Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner)

Die Überschrift ist reißerisch und soll natürlich Aufmerksamkeit generieren. Dabei stellt man sich natürlich gleich die Frage: Wie kommt das? Geschickt ist, dass Gartner selbst die Antwort gibt:

“Over 40% of agentic AI projects will be canceled by the end of 2027, due to escalating costs, unclear business value or inadequate risk controls, according to Gartner, Inc.” (Gartner vom 25.06.2025).

Es ist nun wirklich nicht ungewöhnlich, dass in der ersten Euphorie zu Agentic AI alles nun wieder auf ein sinnvolles und wirtschaftliches Maß zurückgeführt wird. Dennoch haben Unternehmen, die entsprechende Projekte durchgeführt haben, wertvolles (Erfahrungs-)Wissen generiert.

Schauen wir uns in diesem Zusammenhang den bekannten Gartner Hype Cycle 2025 an, so können wir sehen, dass AI Agents ihren “Peak of Inflated Expectations” erreicht haben, und es nun in das Tal “Through of Desillusionment” geht. Dabei wird in dem oben genannten Artikel natürlich auch darauf hingewiesen, dass Gartner gerne beratend behilflich ist, Agentic AI wirtschaftlicher und besser zu gestalten. Honi soit qui mal y pense.

Dennoch können gerade Kleine und Mittlere Unternehmen (KMU) von dieser Entwicklung profitieren, indem sie bewusst und sinnvoll KI Agenten nutzen. Am besten natürlich in Zusammenhang mit Open Source AI. Komisch ist, dass Open Source AI in dem Gartner Hype Cycle gar nicht als eigenständiger Begriff vorkommt. Honi soit qui mal y pense.

AI Agents: Langflow (Open Source) auf unserem Server installiert

Das nächste große Ding in der KI-Entwicklung ist der Einsatz von KI-Agenten (AI Agents). Wie schon in vielen Blogbeiträgen erwähnt, gehen wir auch hier den Weg dafür Open Source zu verwenden. Bei der Suche nach entsprechenden Möglichkeiten bin ich recht schnell auf Langflow gestoßen. Die Vorteile lagen aus meiner Sicht auf der Hand:

(1) Komponenten können per Drag&Drop zusammengestellt werden.
(2) Langflow ist Open Source und kann auf unserem eigenen Server installiert werden. Alle Daten bleiben somit auf unserem Server.

Die Abbildung zeigt einen Screenshot von Langflow – installiert auf unserem Server.

Auf der linken Seite der Abbildung sind viele verschiedene Komponenten zu sehen, die in den grau hinterlegten Bereich hineingezogen werden können. Per Drag&Drop können INPUT-Komponenten und OUTPUT-Format für ein KI-Modell zusammengestellt – konfiguriert – werden. Wie weiterhin zu erkennen, ist standardmäßig OpenAI als KI-Modell hinterlegt. Für die Nutzung wird der entsprechende API-Schlüssel eingegeben.

Mein Anspruch an KI-Agenten ist allerdings, dass ich nicht OpenAI mit ChatGPT nutzen kann, sondern auf unserem Server verfügbare Trainingsdaten von Large Language Models (LLM) oder Small Language Models (SML), die selbst auch Open Source AI sind. Genau diesen Knackpunkt haben wir auch gelöst. Weitere Informationen dazu gibt es in einem der nächsten Blogbeiträge. Siehe in der Zwischenzeit auch

Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Digitale Souveränität: Europa, USA und China im Vergleich