiere, belastbare wissenschaftliche Studien von unabhängigen Forschern heranzuziehen. Eine dieser Studie ist folgende. Darin sind sehr ausführlich Vorgehensweise, Datenanalysen und Erkenntnisse dargestellt, mit einer zu beachtenden Einschränkung: Es geht um den amerikanischen Arbeitsmarkt.

“First, we find substantial declines in employment for early-career workers in occupations most exposed to AI, such as software development and customer support.

Second, we show that economy-wide employment continues to grow, but employment growth for young workers has been stagnant.

Third, entry-level employment has declined in applications of AI that automate work, with muted effects for those that augment it.

Fourth, these employment declines remain after conditioning on firm-time effects, with a 13% relative employment decline for young workers in the most exposed occupations

Fifth, these labor market adjustments are more visible in employment than in compensation.

Sixth, we find that these patterns hold in occupations unaffected by remote work and across various alternative sample constructions”

Source: Brynjolfsson et al. (2025): Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence | PDF

Herausheben möchte ich hier, dass gerade junge Menschen, die in den Arbeitsmarkt kommen und noch keine domänenspezifische Expertise entwickeln konnten, von Künstlicher Intelligenz betroffen sind. Das ist in mehrerer Hinsicht bemerkenswert.

Einerseits scheint Expertise nicht so leicht durch KI ersetzbar zu sein, was wiederum für erfahrene, auch ältere Mitarbeiter spricht. Diese sollten natürlich Künstliche Intelligenz nutzen und nicht ablehnen.

Weiterhin sind es ja gerade junge Menschen, die in ihren Jobs mit Digitalisierung und auch mit Künstlicher Intelligenz arbeiten möchten. Die Innovation “Künstliche Intelligenz” kann anhand der genannten Effekte durchaus als reflexiv angesehen werden. Siehe dazu auch  Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Künstliche Intelligenz: LLM (Large Language Models) und Large Reasoning Models (LRMs) in Bezug auf komplexes Problemlösen

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

KI-Anwendungen basieren oft auf Trainingsdaten, sogenannter Large Language Models (LLM). Um die Leistungsfähigkeit und die Qualität der Antworten von solchen Systemen zu verbessern, wurde inzwischen ein “Denkprozess” (Reasoning) vor der Ausgabe der Antwort vorgeschaltet. Siehe dazu ausführlicher What are Large Reasoning Models (LRMs)?

Die Frage stellt sich natürlich: Liefern LRMs wirklich bessere Ergebnisse als LLMs?

In einem von Apple-Mitarbeitern veröffentlichten, viel beachteten Paper wurde nun die Leistungsfähigkeit nicht aufgrund logisch-mathematischer Zusammenhänge alleine untersucht, sondern anhand von drei Komplexitätskategorien – mit überraschenden Ergebnissen:

“Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers.. (…) By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse

Source: Shojaee et al. (2025): The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity.

In Zukunft werden immer mehr hoch-komplexe Problemlösungen in den Mittelpunkt von Arbeit rücken. Gerade in diesem Bereich scheinen LLMs und sogar LRMs allerdings ihre Schwierigkeiten zu haben. Ehrlich gesagt, wundert mich das jetzt nicht so sehr. Mich wundert eher, dass das genannte Paper die KI-Welt so aufgewühlt hat 🙂 Siehe dazu auch Was sind eigentlich Multi-Kontext-Probleme?

Sicher werden die Tech-Unternehmen der KI-Branche jetzt argumentieren, dass die nächsten KI-Modelle auch diese Schwierigkeiten meistern werden. Das erinnert mich an unseren Mercedes-Händler, der ähnlich argumentierte, sobald wir ihn auf die Schwachstellen des eingebauten Navigationssystems hingewiesen hatten: Im nächsten Modell ist alles besser.

Technologiegetriebene Unternehmen – insbesondere KI-Unternehmen – müssen wohl so argumentieren, und die Lösungen in die Zukunft projizieren – Storytelling eben, es geht immerhin um sehr viel Geld. Man muss also daran glauben….. oder auch nicht.

Möglicherweise handelt sich es hier um einen Kategorienfehler. Siehe dazu ausführlicher Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler.

Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?

Management 1.0 bis 4.0 und das Agile Manifest

Eigene Darstellung. Quelle: Oswald (2016); GPM-Workshop “Agiles Projekt Management 4.0

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Ähnlich kann auch für das Management argumentiert werden (siehe Abbildung), das sich von einem Management 1.0 (Command and Control, wissenschaftlich) zum Management 2.0 (Markt-Strategien, add on Tools) weiterentwickelt hat, und über das Management 3.0 Komplexität, wissenschaftliche Analogien) zu Management 4.0 (Komplexität als Geschenk, vernetzte Modelle) weiterentwickelt hat. Dabei ist zu beachten, dass in Organisationen oftmals Arbeit 1.0-4.0 und Management 1.0-4.0 vorhanden sind.

