Welche Selbstorganisations-Theorie ist für Innovation geeignet?

Wesentliche Vertreter der Grundlagen einer Komplexitätswissenschaft und Vorreiter
einer terminologischen Präzisierung von Komplexität (Bandte 2007:50, aus Stüttgen 2003): Eigene Hervorhebungen

In unserer komplexen Welt verwenden viele den Begriff „Komplexität“, doch fragt man nach wird deutlich, dass an unterschiedliche naturwissenschaftliche Ansätze gedacht wird. In der Abbildung sind daher wesentliche Vertreter der Grundlagen einer Komplexitätswissenschaft und Vorreiter einer terminologischen Präzisierung von Komplexität zu sehen, die den verschiedenen Disziplinen zugeordnet sind

Ein wesentlicher Schwerpunkt in der Komplexitätsdiskussion befasst sich mit SELBSTORGANISATION. In der Abbildung sind von mir bekannte Vertreter zu Selbstorganisations-Theorien hervorgehoben, die aus den Bereichen Biologie und Physik/Chemie kommen. Überraschend ist dabei, dass viele wichtige Theorien zum Thema um 1970 fast zeitgleich erschienen sind:

„Es war der magische Zeitpunkt um 1970, als fast zeitgleich erste naturwissenschaftliche Theorien der Selbstorganisation erschienen, die eine paradigmatische Wende einläuteten: die biologische Theorie der Autopoiese von Humberto Maturana, die Arbeit zur molekularen Evolution von Manfred Eigen, die thermodynamische Theorie dissipativer Systeme fernab vom Gleichgewicht von Ilya Prigogine sowie die aus der Quantenoptik und der Theorie der Phasenübergänge stammende Theorie der Synergetik von Hermann Haken. Die Begründer dieser Theorien kamen aus sehr unterschiedlichen Disziplinen“ (Petzer/Steiner 2016).

Da ich mich viel mit Innovationen befasse, ist es mir natürlich wichtig zu erfahren, welche Passung diese Theorien mit der Entstehen neuer Dienstleistungen, Produkte oder (allgemein) neuen Gesellschaftsstrukturen haben. Sehr interessant ist dabei, dass die Autopoiese (Maturana) wohl nicht so gut geeignet erscheint, und die Synergetik von Haken (1996) wohl besser passt:

„Obwohl die Autopoiese einen großen Einfluss im biologischen und vor allem im soziologischen Bereich hat, so ist ihr Bezug zur Selbstorganisation eher im zirkulären
Wirken bestehender Ordnung zu sehen. In Hinblick auf die Entstehung (Emergenz) von Ordnung und verschiedener Ordnungsstufen trifft die Autopoiese keine Aussagen. Sie setzt bereits Ordnung voraus. Daher sah Hermann Haken auch keinen Anlass sich mit dieser, vor allem im Rahmen des Radikalen Konstruktivismus in der Literatur hofierten und diskutierten Theorie, intensiver auseinanderzusetzen.

Übertragen auf soziale Systeme kann die Autopoiesetheorie Innovation oder die
Entstehung neuer Gesellschaftsstrukturen nicht thematisieren
„.

Quelle: (Petzer/Steiner 2016). Die Autoren nennen zur Unterstützung dieser These noch folgende Quellen:

– Hermann Haken: Synergetics. An Introduction, New York, NY: Springer 1977.
– Bernd Kröger: Hermann Haken und die Anfangsjahre der Synergetik, Berlin: Logos 2013, S. 259.
– Vgl. auch Marie-Luise Heuser: „Wissenschaft und Metaphysik. Überlegungen zu einer allgemeinen Selbstorganisationstheorie“, in: Wolfgang Krohn/Günter Küppers (Hg.): Selbstorganisation.

Für Haken (1996) sind dabei Werte sozialer Selbstorganisation. Phasenübergänge stellen an Bifurkationspunkten die Übergänge von Mikrozuständen von Elementen zu Makrozuständen (Emergenz) dar.

