Die MCPC-Konferenzreihe ist 2001 in Hong Kong gestartet – und ich habe daran teilgenommen. Dieses Event hat mich dazu motiviert, mich stärker mit dem Thema zu beschäftigen. In der Folge habe ich dann an vielen Weltkonferenzen teilgenommen und Paper vorgestellt. Ein Highlight war die Special Keynote auf der MCPC2015 in Montreal.
In Hong Kong 2001 ist damals bei mir auch die Idee gereift, eine eigene Konferenzreihe zu initiieren. Mit der Unterstützung vieler Kollegen konnte das auch erreicht werden. Seit 2004 gibt es alle 2 Jahre die MCP-CE, an der wir zuletzt 2024 teilgenommen haben.
Die nächste Weltkonferenz MCPC 2025 findet nun vom 09.-12. September in Siegen statt.
“The conference offers a setting for experts from academia, industry and research institutes alike to discuss and exchange the latest scientific contributions related to customized products and their associated business and production systems.” (Quelle: Call for Papers|PDF).
In der Zwischenzeit hat sich viel bei den technischen Möglichkeiten bei der Herstellung von Produkten und Dienstleistungen getan, sodass Mass Customization in einem neuen Licht gesehen werden kann. Unter anderem sind die Kosten zur Herstellung von Produkten und Dienstleistungen drastisch gesunken (Additive Manufacturing – 3D-Druck, Maker-Bewegung, Robotics etc.). Weiterhin bietet Künstliche Intelligenz mit Large Language Models (LLM) und KI-Agenten ganz neue Möglichkeiten, Mass Customization umzusetzen. Frank Piller hat das in einem Interview an einem Beispiel sehr gut dargestellt:
“An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see opportunity to use the data out there for what I call smart customization” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.
Frank Piller geht dabei immer noch von der Perspektive eines Unternehmens aus, das die neuen KI-Technologien nutzt, um mass customized products herzustellen. Ich stelle mir dabei allerdings die Frage, ob es nicht für jeden Einzelnen in Zukunft möglich sein wird, mit Hilfe von KI-Agenten viele der alltäglichen Probleme selbst, und/oder zusammen mit anderen in Communities, zu lösen.
Benötigen wir in Zukunft also für alle benötigten Produkte und Dienstleistungen noch Unternehmen?
Immerhin hat ein Unternehmen dann seine Berechtigung, wenn es geringere Transaktionskosten hat. Diese Marktberechtigung gerät durch die neuen technischen Möglichkeiten ins Wanken. Die Technologien, mit denen Unternehmen immer geringere Transaktionskosten generieren, und der User immer mehr selbst machen soll/kann, führt zu einer Art Reflexiven Innovation. Diese schlägt auf die Unternehmen zurück. Siehe dazu beispielsweise aus meinen Veröffentlichungen:
Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe. 4th International Conference for Entrepreneurship, Innovation, and Regional Development (ICEIRD 2011), 05.-07. May, Ohrid, Macedonia.
Immerhin stellen wir alle in unserem Alltag fest, dass die die von den Unternehmen angebotenen Produkte und Dienstleistungen oft nicht den eigenen Anforderungen entsprechen.
Mit Hilfe der hybriden WettbewerbsstrategieMass Customization (PDF) ist es Unternehmen möglich, Produkte zu individualisieren, ohne dass der Preis höher ist, als bei massenhaft hergestellten Produkten. Kernelement ist dabei ein Konfigurator, mit dem der Kunde selbst in einem definierten Lösungsraum (fixed solution space) vielfältige Möglichkeiten zusammenstellen kann. In der Zwischenzeit gibt es allerdings mit Künstlicher Intelligenz noch ganz andere Optionen für Mass Customization.
Künstliche Intelligenz kann für einen Verbraucher Produkte und Dienstleistungen entwickeln und anbieten, nur auf Basis der vom Konsumenten generierten Daten – sogar ohne die aktive Mitwirkung des Konsumenten. Damit bringt Künstliche Intelligenz Mass Customization auf ein neues Level: Smart Customization.
“But this is one area where AI can take mass customization to a new level: The growth of AI and machine learning can allow us to use all the data traces consumers leave online to design a perfect product for an individual consumer, without their active involvement. AI can evolve into the ability to perfectly customize a product for a consumer, without the need for a conscious process of elicitation from the consumer. As a consumer, I could specify what I want for aesthetics, while for functional parameters, it could be the system that senses what I want and desire. An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see a lot of opportunity to use the data that’s out there for what I call smart customization” (Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846).
Dieser Ansatz ist natürlich für Unternehmen interessant, da sie die umständlichen und teuren Befragungen von Verbraucher nicht mehr – oder etwas weniger – benötigen, um angemessene Produkte anzubieten.
