Was unterscheidet Künstliche Intelligenz von Suchmaschinen?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Man könnte meinen, dass Künstliche Intelligenz (GenAI) doch nur eine Weiterentwicklung bekannter Suchmaschinen ist, doch dem ist nicht so. In einem Paper wird alles noch ausführlicher beschrieben. Hier nur ein Auszug:

“The intermediation role played by AI systems is altogether new: where the role of search engines has traditionally been to surface the most relevant links to answers of the user’s query, AI systems typically expose directly an answer… For the large number of content producers whose sustainability relies on direct exposure to (or interactions with) the final end user, this lack of reliable exposure makes it unappealing to leave their content crawlable for AI-training purposes.” (Hazaël-Massieux, D. (2024): Managing exposure of Web content to AI systems | PDF.

Für viele Content-Anbieter ist die Vorgehensweise der GenAI-Modelle von großem Nachteil, da diese direkte Ergebnisse liefern, und die Interaktionen mit dem User (wie bei den bisher üblichen Suchmaschinen-Ergebnissen) entfallen können. Die bekannten GenAI-Modelle (Closed Source) nutzen einerseits die vorab antrainierten Daten und andererseits live content (summarize this page), und machen daraus ein Milliarden-Geschäft.

Demgegenüber stehen erste allgemeine Entwicklungen wie EU AI Act, Urheberrecht, Datenschutz usw., die allerdings nicht ausreichend sind, sich als Content-Anbieter (Person, Unternehmen, Organisation, Verwaltung usw.) vor der Vorgehensweise der Tech-Giganten zu schützen.

Es müssen neue, innovative Lösungen gefunden werden.

Dabei wäre es gut, wenn jeder Content-Anbieter mit Hilfe eines einfachen Verfahrens (Framework) entscheiden könnte, ob und wie sein Content für die Allgemeinheit, für Suchmaschinen, für KI-Modelle verwendet werden darf.

… und genau so etwas gibt es in ersten Versionen.

Über diese Entwicklungen schreibe ich in einem der nächsten Blog-Beiträge noch etwas ausführlicher.

Aktuelle Studie der ETH Zürich: Kein populäres LLM entspricht den EU AI Act – Anforderungen

Künstliche Intelligenz mit seinen vielfältigen Möglichkeiten wird immer populärer. Die Europäische Union hat daher schon 2023 versucht, die Entwicklung so zu regulieren, dass einerseits (persönliche und organisationale) Rechte garantiert bleiben und anderseits, die Entwicklung von Innovationen nicht unnötig gebremst wird. Siehe dazu ausführlicher: EU AI Act: first regulation on artificial intelligence.

Natürlich stellt sich dabei sofort die Frage, ob die populären KI-Anwendungen mit ihren verwendeten Large Language Models (LLMs) diesen Anforderungen gerecht werden. In einer umfassenden Studie wurde das an der ETH Zürich nun untersucht, und am 10. Oktober 2024 veröffentlicht. Das Ergebnis ist ernüchternd;

“Finally, we applied our benchmarking suite to evaluate 12 popular LLMs, identifying that both current models and state-of-the-art benchmarks exhibit critical shortcomings in the context of the Act. In particular, none of the examined models are fully compliant with the requirements of the EU AI Act, and certain technical requirements cannot be currently assessed with the available set of tools and benchmarks, either due to a lack of understanding of relevant model aspects (e.g., explainability), or due to inadequacies in current benchmarks (e.g., privacy)” (Guldimann et al. (2024): COMPL-AI Framework: A Technical Interpretation and LLM Benchmarking Suite for the EU Artificial Intelligence Act | PDF).

Ich bin sehr gespannt, was nun passiert, oder auch nicht passiert. Wird sich die EU mit ihren Anforderungen an KI-Anwendungen stärker durchsetzen, oder wird die Lobbyarbeit der verschiedenen Anbieter die Vorgaben mit der Zeit “aufweichen”. Möglicherweise gibt es auch einen dritten Weg: Open Source LLM erfüllt die Anforderungen und ist so leistungsfähig, wie die oftmals kommerziellen Angebote. Warum eigentlich nicht?