Anmerkungen zum World Social Report 2025

Quelle: World Social Reports 2025

In der aktuellen Wahrnehmung der Themen in den öffentlichen und privaten Diskussionen geht es fast nur noch um die Möglichkeiten von technologischen Entwicklungen wie der Künstlichen Intelligenz. Es geht um die Entwicklung von Märkten, ganzer Branchen (Automobilindustrie, Landwirtschaft, Lebensmittel, Pharma…) und systemrelevanter Organisationen (Banken) usw. Darauf ist auch unsere Politik fokussiert. Lobbyisten gehen hier ein und aus, um die geplanten Gesetze im Sinne einer Branche oder eines großen Konzerns zu beeinflussen – was auch oft genug funktioniert. Es wundert einen schon, dass Politiker sich fragen, warum die Menschen kein Vertrauen mehr in ihre Arbeit haben.

An dieser Stelle muss ich etwas klarstellen: Ich bin Demokrat und überzeugter Europäer. Ich plädiere hier nicht für extreme politische Richtungen (links oder rechts).

All das ist eine Perspektive, in der sich einzelne Menschen, Gruppen von Menschen, oder auch ganze Gesellschaften anpassen, oder besser unterordnen sollen/müssen. Wehe, wenn sie das nicht machen, wie beispielsweise die Europäische Union, die sich doch mit dem EU AI ACT gegen die Forderungen der US-amerikanischen Politik und KI-Unternehmen stellt. Oder wenn sich kleine Künstler und Autoren darüber beschweren, dass ihnen die Large Language Models (LLMs) einfach so die Inhalte nehmen und damit Geld verdienen (Urheberrechte missachten). Aus den hier nur kurz zusammengefassten Entwicklungen, entsteht ein Bild, das in der eingangs dargestellten Grafik visualisiert ist.

Die Abbildung aus dem World Social Report 2025 der United Nations zeigt verschiedene Einflussfaktoren, die sich zu einem selbst-verstärkenden Generator vernetzen (Wirkungsnetz): Die aktuelle Situation in vielen Ländern hat zu immer mehr Misstrauen (Distrust) und zu mehr Polarisation (Polarization) geführt – und damit zu weniger Kooperationen (Lack of collective action) und zu einer politischen Lähmung (Policy paralysis). Daraus wiederum entstehen Ungleichheit (Inequality) und Unsicherheit (Unsecurity), was wieder zum Anfang führt usw.

Wie kommen wir aus dem Kreislauf heraus?

Es fängt damit an, auf allen Ebenen (Individuum, Gruppe, Organisation, Netzwerk, Gesellschaft) den Menschen mit seinen Anforderungen in den Mittelpunkt zu rücken.

Dass das aktuell nicht der Fall ist, möchte ich an einigen wenigen Beispielen aufzeigen: Ist es die Anforderung von Menschen, massenhaft industriell produzierte Lebensmittel angeboten zu bekommen, die teilweise krank machen, und bei dem ein großer Anteil auch noch weggeworfen wird? Im Gesundheitswesen bekommen viele Akteure nur Geld, wenn ich krank bin. Welches Interesse haben diese Akteure, dass ich gesund bin und gesund bleibe? Ähnliches kann man für das Bildungswesen oder für die politischen Strukturen formulieren. Ist es die Anforderung der Menschen, dass immer mehr politische Ebenen auf EU-, Bundes, Landes- und regionaler Ebene mit immer mehr Personal und unnötigen Schnittstellen aufgebaut werden? usw. usw. Es geht nicht um mehr Geld, sondern darum, die vorhandenen Ressourcen für das Wohl der menschlichen Gemeinschaft einzusetzen, und Strukturen, die im Industriezeitalter angemessen waren, an die heutige Lebenswirklichkeit anzupassen.

Heute können wir mit Hilfe neuer Technologien (Additive Manufacturing, Künstliche Intelligenz…) vieles davon erreichen. WIE so etwas aussehen kann, hat Japan schon vor einigen Jahren in der Society 5.0 skizziert und teilweise schon umgesetzt. Im April 2025 waren wir 10 Tage in Japan – auch auf der Expo 2025 in Osaka – wo Elemente des Konzepts gezeigt wurden.