„Es genügt also, das Verhalten der wenigen instabilen Systemelemente zu erkennen, um den Entwicklungstrend des gesamten Systems und seine makroskopischen Muster zu bestimmen. Die Größen, mit denen das Verteilungsmuster der Mikrozustände eines Systems charakterisiert wird, heißen nach dem russischen Physiker Lew D. Landau „Ordnungsparameter““ (Mainzer 2008:43-44).

Mit Hilfe Künstlicher und Menschlicher Intelligenz sollte es möglich sein, diese wenigen instabilen Systemelemente zu erkennen (Ordnungsparameter), um makroskopische Muster zu bestimmen.

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

9 Anzeichen für einen falschen Umgang mit Komplexität im Unternehmen

In unserem Blog habe ich schon oft über komplizierte und komplexe Aufgabenstellungen geschrieben. Siehe dazu beispielsweise Was sind Eigenschaften von komplexen Aufgabenstellungen? oder Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Je vernetzter die Strukturen einer Organisation (innen und außen) sind, um so höher ist der Grad an Komplexität. Dabei unterliegen viele einem Irrtum, denn der Begriff „komplex“ ist keine Steigerungsform von „kompliziert“. Interessant ist, dass es durchaus Anzeichen für den falschen Umgang mit Komplexität in Unternehmen git. Dazu habe ich folgendes gefunden:

9 Anzeichen für einen falschen Umgang mit Komplexität im Unternehmen:

(1) Bekämpfung der Symptome anstelle der Ursachen
Es wird immer nur das repariert, was gerade hakt. Eine Suche nach der Ursache hinter dem
Symptom findet nicht statt. Symptom und Problem werden gleichgesetzt.

(2) Übergeneralisierung
Wenige (oft unzusammenhängende) Ereignisse führen zu allgemeinen Regeln und Schlussfolgerungen für ähnliche Situationen in der Zukunft.

(3) Methodengläubigkeit
Um Fehler künftig zu vermeiden und Unwägbarkeiten „bestimmbar“ zu machen, sucht man ständig nach neuen Methoden oder überarbeitet die bestehenden.

(4) Projektmacherei
„Wenn du nicht mehr weiterweißt, bilde einen Arbeitskreis.“ Sobald Aufgaben nicht mehr leicht zu lösen sind, werden Projekte initiiert.

(5) Betriebsame Hektik
Gerade wenn Aufgaben unlösbar erscheinen und der Überblick fehlt, wird viel „gearbeitet“ und wenig übers Handeln kommuniziert und reflektiert.

(6) Denken in „kurzen Laufzeiten“
Bei Entscheidungen wird nur der direkte Wirkzusammenhang in der nahen Zukunft betrachtet, ohne die zeitlich verzögerten Effekte zu berücksichtigen. Der Zeithorizont wird dabei meist durch Rahmenbedingungen (Projektlaufzeit, Zeitvertrag, Berufung Aufsichtsrat usw.) bestimmt, die mit dem System nichts zu tun haben.

(7) Schutz des mentalen Modells vor der Welt
„Das, was ich denke, ist richtig!“, ist eine verbreitete Überzeugung.

(8) Feedback wird weder gehört noch verstanden
Der wichtigste Regelungsmechanismus für komplexe Systeme wird nicht verwendet. Man überhört jede Form von Kritik, Bestätigung, Ideen, Hinweisen und schwachen Signalen und nichts davon findet Eingang in das System.

(9) Mangelndes Systemdenken:
Gedacht, diskutiert und geplant wird in linearen Kausalzusammenhängen, ohne Wechselwirkungen zu betrachten. Der Fokus liegt auf Details, das Big Picture bleibt außen
vor.

Quelle: Stephanie Borgert (2015) : Irrtümer der Komplexität. Gabal, Offenbach.

Hybrides Projektmanagement: „Emergent Practice“ und Bifurkationspunkte

Projektmanagement spannt von den Polen Agiles Projektmanagement und Planbasiertes Projektmanagement ein Projektmanagement-Kontinuum der Möglichkeiten auf. Dabei gibt es Bereiche, in denen das Planbasierte Projektmanagement besser passen, und andere, in denen das Agile Projektmanagement eine bessere Option darstellt.

