NANDA – die Idee eines Open Agentic Web

Nanda Roadmap (Quelle: https://nanda.media.mit.edu/)

Mit KI Agenten (AI Agents) ist es möglich, in der Geschäftswelt vielfältige Prozesse zu optimieren, oder innovative Prozesse, Produkte und Dienstleistungen zu generieren, die bisher aus den verschiedensten Gründen nicht möglich waren. Dazu zählen oftmals nicht verfügbare Daten und die dazugehörenden Kosten.

Auf Basis dieser Entwicklungen können wir in Zukunft immer stärker von einer Agentenbasierten Wirtschaft sprechen – Agentic Economy (Siehe Abbildung). Dabei geht es um die Nutzung von KI-Agenten in Unternehmen oder in ganzen Branchen. Siehe dazu The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen oder auch Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen.

Denken wir etwas weiter, so müssen in Zukunft auch immer stärker KI-Agenten miteinander kommunizieren, also von Agent zu Agent – A2A. Passiert das zwischen sehr vielen Agenten eines Wirtschaftssystems, bzw. einer ganzen Gesellschaft, entsteht so etwas wie eine Agentic Society.

Das Projekt NANDA hat sich in dem Zusammenhang das Ziel gesetzt, diese Entwicklung mit einem Open Agentic Web zu unterstützen:

“Imagine billions of specialized AI agents collaborating across a decentralized architecture. Each performs discrete functions while communicating seamlessly, navigating autonomously, socializing, learning, earning and transacting on our behalf” (Source).

Das vom MIT initiierte Projekt NANDA arbeitet in Europa u.a. mit der TU München und der ETH Zürich zusammen. Das Ziel ist, alles Open Source basiert zur Verfügung zu stellen..

Ich bin an dieser Stelle immer etwas vorsichtig, da beispielsweise OpenAI auch beim Start das Ziel hatte, KI als Open Source zur Verfügung zu stellen. In der Zwischenzeit wissen wir, dass OpenAI ein Closed Source Model, bzw. ein Open Weights Model ist, und kein Open Source Model. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

KI-Modelle: Monitoring einer Entwicklungsumgebung

Using watsonx.governance to build a dashboard and track a multimodel
deployment environment (Thomas et al. 2025)

In verschiedenen Beiträgen hatte ich beschrieben, was eine Organisation machen kann, um KI-Modelle sinnvoll einzusetzen. An dieser Stelle möchte ich nur einige wenige Punkte beispielhaft dazu aufzählen.

Zunächst können LLM (Large Language Models) oder SLM (Small Language Models) eingesetzt werden – Closed Sourced , Open Weighted oder Open Source. Weiterhin können KI-Modelle mit Hilfe eines AI-Routers sinnvoll kombiniert, bzw. mit Hilfe von InstructLab mit eigenen Daten trainiert werden. Hinzu kommen noch die KI-Agenten – aus meiner Sicht natürlich auch Open Source AI.

Das sind nur einige Beispiele dafür, dass eine Organisation aufpassen muss, dass die vielen Aktivitäten sinnvoll und wirtschaftlich bleiben. Doch: Wie können Sie das ganze KI-System verfolgen und verbessern? In der Abbildung sehen Sie ein Dashboard, dass den Stand eines KI-Frameworks abbildet. Die Autoren haben dafür IBM watsonx Governance genutzt.

“Our dashboard gives us a quick view of our environment. There are LLMs from OpenAI, IBM, Meta, and other models that are in a review state. In our example, we have five noncompliant models that need our attention. Other widgets define use cases, risk tiers, hosting locations (on premises or at a hyper scaler), departmental use (great idea for chargebacks), position in the approval lifecycle, and more” (Thomas et al. 2025).

Die Entwicklungen im Bereich der Künstlichen Intelligenz sind vielversprechend und in ihrer Dynamik teilweise auch etwas unübersichtlich. Das geeignete KI-Framework zu finden, es zu entwickeln, zu tracken und zu verbessern wird in Zukunft eine wichtige Aufgabe sein.

AI 2027 Scenario: Wie wird sich Künstliche Intelligenz bis Ende 2027 entwickeln?