Quelle: https://www8.cao.go.jp/cstp/english/society5_0/index.html (Abgerufen am 19.11.2022)

Cyberself, Persönlichkeit und analoges Selbst in digitalen Räumen

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Jede Person möchte seine Persönlichkeit, seine Kompetenz kommunizieren. Das passiert im analogen Raum genauso wie in digitalen Räumen. Mit Hilfe von digitalen Medien transportiert jeder moderne Mensch Fragmente seiner Persönlichkeit in unterschiedlichen digitalen Räumen. Dabei kann es durchaus passieren, dass die im Digitalen Raum 1 dargestellte Person, sich von der im Digitalen Raum 2 unterscheidet.

Andererseits ist diese Perspektive auch reflexiv zu sehen, denn die Interaktionen und Kommunikationen mit anderen wirken durchaus auch auf die eigene, digitale und analoge Person zurück. Dazu passt ganz gut der folgende Text:

“Das dadurch repräsentierte Selbst muss jedoch nicht zwangsläufig dem realen, analogen Selbst entsprechen, sondern kann auf eine bewusst optimierte Repräsentation hinauslaufen oder eine fiktive andere Gestalt annehmen. Zudem können sich Subjekte in diversen digitalen Netzwerken unterschiedlich repräsentieren. Auch Laura Robinson argumentiert, dass das Subjekt anhand der digitalen Elemente ein „self-ing“ betreibe und sich sodann als „Cyberself“ (2007, S. 98) hervorbringe. Das Cyberself sei ein ephemeres Selbst, so Robinson, welches nur für kurze Zeit beständig, rasch änderbar und ohne langfristige Bedeutung sei, da es sich stets in Abhängigkeit zu Handlungen bilde (vgl. ebd.)” (Rathmann 2022).

Es stellt sich für mich die Frage, wie sich beispielsweise die immer stärkere Nutzung von KI-Modellen auf das analoge Selbst und das Cyberself auswirkt. Wenn die Richtung der kommunikativen Wechselwirkungen auch reflexiv ist, sind KI-Modelle durchaus persönlichkeitsverändernd.

Das kann einerseits positiv zur eigenen Entwicklung beitragen, oder eben auch nicht. Bei den, von den amerikanischen Tech-Konzernen entwickelten Modellen, habe ich so meine Bedenken, da diese Modelle ein Mindset repräsentieren, dass für Menschen, und ganze Gesellschaften gravierende negative Folgen haben kann.

Die Intransparenz der bekannten Closed Sourced Modelle wie ChatGPT von OpanAI oder Gemini von Google etc. oder auch das von Elon Musk beeinflusste Modell Grok von X repräsentieren eine Denkhaltung, die auf ein von Technologie dominiertes Gesellschaftssystem ausgerichtet sind. Es stellt sich die Frage, ob wir das so wollen.

Siehe dazu auch Digitale Souveränität: Europa, USA und China im Vergleich und ausführlicher Maria Salvatrice Randazzo & Guzyal Hill (2025): Human dignity in the age of Artificial Intelligence: an overview of legal issues and regulatory regimes. Australien Journal of Human Rights, pages 386-408 | Received 28 Aug 2023, Accepted 12 Nov 2024, Published online: 23 Apr 2025

Wissen im Innovationsprozess analysieren

Eigene Darstellung; (c) Dr. Robert Freund

Wissen spielt im Innovationsprozess eine wichtige Rolle. Um dieses Wissen nutzen zu können, sollten Sie zunächst die verschiedenen Schritte des Innovationsprozesses notieren. In der Abbildung sehen Sie dazu ein Beispiel.

Anschließend können Sie zu den einzelnen Schritten die jeweils benötigte(n) Wissensdomäne(n) notieren. Siehe dazu ausführlicher

Fraunhofer IPK (2010): Standarddefinitionen für Wissensdomänen (PDF).

Weitere Spalten Ihrer Analyse sind dann noch Technologie (Wo findet man die Wissensdomänen in technischen Systemen?), Organisation (Wo findet man die Wissensdomänen in der Organisation?) und Mensch (Bei wem findet man dazu noch weitere Expertise – speziell implizites Wissen?).