Es gibt allerdings auch noch eine andere Perspektive: Was ist, wenn die Verbraucher ihre eigenen Daten mit Hilfe von Künstlicher Intelligenz selbst nutzen, um eigene Produkte zu entwickeln? Im Extremfall – und mit Hilfe von modernen Technologien wie z.B. den 3D-Druck (Additive Manufacturing) – können sich die Verbraucher innovative Produkte selbst herstellen. Diese Option klingt etwas futuristisch, da wir es gewohnt sind, Innovationen mit Unternehmen in Verbindung zu bringen. Doch hat Eric von Hippel gezeigt, dass es immer mehr von diesen Open User Innovation gibt, die gar nicht in den üblichen Statistiken zu Innovation auftauchen. Siehe dazu auch
Gerade im Agilen Projektmanagement werden Anforderungen häufig für Persona formuliert. Diese sind nach dem IREB (International Requirements Engineering Board) fiktive Charaktere, mit deren Hilfe Werte für die User geschaffen werden sollen. Dieses Vorgehen erinnert an eine Art Segmentierung aus dem traditionellen Marketing.
Mass Customization auf der anderen Seite ist eine hybride Wettbewerbsstrategie, die individuelle Produkte und Dienstleistungen für jeden Abnehmer – also massenhaft – anbietet, bei Preisen, die denen der massenhaft produzierten Standardprodukten ähneln. Dabei ist der Konfigurator ein wichtiges Element, das passende Produkt in einem Fixed Solution Space (Definierter Lösungsraum) zu erstellen. Die dahinterliegende Idee eines “Market of One” passt nicht so recht mit der Persona-Idee zusammen. Dazu habe ich folgendes gefunden:
“In many ways, a persona is the opposite of mass customization. It’s more traditional marketing thinking about how to deal with a larger number of segments. A “persona of one” is turning the persona idea to its opposite” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.
In Zeiten von Künstlicher Intelligenz wird es immer mehr Möglichkeiten geben, Produkte und Dienstleistungen massenhaft zu individualisieren und zu personalisieren. Ob die Verwendung von Persona in solchen eher agil durchzuführenden Projekten dann noch angemessen ist, scheint fraglich zu sein. Siehe dazu auch
Über Society 5.0 habe ich hier schon mehrfach geschrieben. Zu beachten ist, dass Society 5.0 sich von dem im deutschsprachigen Raum geläufigen Industry 4.0 oder Industry 5.0 unterscheidet. Siehe dazu Worin unterscheiden sich Industry 5.0 und Society 5.0?
Bei Society 5.0 steht der Mensch im Mittelpunkt, wobei die technologischen Möglichkeiten helfen sollen, die vielfältigen / multiplen komplexen Probleme zu lösen.
Das Konzept Society 5.0 wurde 2016 in Japan grob skizziert und 2019 konzeptionell veröffentlicht. Es ist erstaunlich, dass sich auch die Europäische Union daran orientieren will. Ein wichtiger Bestandteil der Society 5.0 ist auch Mass Customization, ein Konzept, das vor mehr als 30 Jahren von B. Joseph Pine skizziert wurde. Siehe dazu auch Freund, R. (2009): Kundenindividuelle Massenproduktion (PDF).
Ich finde es deshalb erstaunlich, da Mass Customization auf den jeweiligen Konferenzen immer wieder als Lösungsansatz dargestellt wurde, allerdings in vielen Bereichen nicht wirklich zu einem Durchbruch geführt hat. Die Hybride Wettbewerbsstrategie hat sich über die vielfältigen Konfiguratoren nur indirekt durchgesetzt. Was Mass Customization and Personalization im Kern bedeutet, ist vielen Organisationen immer noch nicht so ganz klar. Das sollte es aber, denn Mass Customization ist ein Eckpfeiler von Society 5.0:
Japan’s National Institute of Advanced Industrial Science and Technology report lists the following six topics as basic technologies for realizing Society 5.0: – Technology for enhancing human capabilities, fostering sensitivity, and enabling control within Cyber-Physical Systems (CPS). – AI hardware technology and AI application systems. – Self-developing security technology for AI applications. – Highly efficient network technology along with advanced information input and output devices. – Next-generation manufacturing system technology designed to facilitate mass customization. – New measurement technology tailored for digital manufacturing processes. Quelle: Wikipedia
Beispielhafte Darstellung der Wissenszuwachsvorhersage (Fischer et al. 2023)
Künstliche Intelligenz beeinflusst auf verschiedenen Ebenen auch die berufliche Weiterbildung. Ein wichtiger Bereich ist dabei die Personalisierung von Inhalten und Lernprozessen. In der Vergangenheit wurde das schon mit der Modularisierung von Inhalten zusammen mit entsprechenden Konfiguratoren umgesetzt. Kurz zusammenfasst lautet hier die Formel: Konfiguration von Learning Objects. Der ganze Bereich kann als Mass Customization and Personalization in der beruflichen Bildung gesehen werden.