Wie in der Abbildung weiterhin zu erkennen ist, stellt das Agile Manifest (Manifest für agile Softwareentwicklung) aus dem Jahr 2001 einen Vorschlag dar, besser mit Komplexität umzugehen. Daraus ist wiederum das Framework Scrum entstanden, wobei der Begriff Scrum in einem Paper aus dem Jahr 1986 geprägt wurde.

Siehe dazu auch Agiles Projektmanagement und das Agile Manifest – passt das wirklich zusammen?

Hybride Szenarien für agile und klassische Arbeitsformen inkl. möglicher Transformationsansätze

Hybride Szenarien und Transformationsansätze (Schaffitze/Fore 2020:31)

In gewachsenen Organisationen sind Arbeitsformen dominant, die auf Routinearbeit ausgerichtet sind, und ein entsprechendes Mindset ergeben. Agile Arbeitsformen sind anders, da sie in einem eher turbulenten Umfeld komplexe Problemlösungen anbieten – mit allen Konsequenzen für Organisationen.

Beide Elemente werden im Projektmanagement deutlich. Oftmals müssen beide Arbeitsformen in eine Gesamtstruktur überführt werden. Dabei stellt sich die Frage, wie agile und klassische Arbeitsformen in einer hybriden Gesamtstruktur erfolgreich sein können.

In der Tabelle sind dazu drei Hybride Szenarien mit dem jeweiligen Transformationsansatz, der Skalierungsmöglichkeit und der Bewertung möglicher Organisationsveränderungen dargestellt.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Wie kann man Wissensarbeit analysieren?

Eigne Darstellung nach Hube (2005)

Immer mehr Arbeiten sind wissensintensiv und unterscheiden sich somit von anderen Arbeitsweisen in Organisationen. Dabei gibt es oftmals einen branchenspezifischen Mix an Arbeit (BMAS 2015):

Arbeiten 1.0 bezeichnet die beginnende Industriegesellschaft und die ersten Organisationen von Arbeitern.

Arbeiten 2.0 ist die beginnende Massenproduktion und die Anfänge des Wohlfahrtsstaats am Ende des 19. Jahrhunderts.

Arbeiten 3.0 umfasst die Zeit der Konsolidierung des Sozialstaats und der Arbeitnehmerrechte auf Grundlage der sozialen Marktwirtschaft.

Arbeiten 4.0 wird vernetzter, digitaler und flexibler sein. Wie die zukünftige Arbeitswelt im Einzelnen aussehen wird, ist noch offen. Seit Beginn des 21. Jahrhundert stehen wir vor einem erneuten grundlegenden Wandel der Produktionsweise.

Die heutige Wissensarbeit unterscheidet sich in vielen Dimensionen von klassischer Routinearbeit in der Industriegesellschaft.

Die Abbildung zeigt verschiedene Typen von Arbeit, die in einem Fragebogen abgefragt werden können. In der Darstellung ist zu erkennen, dass in diesem Beispiel sequenzielles Arbeiten und standardisierte Abläufe eher niedrig bewertet werden – also kaum Bestandteil der Arbeit sind. Demgegenüber sind alle anderen Arbeitstypen sehr stark (hoch) ausgeprägt. Das deutet auf wissensintensive Arbeit hin.

Arbeiten in der digitalen Welt: Sechs Basiskompetenzen

Arbeiten ist heute eingebettet in digitale Prozesse, und verändert sich dadurch erheblich. In einer digitalen (Arbeits-) Welt werden über Qualifikationen hinaus daher entsprechende Kompetenzen benötigt, um selbstorganisiert komplexe Problemstellungen zu lösen – Kompetenz als Selbstorganisationsdisposition. In einer Metaanalyse des MÜNCHNER KREIS-Arbeitskreis „Arbeit in der digitalen Welt“ (2020, S. 4ff.) wurden sechs Kompetenzfelder als Basiskompetenzen zusammengefasst:

Personenbezogene KompetenzenSelbstorganisation, Lernfähigkeit
Soziale KompetenzenKommunikation, Teamfähigkeit
Mensch-Maschine-Interaktion (MMI) KompetenzenUmgang mit Daten, Technologien, Wissen
ProzesskompetenzKritisches Denken, Problemlösefähigkeit
LösungskompetenzKreativität, Transdiziplinäres Denken
Strategische KompetenzAdaptionsfähigkeit, Unternehmerisches Denken
Quelle: Schipanski, A. (2024), in Koller et al. (Hrsg.) (2024)

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.