Diese Vorgehensweise kann auch für andere Prozesse genutzt werden. Beispielsweise für Projektmanagement-Prozesse usw. . Der Ansatz ist relativ einfach und ist daher gerade für Kleine und Mittlere Unternehmen (KMU) geeignet.

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:

(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?

Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:

“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler (Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).

Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.

(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?

Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.

Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner  2002:46-47).

Insofern wäre dann der Vergliche zwischen Künstlicher Intelligenz und Multiplen Intelligenzen ein Kategorienfehler. Siehe dazu auch Künstliche Intelligenz – ein Kategorienfehler? Darin wird auch auf die sozialen und emotionalen Dimensionen bei Menschen hingewiesen.

(3) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlichen Kompetenzen ein Kategorienfehler?

Wenn wir Künstliche Intelligenz mit Menschlichen Kompetenzen vergleichen, vergleichen wir auch indirekt die beiden Konstrukte “Intelligenz” und “Kompetenz. In dem Beitrag Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen? finden Sie dazu ausführlichere Anmerkungen.

Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?

Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.

“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).

Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Versuch einer Einordnung: Menschliche Intelligenz, Hybride Intelligenz, Künstliche Intelligenz

Artificial Intelligence in relation to human intelligence (Hossein Jarrahi et al. 2022, https://doi.org/10.1177/20539517221142824

Der Begriff “Intelligenz” wird in der aktuellen Diskussion um Künstliche Intelligenz (Artificial Intelligence) immer wichtiger. Dabei gibt es oft zwei Argumentations-Pole, die sich scheinbar unüberbrückbar gegenüberstehen:

Zunächst ist da der Standpunkt, dass Künstliche Intelligenz (Technologie) in Zukunft auch die Menschliche Intelligenz umfassen wird. Demgegenüber gibt es die Perspektive, dass die Menschliche Intelligenz Elemente enthält, die (noch) nicht von Technologie (Künstlicher Intelligenz) ersetzt werden kann.

In der Zwischenzeit setzt sich – wie so oft – immer stärker die Auffassung durch, dass es durchaus Sinn machen kann, eine Art Hybride Intelligenz zu thematisieren, also eine Art Schnittmenge zwischen Menschlicher und Künstlicher Intelligenz. In der Abbildung ist diese Sicht auf Intelligenz dargestellt.

“Put simply, humans possess “general intelligence” in being able to comprehend and analyze various situations and stimuli, to ideate, create and imagine. The intelligence projected by AI systems is predominantly task-centered (Narayanan and Kapoor, 2022)” (Hossein Jarrahi et al. 2022).

Ergänzen möchte ich an dieser Stelle, dass hier der Begriff “general intelligence” bei der Menschlichen Intelligenz wohl auf den Intelligenz-Quotienten verweist, der allerdings in der Gesamtdiskussion wenig hilfreich erscheint. In dem Beitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? wird deutlich, dass aktuelle KI-Modelle schon locker entsprechende Intelligenz-Tests bestehen.

Meines Erachtens scheint es immer wichtiger zu sein, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern Dieses Verständnis hätte eine bessere Passung zu der aktuellen Entwicklung.

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Menschliches Verhalten operiert mit einem speed limit von 10 bits/s. Was bedeutet das?

Jede Sekunde prasseln auf uns eine Unmenge an Daten ein. Zheng und Meister (2024) vom California Institute of Technology haben in ihrem Paper The Unbearable Slowness of Being: Why do we live at 10 bits/s? (PDF) dazu analysiert, dass der gesamte menschliche Körper eine Datenmenge von 109 bits/s absorbieren kann. Die Autoren nennen das “outer brain“.

Dabei stellt sich natürlich gleich die Frage, ob ein Mensch diese Menge auch zeitgleich verarbeiten kann. Die Antwort: Das ist nicht der Fall. Um existieren/leben zu können, müssen wir viele der äußeren Reize / Daten ausblenden. Doch wie viele Daten benötigen wir Menschen bei unserem Verhalten (“inner brain“, ebd.) pro Sekunde? Auch hier geben die Autoren eine deutliche Antwort:

“Human behaviors, including motor function, perception, and cognition, operate at a speed limit of 10 bits/s. At the same time, single neurons can transmit information at that same rate or faster. Furthermore, some portions of our brain, such as the peripheral sensory regions, clearly process information dramatically faster” (Zheng und Meister 2024).

