Künstliche Intelligenz im Projektmanagement: Ethische Kompetenz für die Projektleitung?

In allen Projekten werden mehr oder weniger oft digitale Tools, bzw. komplette Kollaborationsplattformen eingesetzt. Hinzu kommen jetzt immer stärker die Möglichkeiten der Künstlicher Intelligenz im Projektmanagement (GenAI, KI-Agenten usw.).

Projektverantwortliche stehen dabei vor der Frage, ob sie den KI-Angeboten der großen Tech-Konzerne vertrauen wollen – viele machen das. Immerhin ist es bequem, geht schnell und es gibt auch gute Ergebnisse. Warum sollte man das hinterfragen? Möglicherweise gibt es Gründe.

Es ist schon erstaunlich zu sehen, wie aktuell Mitarbeiter ChatGPT, Gemini usw. mit personenbezogenen Daten (Personalwesen) oder auch unternehmensspezifische Daten (Expertise aus Datenbanken) füttern, um schnelle Ergebnisse zu erzielen – alles ohne zu fragen: Was passiert mit den Daten eigentlich? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Je innovativer ein Unternehmen ist, desto einzigartiger sind seine Daten. Was mit diesen Daten dann passiert, ist relativ unklar. Es wundert daher nicht, dass nur ein kleiner Teil der Unternehmensdaten in den bekannten LLM (Large Language Models) zu finden ist. Siehe dazu Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden.

Es stellt sich zwangsläufig die Frage, wie man diesen Umgang mit den eigenen Daten und das dazugehörende Handeln bewertet. An dieser Stelle kommt der Begriff Ethik ins Spiel, denn Ethik befasst sich mit der “Bewertung menschlichen Handelns” (Quelle: Wikipedia). Dazu passt in Verbindung zu KI in Projekten folgende Textpassage:

“In vielen Projektorganisationen wird derzeit intensiv darüber diskutiert, welche Kompetenzen Führungskräfte in einer zunehmend digitalisierten und KI-gestützten Welt benötigen. Technisches Wissen bleibt wichtig – doch ebenso entscheidend wird die Fähigkeit, in komplexen, oft widersprüchlichen Entscheidungssituationen eine ethisch fundierte Haltung einzunehmen. Ethische Kompetenz zeigt sich nicht nur in der Einhaltung von Regeln, sondern vor allem in der Art, wie Projektleitende mit Unsicherheit, Zielkonflikten und Verantwortung umgehen” (Bühler, A. 2025, in Projektmanagement Aktuell 4/2025).

Unsere Idee ist daher, eine immer stärkere eigene Digitale Souveränität – auch bei KI-Modellen. Nextcloud, LocalAI, Ollama und Langflow auf unseren Servern ermöglichen es uns, geeigneter KI-Modelle zu nutzen, wobei alle generierten Daten auf unseren Servern bleiben. Die verschiedenen KI-Modelle können farbig im Sinne einer Ethical AI bewertet werden::

Quelle: https://nextcloud.com/de/blog/nextcloud-ethical-ai-rating/

Digitale Souveränität: Mit Langflow einen einfachen Flow mit Drag & Drop erstellen

Eigener Screenshot vom Langflow-Arbeitsbereich, inkl. der Navigation auf der linken Seite

Langflow haben wir als Open Source Anwendung auf unseren Servern installiert. Mit Langflow ist es möglich, Flows und Agenten zu erstellen – und zwar einfach mit Drag&Drop. Na ja, auch wenn es eine gute Dokumentation und viele Videos zu Langflow gibt, steckt der “Teufel wie immer im Detail”.

Wenn man mit Langflow startet ist es erst einmal gut, die Beispiele aus den Dokumentationen nachzuvollziehen. Ich habe also zunächst damit begonnen, einen Flow zu erstellen. Der Flow unterscheidet sich von Agenten, auf die ich in den nächsten Wochen ausführlicher eingehen werde.

Wie in der Abbildung zu sehen ist, gibt es einen Inputbereich, das Large Language Model (LLM) oder auch ein kleineres Modell, ein Small Language Model (SLM). Standardmäßig sind die Beispiele von Langflow darauf ausgerichtet, dass man OpenAI mit einem entsprechenden API-Key verwendet. Den haben wir zu Vergleichszwecken zwar, doch ist es unser Ziel, alles mit Open Source abzubilden – und OpenAI mit ChatGPT (und andere) sind eben kein Open Source AI.

Um das zu erreichen, haben wir Ollama auf unseren Servern installiert. In der Abbildung oben ist das entsprechende Feld im Arbeitsbereich zu sehe,n. Meine lokale Adresse für die in Ollama hinterlegten Modelle ist rot umrandet unkenntlich gemacht. Unter “Model Name” können wir verschiedene Modelle auswählen. In dem Beispiel ist es custom-llama.3.2:3B. Sobald Input, Modell und Output verbunden sind, kann im Playground (Botton oben rechts) geprüft werden, ob alles funktioniert. Das Ergebnis sieht so aus:

Screenshot vom Playground: Ergebnis eines einfachen Flows in Langflow

Es kam mir jetzt nicht darauf an, komplizierte oder komplexe Fragen zu klären, sondern überhaupt zu testen, ob der einfache Flow funktioniert. Siehe da: Es hat geklappt!