Eines meiner ersten Paper dazu habe ich 2003 auf der ElearnChina vorgestellt. Dabei ging es mir schon damals darum, dass nicht das Objekt lernt (Learning Objects), sondern die jeweilige Person. Daher habe ich schon damals eine Verbindung zur Multiple Intelligenzen Theorie von Howard Gardner hergestellt.
Freund, R. (2003): Mass Customization in Education and Training, ELearnChina 2003, Edinburgh, Scotland. Download | Flyer | Speaker. Weitere Paper finden Sie in meinen Veröffentlichungen.
In der Zwischenzeit bietet die Künstliche Intelligenz darüber hinausgehend weitreichende Verbesserungen, z,B. durch die Verwendung von Markov-Ketten.
“Beispielsweise lassen sich über klassische Verfahren des maschinellen Lernens automatisiert Lernmaterialien oder Kurse empfehlen, die vor dem Hintergrund der bisherigen Bildungshistorie von Teilnehmenden häufig gewählt wurden (Markov-Ketten), besonders erfolgsversprechend sind (gewichtete Markov-Ketten) und/oder angesichts des Vorwissens und ggf. weiterer Variablen den größtmöglichen Wissenszuwachs versprechen (Wissenszuwachsvorhersage)” (Fischer et al. (2023).
Die Abbildung zeigt das prinzipielle Vorgehen. Diese Verfahren sind bei einer großen Datenbasis durchaus gut einsetzbar. Neben den content-bezogenen Möglichkeiten bieten solche Ansätze auch Unterstützung bei den jeweiligen Kollaborationssituationen.
Experten allerdings nutzen am Arbeitsplatz für die Problemlösung oftmals ihr “Gefühl/Gespür”, oder man sagt, sie haben einen “guten Riecher” für die Situation gehabt. Gerade in komplexen Problemlösungssituationen zeigen sich Grenzen der rationalen, scheinbar objektiven Analyse. Es kommt dann stattdessen auch auf die subjektiven Fähigkeiten eines Menschen an. Siehe dazu auch Kann Intuition als Brücke zwischen impliziten und expliziten Wissen gesehen werden?
Die hybride Wettbewerbsstrategie Mass Customization (Innovationsmanagement) kam ursprünglich aus dem verarbeitenden Gewerbe. Kernelement ist dabei ein definierter Lösungsraum (Fixed Solution Space) für Kunden, in dem mit Hilfe eines Konfigurators Produkte zusammengestellt werden können. Der Preis eines solchen Produkts sollte nicht wesentlich höher liegen, als der Preis für ein Standardprodukt. Dieser letzte Punkt wird oftmals allerdings nicht erreicht.
Dass Mass Customization nicht im verarbeitenden Gewerbe endet, haben wir erst gerade wieder auf der von uns initiierten Konferenz MCP CE(Mass Customization and Personalization Community Europe) gesehen. Weiterhin findet man auch in aktuellen Veröffentlichungen entsprechende Hinweise:
“Und wer vermutet hatte, zur Mass Customization im verarbeitenden Gewerbe enden würde, wurde eines Besseren belehrt. Heute lassen sich die Auswirkungen der Mass Customization auch in der Finanzdienstleistungsbranche beobachten. Beispiel gefällig? Digitale Anlagenhelfer, sogenannte Robo-Advisor, nehmen Sparern die Geldanlage umfassend ab, indem sie den Kunden fragen, wie viel Risiko er bereit ist einzugehen. Eine Software schlägt dann eine passende Geldanlage vor, und der Anbieter setzt diese dann technisch für den Kunden um” (Krieg/Groß/Bauernhansl (2024) (Hrsg.): Einstieg in die Mass Personalization. Perspektiven für Entscheider).
Die MCP-CE (Mass Customization and Personalization – Community of Europe) ist eine Konferenzreihe, die seit 2004 alle 2 Jahre stattfindet.
Die Idee zu dieser Konferenz hatte ich 2001 auf der ersten Weltkonferenz zu Mass Customization and Personalization (MCPC 2001), die an der Hong Kong University of Science and Technology (HKUST) stattfand.
Es freut uns sehr, dass die Idee über die Jahre hinweg von vielen unterstützt wurde, und wir somit in diesem Jahr sogar das 20-jährige Jubiläum feiern können.
Wir (Jutta und ich) werden vom 24.-27.09.2024 in Novi Sad mit dabei sein.