Die Evolution hat gezeigt, dass es für den Menschen von Vorteil ist, gegenüber der absorbierbaren Datenflut (outer brain) ein innerliches Regulativ (inner brain) zu haben. Wir haben in der Vergangenheit auch unsere gesamte Infrastruktur (Straßen, Brücken usw.) auf die 10 bits/s ausgerichtet. Was ist, wenn wir die Infrastruktur auf die neuen technologischen Möglichkeiten ausrichten? Ist der Mensch dann darin eher ein Störfaktor?

Meines Erachtens sollten wir nicht immer versuchen, den Menschen an die neuen technologischen Möglichkeiten anzupassen, sondern die technologischen Möglichkeiten stärker an die menschlichen (inkl. Umwelt) Erfordernisse adaptieren. Aktuell geht die weltweite Entwicklung immer noch zu stark von der Technologie und den damit verbundenen “Märkten” aus. Eine mögliche Alternative sehe ich in der von Japan vor Jahren schon propagierten Society 5.0.

Hybride Intelligenz: Zusammenspiel von Mensch, Maschine und Künstlicher Intelligenz

Wenn es um zu lösende Probleme in einem beruflichen Umfeld geht, so gibt es dabei sehr viele einzelne Aufgaben, die im Zusammenspiel von Menschen, Maschinen und Künstlicher Intelligenz gelöst werden können. Welche “Konfiguration” dabei angemessen erscheint, ist Abhängig vom Kontext, dem Task (Aufgabe) und den vorhandenen Problemlösungspotentialen. An dieser Stelle kommt der Begriff Hybride Intelligenz ins Spiel.

“Dellermann, Ebel, Söllner und Leimeister (2019: 638) definieren hybride Intelligenz als die Fähigkeit, komplexe Ziele durch die Kombination menschlicher und künstlicher Intelligenz zu erreichen, kontinuierlich voneinander zu lernen und dabei Ergebnisse zu produzieren, die über das hinaus gehen, was KI oder Mensch allein hätten erreichen können. Nicht immer lässt sich hierbei trennscharf zwischen Automation und Augmentation unterscheiden (Raisch & Krakowski, 2021). Der Grad der Automation bzw. Augmentation hängt immer individuell von der jeweiligen zu lösenden Aufgabe ab” (Piller et al. 2024, in Koller et al. 2024: Die Zukunft der Grenzenlosen Unternehmung).

Was allerdings unter “Menschlicher Intelligenz” verstanden wird, ist dabei nicht weiter erläutert. Ich gehe daher davon aus, dass von dem bekannten Intelligenzquotienten (IQ) ausgegangen wird, der sich in einer Zahl manifestiert. Dass das im Zusammenhang mit den Entwicklungen bei der Künstlichen Intelligenz kritisch sein kann, wird in dem Blogbeitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? deutlich.

Wenn wir weiterhin beachten, dass auch der Intelligenz-Begriff erweitert werden sollte, können wir möglicherweise auch von einer Multiplen Künstlichen Intelligenz sprechen. Siehe dazu auch Multiple Artificial Intelligences (MAI) statt Artificial General Intelligence (AGI)?

Wie hängen “Menschenorientierung” und Resilienz einer Organisation zusammen?

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

In einer Organisation sind Abläufe, Rollen und Strukturen festgelegt. So ein System kann sehr starr werden, wenn sich alle strikt an diese Vorgaben halten. Das System ist dann unflexibel und wenig robust gegenüber äußeren Veränderungen. Es ist in der heutigen Zeit (VUKA) wichtig, dass Organisationen in diesem Sinne resilient sind.

“Resilienz ist das Vermögen eines dynamischen Systems, sich erfolgreich Störungen anzupassen, die seine Funktion, Lebensfähigkeit oder Entwicklung bedrohen” (Masten 2016, zitiert in Hüsselmann 2024).

