Warum wird GESCHÄFTSMODELL + AI nicht ausreichen?

Organisationen und Privatpersonen befassen sich mit Künstlicher Intelligenz (GenAI) und sind fasziniert von den Möglichkeiten. Dabei setzen fast alle Organisationen auf die Formel

GESCHÄFTSMODELL +AI

Gut zu erkennen ist das beispielsweise in dem Beitrag Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung. Man geht von dem üblichen Softwareentwicklungsprozess aus und überlegt, wie Künstliche Intelligenz in den einzelnen Schritten (einzelnen Tasks) genutzt werden kann. Ähnlich ist es im Projektmanagement, z.B. nach DIN 69901 mit den vorgeschlagenen Minimum-Prozessen usw. usw. In dem Zusammenhang habe ich folgenden Text gefunden:

“(…) if you’re content to sit on your +AI mindset, things aren’t going to go well for your business (or you personally) because you will lack the agility and capability that come with the next generation of AI” (Thomas et al. 2025).

In Zukunft bietet Künstliche Intelligenz, und hier meine ich speziell auch Agentic AI (KI-Agenten), ganz neue, andere Möglichkeiten. Wir sollten daher mittel- und langfristig von einem anderen Ansatz (Mindset) ausgehen:

AI+

Dieser Blick sollte sich von den bestehenden Geschäftsmodellen lösen, und von den (neuen) Möglichkeiten der KI ausgehen. Das ist dann nicht mehr evolutionär, sondern eher disruptiv und wird ganze Bereiche verändern.

Mein Vorschlag ist es hier, nicht auf Closed Source AI oder Open Weighted AI, sondern auf Open Source AI zu setzen – auch bei Agentic AI. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

GWA Whitepaper (2025): Künstliche Intelligenz (KI) in der Kommunikationsbranche

Image by Alexa from Pixabay

Wie in dem Beitrag Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung zu erahnen, wird Künstliche Intelligenz (KI) alle Prozesse in Organisationen beeinflussen.

Dass das auch die Medienbranche/Kreativbranche betrifft, sollte jedem klar sein, der in diesem Umfeld arbeitet. Es ist daher gut, dass der Gesamtverband Kommunikationsagenturen (GWA) in einem KI-Whitepaper 2025 viele Perspektiven zu dem Thema beschrieben hat. Darin findet sich auch der folgende Hinweis:

“Die Kreativbranche sollte sich aktiv für Open- Source-KI einsetzen und dabei Unterstützung von allen erhalten, die von kreativer Arbeit profitieren. Wir alle, auch Marken und Produktanbieter, profitieren von offenen Systemen, da diese ihre eigenen visuellen Konzepte und Produkte in Form von „Custom-Modellen“ integrieren können, wie es bereits mit „LoRA Models“ in Stable Diffusion und Flux möglich ist” (GWA KI-Whitepaper 2025).

In den fast 100 Seiten des Whitepapers wird der Gedanke leider nicht weiter erläutert. Es wäre gut gewesen, auf die inzwischen vorliegende Definition zu Open Source AI und auf das Das Kontinuum zwischen Closed Source AI und Open Source AI hinzuweisen, denn hier gibt es für die Branche noch sehr viele neue Möglichkeiten, die sich vom Mainstream der KI-Anwendungen unterscheiden.

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:

(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?

Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:

“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler (Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).

Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.

(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?

Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.

Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner  2002:46-47).

Insofern wäre dann der Vergliche zwischen Künstlicher Intelligenz und Multiplen Intelligenzen ein Kategorienfehler. Siehe dazu auch Künstliche Intelligenz – ein Kategorienfehler? Darin wird auch auf die sozialen und emotionalen Dimensionen bei Menschen hingewiesen.

(3) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlichen Kompetenzen ein Kategorienfehler?

Wenn wir Künstliche Intelligenz mit Menschlichen Kompetenzen vergleichen, vergleichen wir auch indirekt die beiden Konstrukte “Intelligenz” und “Kompetenz. In dem Beitrag Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen? finden Sie dazu ausführlichere Anmerkungen.

Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?

Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.

“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).

Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung

High-level software development life cycle (McKinsey (2024): The gen AI skills revolution: Rethinking your talent strategy)

Wie in dem Beitrag von McKinsey (2024) ausführlich erläutert wird, beeinflusst Künstliche Intelligenz (GenAI) alle Schritte/Phasen der Softwareentwicklung. Drüber hinaus werden in Zukunft immer mehr KI-Agenten einzelne Tasks eigenständig übernehmen, oder sogar über Multi-Agenten-Systeme ganze Entwicklungsschritte.