Quelle: https://ai-2027.com/summary

Der Mensch war schon immer daran interessiert heute schon zu wissen, was in der Zukunft auf ihn zukommen wird, oder zukommen soll. Es ist daher ganz selbstverständlich, dass verschiedene Interessengruppen wie Unternehmen, Berater, Soziologen oder auch einzelne Personen versuchenden, die Entwicklungen bei der Künstlichen Intelligenz vorherzusagen, zu prognostizieren.

Um ein relativ ausgewogenes Bild zu bekommen ist es gut, wenn sich unabhängige Wissenschaftler damit befassen. In dem AI Futures Project haben sich solche Personen zusammengetan. Es handelt sich hier um eine Nonprofit Research Organization, die im April 2025 eine erste Veröffentlichung zum Thema herausgebracht hat:

Kokotajlo et al. (2025): AI 2027 | Website

Es macht durchaus Sinn sich mit den dargestellten Schritten auseinanderzusetzen. denn die zusammengestellten Erkenntnisse sind ausführlich mit Forschungsergebnissen hinterlegt – was mir durchaus gefällt.

Dennoch: Mir sind die Perspektiven immer noch zu einseitig technologiegetrieben, denn Künstliche Intelligenz schafft auch gesellschaftliche, soziale Veränderungen.

Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?

Künstliche Intelligenz: Was ist unter einer Mixture of Experts (MoE) Architektur zu verstehen?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten.

Doch es gibt noch eine andere Möglichkeit, und das ist eine Mixture of Experts (MoE) Architektur.

“In January of 2025, the MoE architecture got broad attention when DeepSeek released its 671 billion MoE model. But DeepSeek wasn’t the first to release an MoE model. The French AI Lab, Mistral AI, made headlines with the release of one of the first high-performing MoE models: Mixtral 8x7B (we think the name is great, Mistral + mixture) all the way back in December of 2023″ (Thomas et al. 2025).

Es geht also im Prinzip darum, für den jeweiligen Input das geeignete Modell auszuwählen, um einen qualitativ hochwertigen Output zu generieren. Das erinnert mich stark an meinen Blogbeitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Doch es gibt einen Unterschied: Bei dem Konzept eines AI-Routers, sind es verschiedene Modelle (LLM, SLM), die für den jeweiligen Input ausgewählt werden. Bei einer Mixture of Experts (MoE) Architektur ist das prinzipielle Vorgehen zwar ähnlich, doch es sind hier speziell trainierte Modelle mit Expertenstatus, die dann zur Auswahl stehen.

Es zeigt sich in solchen Beiträgen immer mehr, dass ein Unternehmen ein dynamisches, eigenes KI-System konfigurieren sollte, damit die Möglichkeiten der Künstlichen Intelligenz genau zu den Anforderungen und dem Kontext passt.

Aus meiner Sicht, sollten die Modelle alle der Definition einer Open Source AI entsprechen – das ist aktuell noch nicht überall gegeben. Siehe dazu auch Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Ein aufgeklärter “Ich-Begriff” bedeutet, dass Individuen ihren Einfluss perspektivisch drastisch ausbauen können

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.

Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.

Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.

Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.

Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:

“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).

Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.

Dabei steht nicht der Profit im Mittelpunkt, sondern das soziale Miteinander zum Wohle aller.

Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren

An AI router that understands the capabilities of models in its library directs
a given inference request to the best model able to perform the task at hand (Thomas et al. 2025)

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodelle geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Siehe dazu diesen Blogbeitrag zu den Vorteilen und Nachteilen dieser Vorgehensweise.

Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs).

Neben den genannten Extremen gibt es noch Modelle, die dazwischen anzusiedeln sind, und daher als “midsized” bezeichnet werden können.

Diese drei Möglichkeiten sind beispielhaft in der Abbildung unter “Sample of model ecosystem” zusammengefasst. Erfolgt also eine neue Anfrage über den “New data point” an den AI Router, so kann der vorher trainierte AI Router das geeignete Trainingsmodell (Small, Midsized, Large) zuweisen.

Die Autoren (Thomas et al. 2025) konnten in verschiedenen Tests zeigen, dass ein guter Mix an geeigneten Modellen, zusammen mit einem gut trainierten AI Router bessere und wirtschaftlichere Ergebnisse erzielt.