Diese Studie PMI (2024) Global Survey: Hybrides Projektmanagement wird immer wichtiger hat gezeigt, dass es in der Praxis immer mehr Hybrides Projektmanagement gibt, das weniger dogmatisch, sondern eher pragmatisch ist. In der Zwischenzeit gibt es auch Vorschläge, welcher Kombinationen bei einem Hybriden Projektmanagement Vorgehensmodell geeignet sind.

Darüber hinaus gibt es in der Literatur aber auch Hinweise, dass Hybrides Projektmanagement „einfach entsteht“ – also emergent ist.

„Diebold et al. konnten zeigen, dass einige Organisationen, die agiles Projektmanagement implementieren, den kulturellen Wandel (vgl. dazu auch Zasa et al.) und / oder den damit verbundenen Schulungsbedarf unterschätzten. Dies führte zu einer „emergent practice“ des hybriden Projektmanagements.(…) Im Sinne der emergent practice gibt es also Elemente („Relikte“) klassischen Projektmanagements, mit denen Teams sich konfrontiert sehen, die ansonsten nach einem agilen Modell zusammenarbeiten“ (Albrecht und Romero Müller 2024, in: projektmanagementaktuell 4/2024).

In komplexen Systemen mit seinen vielfältigen Verbindungen entsteht etwas, das nicht so ohne weiteres auf die einzelnen Komponenten, Elemente des Projektmanagement-Systems zurückzuführen ist. Solche Phasenübergänge (bitte nicht mit den Projektmanagementphasen verwechseln!) werden Bifurkationspunkte genannt. Möglicherweise genügt es, das Verhalten der wenigen instabilen Systemelemente zu erkennen, um das gesamte Projektmanagement-System zu steuern. Siehe dazu auch

Kernkompetenzen als Emergenzphänomene

Komplexität bzw. komplex – in Abgrenzung zu einfach und kompliziert

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Image by Gordon Johnson from Pixabay

Wenn alles nicht so einfach ist, also alles miteinander vernetzt ist, es Rückkopplungen gibt, und wir in diesem Sinne von einem komplexen sozialen System sprechen können, kommt es auch darauf an, die Phasenübergänge (Bifurkationspunkte) zu kennen. Doch, wie können wir uns diese Situation vorstellen, bzw. sogar damit umgehen?

Phasenübergänge führen fern des thermischen Gleichgewichts zu Emergenz und Selbstorganisation von Ordnung wachsender Komplexität. Allgemein können durch zufällige Wechselwirkungen der Systemelemente auf der Mikroebene neue Strukturen auf der Makroebene entstehen, die durch die Mikrozustände der Elemente nicht erklärbar sind. Wenige instabile Systemelemente geraten an den Instabilitätspunkten in starke Schwingungen, die schließlich auch die Mehrzahl der stabilen Systemelemente mitreißen. Sie zwingen ihnen ihr Verhalten auf oder – mit den Worten von Hermann Haken – „versklaven“ sie. Dadurch kommt es zu makroskopischen Veränderungen mit Ordnungs- und Musterbildungen. Es genügt also, das Verhalten der wenigen instabilen Systemelemente zu erkennen, um den Entwicklungstrend des gesamten Systems und seine makroskopischen Muster zu bestimmen. Die Größen, mit denen das Verteilungsmuster der Mikrozustände eines Systems charakterisiert wird, heißen nach dem russischen Physiker Lew D. Landau „Ordnungsparameter“ (Mainzer 2008:43-44).

Um das Gesamtsystem zu steuern, reicht es also aus, sich um die wenigen instabilen Systemelemente zu kümmern, um makroskopische Muster zu bestimmen. Es ist also nicht erforderlich alle Daten/Informationen im Sinne von Vollständigkeit vorliegen zu haben – was sowieso nicht möglich ist (Blogbeitrag). Weniger ist hier mehr. Entscheidend sind angemessene Maßnahmen an den richtigen Stellen. Aktuell habe ich eher den Eindruck, dass viele Unternehmen einem Datenfetischismus hinterherrennen, und die Chancen einer angemessenen Systemsteuerung nicht erkennen.