Die moderne Arbeitswelt benötigt die permanente, individuelle Unterstützung von Lernprozessen in der jeweiligen beruflichen Domäne. Das Lernen im Prozess der Arbeit wird in Zukunft immer wichtiger im Rahmen der Kompetenzentwicklung auf der individuellen Ebene, der Teamebene, der organisationalen Ebene und der Netzwerkebene.
Eine mögliche konkrete Umsetzung kann durch die Modularisierung von Inhalten und eine entsprechende Konfiguration erfolgen. Beide hervorgehobenen Begriffe sind Bestandteile der Hybriden Wettbewerbsstrategie Mass Customization and Personalization – hier übertragen auf den Bereich der beruflichen Weiterbildung.
Es wundert mich immer noch, dass diese Erkenntnisse heute noch hervorgehoben werden. Beispielhaft möchte ich den im letzten Jahr veröffentlichten Leitfaden Pabst et al. (2023): Modularisierung berufsbezogener Weiterbildung (PDF) erwähnen, der Modulare Bildung als Antwort auf den Wandel der Arbeitswelt herausstellt.
In den letzten mehr als zwei Jahrzehnten habe ich – neben verschiedenen anderen Autoren – dazu mehrere Konferenzpaper veröffentlicht, von denen ich hier nur einige wenige beispielhaft nennen möchte (Siehe Veröffentlichungen):
Freund, R.; Piotrowski, M. (2005): Mass Customization and Personalization in Adult Education and Training. In: Shyam Sunder Kambhammettu (Ed.): Mass Customization. Concepts and Applications, Le Magnus University Press, Hyderabad, India.
Freund, R.; Piotrowski, M. (2003): Mass Customization and Personalization in Adult Education and Training. 2nd Worldcongress on Mass Customization and Personalization MCPC2003, Munich, Germany.
Freund, R. (2003): Mass Customization in Education and Training, ELearnChina 2003, Edinburgh, Scotland.
Freund, R. (2001): Mass Customization in der beruflichen Bildung. Vortrag an der PH Freiburg im Rahmen der Weiterbildung zum Experten für neue Lerntechnologien (FH).
Dabei kam es mir immer darauf an, Customization und Personalization zu unterscheiden. In den Diskussionen um die Modularisierung von Inhalten, beispielsweise durch sogenannte Learning Objects usw., sollte m.E. deutlicher gemacht werden, dass es nicht Objekte sind, die lernen, sondern Personen (Learning Persons). Um Lernen auf allen Ebenen selbstgesteuert und selbstorganisiert zu ermöglichen, können Technologien wie Konfiguratoren, und jetzt natürlich auch Künstliche Intelligenz (KI) helfen.
In dem Praxisleitfaden Fischer et al (2023): KI-basierte Personalisierung berufsbezogener Weiterbildung stellen die Autoren verschiedene Aspekten vor. Der Bezug zur Hybriden Wettbewerbsstrategie Mass Customization and Personalization wird leider nicht hergestellt – schade.
Das Fraunhofer- Institut für Arbeitswirtschaft und Organisation IAO und die Deutshe Gesellschaft für Personalführung e.V. haben zusammen die Studie »Arbeiten nach der Corona-Pandemie – Ein Jahr danach« (2023, PDF) durchgeführt. Dort ist deutlich die Entwicklung zum hybriden Arbeiten in Deutschland zu erkennen.
»Auf der einen Seite belegt die Studie, dass die hybride Arbeitswelt Schwierigkeiten bei der Integration, Vernetzung und dem Wissensaustausch von Mitarbeitenden mit sich bringt. Auf der anderen Seite sehen wir, dass sowohl die Innovations- als auch Produktionskraft davon bisher unberührt bleiben. Vor diesem Hintergrund empfehlen wir Unternehmen, sich noch stärker mit ihrer Rolle als ›sozialem Ort‹ auseinanderzusetzen und die Fragen der Betriebsgemeinschaft und Identitätsstiftung zu klären, um eine langfristige Bindung und gemeinsame Innovationsfähigkeit sicherzustellen«.
Interessant finde ich in diesem Zusammenhang auch den Hinweis auf Entgrenzungseffekte, die in der Studie aus dem Jahr 2020 (PDF) thematisiert wurden: “die Arbeit zu unüblichen Tageszeiten (66 Prozent), Überstunden (65 Prozent), fragmentiertes Arbeiten (also Arbeiten früh morgens und dann mit langer Pause erst wieder abends (51 Prozent)) und für immerhin 35 Prozent die Arbeit am Wochenende” (ebd.). Die Entgrenzung von Arbeit ist Bestandteil des Übergangs von der einfachen zu einer eher Reflexiven Modernisierung. Dabei kommt es dann zu vielfältigen Entgrenzungen im Arbeitsprozess. Viele Blogbeiträge zum Thema “Hybrid” finden Sie hier.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.OK