Die Abläufe (Prozesse), Rollen und Strukturen in Organisationen beweglicher, veränderbarer, adaptiver zu gestalten, ist ein erster wichtiger Schritt. Dabei kommt es allerdings nicht nur auf die organisatorischen Veränderungen (Organisation) und auf die technologische Unterstützung (Technik) dabei an, sondern auch auf die Menschen in diesem System (Mensch). Wie wichtig eine “Menschenorientierung” ist, wird im folgenden Text im Zusammenhang einen Projektportfoliomanagements (PPM) hervorgehoben:

“Die »Menschenorientierung« fordert daher, dass der Mensch immer im Zentrum des PPM-Systems bzw. der PPM-Organisation stehen sollte. Wenn diese menschliche Dimension vernachlässigt wird und stattdessen zu viel Fokus auf strikte Regularien und Prozesse gelegt wird, wird das System letztendlich wenig robust (resilient) oder sogar instabil (z. B. Fluktuation) und erfolglos werden. In der Konsequenz ist ein ausgewogenes Verhältnis zwischen klaren Richtlinien und menschenzentrierter Flexibilität erforderlich” (Hüsselmann 2024).

In der aktuellen Diskussion um neue technologische Möglichkeiten wie der Künstlichen Intelligenz, kommt dieser Aspekt manchmal etwas zu kurz. Siehe dazu auch Durchschnittliches Resilienzprofil der Ausgezeichneten des „Großen Preises des Mittelstandes“.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Gedanken zur Frage: Warum fällt uns die Zusammenarbeit mit anderen so schwer?

In den letzten mehr als 100 Jahren hat sich die Arbeitsteilung in allen Bereichen der Gesellschaft etabliert. Es stellte sich dabei immer stärker heraus, dass es besser (wirtschaftlicher) ist, komplexe Themen, Prozesse, Produkte zu zerteilen und diese Teilsysteme dann massenhaft effektiv und effizient abzuarbeiten. Das führte zu Skaleneffekte, die kleine Betriebe nicht mehr abbilden konnten.

Es entwickelten sich beispielsweise Produktionsbetriebe, die sich immer weiter spezialisierten. Immer mehr Abteilungen wurden erforderlich, die großen Wert auf das Trennende legten. Jede Abteilung denkt in diesem Umfeld an sich und handelt für sich. Das färbte auch auf die Menschen ab, die fortan mehr an sich als an die Gemeinschaft dachten, und auch heute noch denken. Die Abbildung zeigt die Entwicklung dieser Tayloristischen Arbeitsteilung von Kleinbetrieb bis zum großen Produktionsbetrieb. (Massenproduktion).

Der arbeitsteilige Industriebetrieb (Metzger/Gründler 1994: Zurück auf Spitzenniveau)

Das Trennende wurde allerdings nicht nur in der Produktion umgesetzt, sondern auch in der Politik (Bundesministerien, Ländergrenzen, Grenzen bei den Kommunen) und bei Dienstleistungen. Das gesamte System war darauf ausgerichtet, Standardprodukte und Standarddienstleistungen in großer Zahl effektiv und effizient anzubieten und durchzuführen.

In den letzten Jahrzehnten kam es allerdings global zu immer mehr Vernetzungen von technischen Systemen (Informations- und Kommunikationssystemen), Verkehrswegen (Bahn, Schiff, Flugzeug…), von Personen untereinander, Personen und Dingen, Dingen mit Dingen usw. – das Internet der Dinge ist hier nur ein Schlagwort. Solche Vernetzungen führten zu immer komplexeren Anforderungen an Produkte und Dienstleistungen, die in den etablierten Strukturen kaum noch mit dem nötigen Tempo abgearbeitet werden konnten.

Mit projektorientierter Arbeit über die Grenzen der Abteilungen, und mit der intensiveren Zusammenarbeit mit externen Partnern und Kunden, konnten sich Organisationen auf diese neuen Herausforderungen einstellen (Projekte sind Träger des Wandels). Gesellschaftlich sehen wir diese Adaption in der Politik leider noch nicht. Alle Bürger und Organisationen sollen sich anpassen, die politische Struktur bleibt noch wie sie ist. Dass diese Situation zu Spannungen und Verwerfungen führt, ist offensichtlich.