Die Softwareentwicklung hat dazu beigetragen, dass Anwendungen der Künstlichen Intelligenz heute überhaupt möglich sind. Es kann allerdings sein, dass Künstliche Intelligenz viele Softwareentwickler und deren Unternehmen überflüssig macht.

Möglicherweise ist in Zukunft auch jeder Einzelne Mensch in der Lage, sich mit Künstlicher Intelligenz kleine erste Programme schreiben zu lassen – ohne dass Programmierkenntnisse erforderlich sind. Ganz im Sinne von Low Code, No Code und Open Source.

So eine Entwicklung kann als Reflexive Innovation bezeichnet werden: “Die Revolution frisst ihre eigenen Kinder” (Quelle). Siehe dazu ausführlicher Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Perspektiven auf Innovation: Von “eng” zu “erweitert” bis gesellschaftlich “zielgerichtet”

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Der Blick auf Innovation ist immer noch sehr eng (narrow) und geprägt von dem Ansatz Schumpeters aus dem Jahr 1934. Dabei geht es bei Innovationen darum, vorwiegend technische Ideen zu kommerzialisieren, also für den Markt nutzbar zu machen. Die Gesellschaft war und ist dabei Empfänger der neuen Produkte und Dienstleistungen.

Eine etwas breitere (broader) Sicht auf Innovation erweitert den ursprünglichen Ansatz, indem nicht rein technologische, sondern auch Konzepte (Business Model Innovation), soziale Innovationen usw. hinzukommen.

In der Zwischenzeit geht man bei der Betrachtung von Innovation noch einen Schritt weiter und stellt den gesellschaftlichen Zweck (purposive) in den Mittelpunkt. Im Zusammenspiel zwischen Wissenschaft, Technologie und Innovationen soll es dadurch zu gesellschaftlichen Transformationen kommen.

“Within narrow understandings of innovation, in which innovation is defined as the commercialisation of research, emphasis is placed on the roles of science, academia, industry, and national governments in supporting scientific and technical knowledge. Society is frequently viewed as passively adopting innovations introduced by science and large corporations (Joly, 2019). Conversely, according to broad-based understandings, innovation encompasses the entire process of conceiving and actualising a novel concept or idea; it is not limited to technological advancements (Godin & Lane 2013). (…) Moreover, according to purposive understandings, innovation should be transformative in nature and result in sustainable change” (Nordling, N. 2024).

Es geht heute also darum, mit Innovationen Probleme in der Gesellschaft, zum Wohle (eigene Bemerkung) der Menschen und seiner Umwelt zu lösen. Siehe dazu auch Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wir sollten dazu kommen, Technologie – heute ist es die Künstliche Intelligenz – für die Gesellschaft einzusetzen, und nicht vorwiegend zum wirtschaftlichen Vorteil von einigen wenigen Tech-Konzernen, die die sozialen Folgen den Gesellschaften überlassen.

Dabei kommt es zu einer Friktion bei den beiden Geschwindigkeiten: Technik (KI) verändert sich in Sekunden, Gesellschaften – und mit ihnen das gesamte gesellschaftliche System – eher langsam. Wenn wir die Menschen mitnehmen wollen, sollte der Staat – und hier meine ich eher die Europäische Union – den Rahmen setzen, denn die Tech-Giganten werden sich nicht zurückhalten. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Das Kontinuum zwischen Closed Source AI und Open Source AI

In dem Beitrag AI: Was ist der Unterschied zwischen Open Source und Open Weights Models? hatte ich schon einmal darauf hingewiesen, dass es zwischen den Polen Closed Source AI und Open Source AI ein Kontinuum weiterer Möglichkeiten gibt.

Die Grafik illustriert den Zusammenhang noch einmal anhand der zwei Dimensionen Degree of Openness und Completeness. Man sieht hier deutlich, dass der Firmenname OpenAI dazu führen kann, z.B. ChatGPT von OpenAI als Open Source AI zu sehen, obwohl es komplett intransparent ist und somit in die Kategorie Closed Source AI gehört. Die Open Weights Models liegen irgendwo zwischen den beiden Polen und machen es nicht einfacher, wirkliche Open Source AI zu bestimmen.

Eine erste Entscheidungshilfe kann die Definition zu Open Source AI sein, die seit 2024 vorliegt. Anhand der (recht wenigen) Kriterien kann man schon eine erste Bewertung der Modelle vornehmen.

In der Zwischenzeit hat sich auch die Wissenschaft dem Problem angenommen und erste Frameworks veröffentlicht. Ein erstes Beispiel dafür ist hier zu finden:

White et al. (2024): The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence | Quelle).

Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen

Mass Customization ist ein Oxymoron, das von Davis verwendet, und das vor über 30 Jahren von B. Joseph Pine als hybride Wettbewerbsstrategie bekannt gemacht wurde. Siehe dazu auch Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

In der Zwischenzeit hat sich viel bei den technischen Möglichkeiten bei der Herstellung von Produkten und Dienstleistungen getan, sodass Mass Customization in einem neuen Licht gesehen werden kann. Unter anderem sind die Kosten zur Herstellung von Produkten und Dienstleistungen drastisch gesunken (Additive Manufacturing – 3D-Druck, Maker-Bewegung, Robotics etc.). Weiterhin bietet Künstliche Intelligenz mit Large Language Models (LLM) und KI-Agenten ganz neue Möglichkeiten, Mass Customization umzusetzen. Frank Piller hat das in einem Interview an einem Beispiel sehr gut dargestellt:

“An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see opportunity to use the data out there for what I call smart
customization” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

Frank Piller geht dabei immer noch von der Perspektive eines Unternehmens aus, das die neuen KI-Technologien nutzt, um mass customized products herzustellen. Ich stelle mir dabei allerdings die Frage, ob es nicht für jeden Einzelnen in Zukunft möglich sein wird, mit Hilfe von KI-Agenten viele der alltäglichen Probleme selbst, und/oder zusammen mit anderen in Communities, zu lösen.

Benötigen wir in Zukunft also für alle benötigten Produkte und Dienstleistungen noch Unternehmen?

Immerhin hat ein Unternehmen dann seine Berechtigung, wenn es geringere Transaktionskosten hat. Diese Marktberechtigung gerät durch die neuen technischen Möglichkeiten ins Wanken. Die Technologien, mit denen Unternehmen immer geringere Transaktionskosten generieren, und der User immer mehr selbst machen soll/kann, führt zu einer Art Reflexiven Innovation. Diese schlägt auf die Unternehmen zurück. Siehe dazu beispielsweise aus meinen Veröffentlichungen:

Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe. 4th International Conference for Entrepreneurship, Innovation, and Regional Development (ICEIRD 2011), 05.-07. May, Ohrid, Macedonia.

Immerhin stellen wir alle in unserem Alltag fest, dass die die von den Unternehmen angebotenen Produkte und Dienstleistungen oft nicht den eigenen Anforderungen entsprechen.

Siehe dazu Von Democratizing Innovation zu Free Innovation oder auch Megatrend: Mass Personalization.

AI City und Emotionale Intelligenz

Image by Andrey_and_Olesya from Pixabay

Auch bei dem Thema Smart City wird oft der Begriff “Intelligenz” verwendet. Dabei denkt man meistens an die noch vorherrschende Meinung, dass sich Intelligenz in einem Intelligenz-Quotienten (IQ), also in einer Zahl, darstellen lässt.

Die Entgrenzungstendenzen bei dem Thema Intelligenz in den letzten Jahrzehnten zeigen allerdings, dass der Intelligenz-Quotient gerade bei komplexen Problemlösungen nicht mehr ausreicht – somit keine Passung mehr zur Wirklichkeit hat. Begriffe wie “Soziale Intelligenz”, “Multiple Intelligenzen” oder auch “Emotionale Intelligenz” werden in diesem Zusammenhang genannt. Am Beispiel einer Smart City, oder später einer AI City, wird das wie folgt beschrieben:

For a smart city, having only “IQ” (intelligence quotient) is not enough; “EQ” (emotional quotient) is equally essential. Without either, the abundant data generated and accumulated in urban life may either remain dormant and isolated or be used solely for data management without truly serving the people. In the concept of an AI-driven city, emotional intelligence refers to utilizing technological means to better perceive the emotions of citizens in the era of the “Big Wisdom Cloud.” This involves actively expressing urban sentiment, self-driving and motivating the emotions of citizen communities, empathizing with the vulnerable in the city, and establishing a comprehensive sentiment feedback mechanism” (Wu 2025).

Es wird in Zukunft immer wichtiger werden, ein besseres Verständnis von Intelligenz zu entwickeln, das besser zu den heutigen Entwicklungen passt. Die angesprochene Entgrenzung des Konstrukts “Intelligenz” ist dabei ein Ansatz, die Perspektive auf Intelligenz als biopsychologisches Potential eine weitere:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).

Diese Beschreibung von Intelligenz würde den Begriff “Künstliche Intelligenz” dann eher als Kategorienfehler bezeichnen. Siehe dazu auch OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?