Die Vorteile liegen auf der Hand: Sie sparen Geld, reduzieren die Latenz und helfen der Umwelt. Diese Punkte sind gerade für Kleine und Mittlere Unternehmen (KMU) interessant.

GPM (2025): Künstliche Intelligenz im Projektkontext – Studie

Es ist schon eine Binsenweisheit, dass Künstliche Intelligenz (GenAI) alle Bereiche der Gesellschaft mehr oder weniger berühren wird. Das ist natürlich auch im Projektmanagement so. Dabei ist es immer gut, wenn man sich auf verlässliche Quellen, und nicht auf Berater-Weisheiten verlässt.

Eine dieser Quellen ist die Gesellschaft für Projektmanagement e.V., die immer wieder Studien zu verschiedenen Themen veröffentlicht. In der Studie GPM (2025): Gehalt und Karriere im Projektmanagement. Sonderthema: Die Anwendung Künstlicher Intelligenz im Projektmanagement findet sich auf Seite 13 folgende Zusammenfassung:

Künstliche Intelligenz im Projektkontext
Künstliche Intelligenz (KI) wird im Bereich Projektmanagement in der Mehrheit der Unternehmen eingesetzt, allerdings in noch geringem Maße.
(1) KI-basierte Tools werden insgesamt eher selten genutzt, wenn sie zum Einsatz kommen, dann sind es hauptsächlich ChatGPT, Jira, MS Pilot oder eigenentwickelte Tools.
(2) Es zeichnet sich kein eindeutiger Projektmanagement-Bereich ab, in dem KI bevorzugt zum Einsatz kommt. Am deutlichsten noch in der Projektplanung und in der Projektinitiierung, am seltensten im Projektportfolio- und im Programmmanagement.
(3) Der Nutzen der KI wird tendenziell eher positiv gesehen, insbesondere als Unterstützung der alltäglichen Arbeit, zur Erleichterung der Arbeit im Projektmanagement und zur Erhöhung der Produktivität.
(4) Der Beitrag von KI zu einem höheren Projekterfolg wird von der Mehrheit der Befragten nicht gesehen – allerdings nur von einer knappen Mehrheit.
(5) Es besteht eine grundlegende Skepsis gegenüber KI, was verschiedene Leistungsparameter im Vergleich zum Menschen betrifft. Alle hierzu gestellten Fragen wie Fehleranfälligkeit, Genauigkeit, Konsistenz der Information oder Konsistenz der Services wurden mehrheitlich zu Gunsten des Menschen bewertet.
(6) Die überwiegende Mehrheit der befragten Projektmanagerinnen und Projektmanager teilt diverse Ängste gegenüber der KI nicht, wie z. B. diese werde Jobs vernichten oder dem Menschen überlegen sein.”
Quelle: GPM (2025). Anmerkung: Im Originaltext wurden Aufzählungszeichen verwendet. Um besser auf einzelnen Punkte einzugehen, habe ich diese nummeriert, was somit keine Art von Priorisierung darstellt.

An dieser Stelle möchte ich nur zwei der hier genannten Ergebnisse kommentieren:

Punkt (1): Es wird deutlich, dass hauptsächlich Closed Source Modelle verwendet werden. Möglicherweise ohne zu reflektieren, was mit den eigenen Daten bei der Nutzung passiert – gerade wenn auch noch eigene, projektspezifische Daten hochgeladen werden. Besser wäre es, ein Open Source basiertes KI-System und später Open Source basierte KI-Agenten zu nutzen. Dazu habe ich schon verschiedene Blogbeiträge geschrieben. Siehe dazu beispielhaft Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Punkt (6): Es geht bei der Nutzung von KI nicht immer um die “Vernichtung” (Was für ein schreckliches Wort) von Jobs, sondern darum, dass viele verschiedene Aufgaben (Tasks) in Zukunft von KI autonom bearbeitet werden können. Siehe dazu auch The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

Mit Cloudfare unbefugtes Scraping und Verwenden von Originalinhalten stoppen

Image by Werner Moser from Pixabay

In den letzten Jahren haben die bekannten KI-Tech-Unternehmen viel Geld damit verdient, Daten aus dem Internet zu sammeln und als Trainingsdaten für Large Language Models (LLMs) zu nutzen. Dabei sind diese Unternehmen nicht gerade zimperlich mit Datenschutz oder auch mit Urheberrechten umgegangen.