Darüber hinaus müssen wir alle, die in einer Tayloristischen Arbeitswelt aufgewachsen sind, bzw. auch noch aufwachsen, lernen, wieder mit anderen zusammenzuarbeiten. Der Mensch ist per ein soziales Wesen, das auch an das Wohl anderer Menschen denkt, und entsprechend handelt. Nicht umsonst engagieren sich viele Menschen ehrenamtlich, helfen in der Not anderen Menschen, arbeiten kostenlos in Open-Source-Projekten mit, oder entwickeln frei verfügbare Innovationen, die sie anderen kostenlos zur Verfügung stellen (Open User Innovation).

Durch die Anpassung der Menschen an die Maschinenwelt sind diese Eigenschaften von Menschen etwas “überdeckt” worden. Es wird Zeit, dass diese menschlichen Seiten wieder unser Zusammenleben dominieren.

Vermindert der Einsatz Künstlicher Intelligenz menschliche Fähigkeiten?

Wenn wir ein Navigationssystem nutzen hilft uns das, schnell und bequem unser Ziel zu erreichen. Andererseits vermindert sich dadurch auch die menschliche Fähigkeit, sich zu orientieren. Die Nutzung eines Autos hilft uns, große Strecken zurückzulegen, doch vermindert es auch unsere körperlichen Fähigkeiten. Die Nutzung eines Computers erleichtert uns die Bearbeitung von Zahlenkolonnen, doch reduziert es auch unsere Rechen-Fähigkeiten. Die Nutzung von Suchmaschinen wie Google hat es uns erleichtert, Daten und Informationen schnell zu finden. Manche Fähigkeiten der Recherche und des Prüfens von Daten und Informationen bleiben hier manchmal wegen den schnellen Zyklen der Veränderungen auf der Strecke.

Warum sollten diese Effekte also bei der Nutzung von Künstlicher Intelligenz anders sein?

“Eine grundlegende Erkenntnis besagt, dass jedes technische Hilfsmittel die Fähigkeiten der Kombination «Mensch-Tool» zwar erhöht, jene des Menschen alleine aber potenziell vermindert (every augmentation is also an amputation, frei nach Marshall McLuhan)” (Digital Society Initiative 2023)

Im Kontext der universitären Bildung haben Forscher ermittelt, welche menschlichen Fähigkeiten in Zukunft in einem von KI dominierten Umfeld erhalten und gestärkt werden sollten (vgl. Digital Society Initiative 2023):

Grundlegende technische Fähigkeiten in Bezug auf KI-Technologien.

Sozialisationsfähigkeiten: Soziales Lernen, Einfühlungsvermögen, Resilienz und effektives
Teamwork gefördert werden. Dies bedingt auch ein Verständnis und eine Reflexion über ethische Werte und wissenschaftlichen Ethos.

Kritisches Denken: Kritische Diskurs, das Denken in Modellen und Abstraktionen sowie die Fähigkeit zur multiperspektivischen Kognition und Analyse.

Handeln unter Unsicherheit: Um mit der Geschwindigkeit des technischen Fortschritts (und auch den bekannten globalen Herausforderungen wie z.B. dem Klimawandel) umgehen zu können, sind Fähigkeiten zu fördern, welche das Handeln unter Unsicherheit erleichtern. Unter anderem zu nennen ist hier eine Schulung der Intuition und abstraktes Problemlösen.

Anmerken muss ich an dieser Stelle, dass persönliche Fähigkeiten nicht mit Persönlichkeitseigenschaften gleich gesetzt werden sollten. Siehe dazu auch Über den Umgang mit Ungewissheit. Es geht hier darum, dass gerade der Mensch als soziales und emotionales Wesen komplexe Problemlösungssituationen besser bewältigen kann, als es Technologie vermag. Wie ein Idealszenario der Arbeitsteilung zwischen menschlicher und künstlicher Intelligenz aussehen kann, lesen Sie in diesem Blogbeitrag.