Von der Smart City zur AI City

Image by xegxef from Pixabay

Das Konzept einer Smart City wird in vielen Regionen der Welt schon umgesetzt: “In einer Smart City wird intelligente Informations- und Kommunikationstechnologie (IKT) verwendet, um Teilhabe und Lebensqualität zu erhöhen und eine ökonomisch, ökologisch und sozial nachhaltige Kommune oder Region zu schaffen” (BSI). Der Schwerpunkt liegt somit auf der Verwendung von IKT.

Nun gibt es mit Hilfe der Künstlichen Intelligenz (AI: Artificial Intelligence) ganz neue Möglichkeiten, die über das Konzept einer Smart City hinausgehen. Der folgende Text stammt aus einem Buch des führenden Wissenschaftlers, der sich mit dem Konzept einer “AI City” befasst:

“The essence of an AI city is empowerment. In the definition of “AI city,” the city obtains strong empowerment in urban organization and civilization development with the help of AI. The past process of urban intelligence emphasized information networking and promoted the comprehensive construction of smart cities. But the AI city is different: the city begins to learn and, after learning, better empowers life, production, and ecology through the learning process in order to continuously improve the energy level. The data of the daily operation of the city has become the different raw materials of AI technology, once data integration is fully achieved— spanning macro-level aspects such as society, economy, environment, and transportation, down to micro-level aspects such as individual and group activities—the overall functioning of the city will significantly improve. It is not the simple general smart city, but the intelligence that can learn. In the AI 2.0 era, with the break-through of the five key technologies of big data intelligence, swarm intelligence, autonomous unmanned systems, cross-media intelligence, and hybrid enhanced intelligence, the ability of AI city learning, problem solving, and empowerment has been greatly improved, moreover, numerous patterns and insights can be discovered within massive datasets. Therefore, the city began to iterate, and the urban agglomeration began to interact deeply. After learning, AI can formulate city rules according to a reasonable ideal vision. And when this formulation becomes the goal of deduction, the city can constantly predict, evolve, and revise itself” (Wu 2025: The AI City).

Die neuen Chancen der Künstlichen Intelligenz in Städten oder Ballungszentren, für die Menschen und deren Probleme zu nutzen, sollte dabei auf Transparenz bei den verwendeten KI-Anwendungen basieren. Diese Bedingung erfüllen die meisten Closed Source Modelle der Tech-Giganten aktuell nicht. Wenn es wirklich um die Menschen geht, und nicht primär im wirtschaftliche Interessen (USA) oder parteipolitische Interessen (China), so kommen für mich hier nur Open Source KI-Modelle und – Anwendungen infrage.

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Aktuell überschlagen sich die Meldungen darüber, wie die Zukunft von Künstlicher Intelligenz (AI: Artificial Intelligence) wohl aussehen wird. Die Dynamik ist in diesem Feld allerdings so groß, dass es unmöglich ist, genauere Voraussagen zu machen.

Dennoch glauben einige, dass ein Modell, wie z.B. ChatGPT, Gemini usw. mit ihren vielfältigen Möglichkeiten, die Lösung für alles sein wird. Grundannahme ist hier also One Size fits all.

Demgegenüber steht der Gedanke, dass es viele unabhängig und vernetzt nutzbare KI-Anwendungen geben wird, die eher den Anforderungen der Menschen und Organisationen entsprechen. Weiterhin sollten diese KI-Apps Open Source sein, also offen und transparent. Dazu habe ich den folgenden aktuellen Text gefunden:

“The future of AI is not one amazing model to do everything for everyone (you will hear us tell you time and time again in this book: one model will not rule them all). AI’s future will not just be multimodal (seeing, hearing, writing, and so on); it will also most certainly be multimodel (in the same way cloud became hybrid). AI needs to be democratized—and that can only happen if we collectively leverage the energy and the transparency of open source and open science—this will give everyone a voice in what AI is, what it does, how it’s used, and how it impacts society. It will ensure that the advancements in AI are not driven by the privileged few, but empowered by the many” (Thomas, R.; Zikopoulos, P.; Soule, K. 2025).

Es wird hier noch einmal deutlich herausgestellt, dass Künstliche Intelligenz demokratisiert werden muss. Das wiederum kann durch Open Source und Open Science ermöglicht werden. Siehe dazu auch

Digitale Souveränität: Europa, USA und China im Vergleich

Open Source AI: Nun gibt es endlich eine Definition – und damit interessante Erkenntnisse zu OpenAI und Co.

RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Von Democratizing Innovation zu Free Innovation