Es war abzusehen, dass es gegen dieses Vorgehen Widerstände geben wird. Neben den verschiedenen Klagen von Content-Erstellern wie Verlagen, Filmindustrie usw. gibt es nun immer mehr technische Möglichkeiten, das unberechtigte Scraping und Verwenden von Originalinhalten zu stoppen. Ein kommerzielles Beispiel dafür ist Cloudfare. In einer Pressemitteilung vom 01.07.2025 heißt es:

San Francisco (Kalifornien), 1. Juli 2025 – Cloudflare, Inc. (NYSE: NET), das führende Unternehmen im Bereich Connectivity Cloud, gibt heute bekannt, dass es nun als erster Anbieter von Internetinfrastruktur standardmäßig KI-Crawler blockiert, die ohne Erlaubnis oder finanziellen Ausgleich auf Inhalte zugreifen. Ab sofort können Eigentümerinnen und Eigentümer von Websites bestimmen, ob KI-Crawler überhaupt auf ihre Inhalte zugreifen können, und wie dieses Material von KI-Unternehmen verwertet werden darf” (Source: Cloudfare).

Siehe dazu auch Cloudflare blockiert KI-Crawler automatisch (golem vom 01.07.2025). Ich kann mir gut vorstellen, dass es in Zukunft viele weitere kommerzielle technische Möglichkeiten geben wird, Content freizugeben, oder auch zu schützen.

Das ist zunächst einmal gut, doch sollte es auch Lösungen für einzelne Personen geben, die sich teure kommerzielle Technologie nicht leisten können oder wollen. Beispielsweise möchten wir auch nicht, dass unsere Blogbeiträge einfach so für Trainingsdaten genutzt werden. Obwohl wir ein Copyright bei jedem Beitrag vermerkt haben, wissen wir nicht, ob diese Daten als Trainingsdaten der LLMs genutzt werden, da die KI-Tech-Konzerne hier keine Transparenz zulassen. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Dazu gibt es eine weitere interessante Entwicklung, die ich in dem Beitrag Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht erläutert habe.

Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht

Screenshot: https://creativecommons.org/ai-and-the-commons/cc-signals/

In dem Blogbeitrag Was unterscheidet Künstliche Intelligenz von Suchmaschinen? hatte ich dargestellt, wie sich Suchmaschinen von Künstlicher Intelligenz unterscheiden. Content-Anbieter können dabei nur bedingt auf Datenschutz, Urheberrecht, EU AI Act usw. vertrauen. In der folgenden Veröffentlichung sind die verschiedenen Punkte noch einmal strukturiert zusammengefasst, inkl. einer möglichen Lösung für die skizzierten Probleme:

Creative Commons (2025): From Human Content to Machine Data. Introducing CC Signals | PDF

Creative Commons (CC) kennen dabei viele von uns als eine Möglichkeit, anderen unter bestimmten Bedingungen das Recht zur Nutzung des eigenen Contents einzuräumen. Creative Commons erläutert, dass KI-Modelle die üblichen gesellschaftlichen Vereinbarungen mehr oder weniger ignoriert, und somit den “social contract” aufkündigt. Diesen Hinweis finde ich bemerkenswert, da hier das Vorgehen der KI-Tech-Unternehmen mit den möglichen gesellschaftlichen Auswirkungen verknüpft wird.

Mit CC Signals hat Creative Commons ein erstes Framework veröffentlich, das es ermöglichen soll, Content mit Berechtigungsstufen für KI-Systeme zu versehen.

“CC signals are a proposed framework to help content stewards express how they want their works used in AI training—emphasizing reciprocity, recognition, and sustainability in machine reuse. They aim to preserve open knowledge by encouraging responsible AI behavior without limiting innovation” (ebd.)

Machen Sie bei der Weiterentwicklung dieses Ansatzes mit:

“Head over to the CC signals GitHub repository to provide feedback and respond to our discussion questions: https://github.com/creativecommons/cc-signals.”