Alle Anwendungen (Ollama und Langflow) sind Open Source und auf unseren Servern installiert. Alle Daten bleiben auf unseren Servern. Wieder ein Schritt auf dem Weg zur Digitalen Souveränität.

Künstliche Intelligenz: Mit der OLMo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben

Eigener Screenshot: olmo2 istalliert in Ollama auf unserem Server

Auf unseren Servern haben wir LocalAI installiert, das wir über den Nextcloud Assistenten in allen Nextcloud-Anwendungen nutzen können. Dabei bleiben alle Daten auf unserem Server.

Weiterhin arbeiten wir an KI-Agenten, die wir in Langflow entwickeln. Dazu greifen wir auf Modelle zurück, die wir in Ollama installiert haben. Auch Langflow und Ollama sind auf unserem Servern installiert, sodass auch hier alle Daten bei uns bleiben.

In Ollama haben wir nun ein weiteres Modell installiert, das aus einer ganzen OLMo2-Familie stammt. In der Abbildung ist zu erkennen, dass wir OLMo2:latest installiert haben. Wir können nun auch das Modell in Ollama testen und dann später – wie schon angesprochen – in Langflow in KI-Agenten einbinden.

Alle Modelle, die wir auf unseren Servern installieren, sollen den Anforderungen einer Open Source AI entsprechen. Manchmal nutzen wir auch Open Weights Models, um zu Testzwecken die Leistungsfähigkeit verschiedener Modelle zu vergleichen. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

Das Modell OLMo2:latest ist ein Modell, aus einer Modell-Familie, dass im wissenschaftlichen Umfeld / Forschung eingesetzt werden kann.

“OLMo is Ai2’s first Open Language Model framework, intentionally designed to advance AI through open research and to empower academics and researchers to study the science of language models collectively” (Ai2-Website).

An diesem Beispiel zeigt sich, dass es einen Trend gibt: Weg von einem Modell, das alles kann – one size fits all. In Zukunft werden immer mehr Modelle gefragt und genutzt werden. die sich auf eine bestimmte berufliche Domäne (Forschung, Wissenschaft etc.) fokussieren und dadurch bessere Ergebnisse erzielen und weniger Ressourcen benötigen.

Siehe dazu auch KI-Modelle: Von “One Size Fits All” über Variantenvielfalt in die Komplexitätsfalle?

Künstliche Intelligenz: Das Modell GRANITE in unsere LocalAI eingebunden

Screenshot von unserer LocalAI-Installation: Selected Model Granite 3.0

In dem Beitrag Künstliche Intelligenz: Würden Sie aus diesem Glas trinken? ging es um die Frage, ob man KI-Modellen vertrauen kann. Bei den Closed Source Models der Tech-Konzerne ist das kaum möglich, da die Modelle gar nicht, bzw. kaum transparent sind und nicht der Definition von Open Source AI entsprechen.

Wenn aber der erste Schritt zur Nutzung von Künstlicher Intelligenz Vertrauen sein sollte (Thomas et al. 2025), sollte man sich als Privatperson, als Organisation, bzw. als Verwaltung nach Alternativen umsehen.

Wie Sie als Leser unseres Blogs wissen, tendieren wir zu (wirklichen) Open Source AI Modellen, doch in dem Buch von Thomas et al. (2025) ist mir auch der Hinweis auf das von IBM veröffentlichte KI-Modell Granite aufgefallen. Die quelloffene Modell-Familie kann über Hugging Face, Watsonx.ai oder auch Ollama genutzt werden.

Das hat mich neugierig gemacht, da wir ja in unserer LocalAI Modelle dieser Art einbinden und testen können. Weiterhin haben wir ja auch Ollama auf unserem Server installiert, um mit Langflow KI-Agenten zu erstellen und zu testen.

Im Fokus der Granite-Modellreihe stehen Unternehmensanwendungen, wobei die kompakte Struktur der Granite-Modelle zu einer erhöhten Effizienz beitragen soll. Unternehmen können das jeweilige Modell auch anpassen, da alles über eine Apache 2.0-Lizenz zur Verfügung gestellt wird.

Wie Sie der Abbildung entnehmen können, haben wir Granite 3.0 -1b-a400m in unsere lokale KI (LocalAI) eingebunden. Das geht relativ einfach: Wir wählen aus den aktuell mehr als 1.000 Modellen das gewünschte Modell zunächst aus. Anschließend brauchen wir nur auf “Installieren” zu klicken, und das Modell steht in der Auswahl “Select a model” zur Verfügung.

Im unteren Fenster (Send a message) habe ich testweise “Stakeholder for the project Website” eingegeben. Dieser Text erscheint dann blau hinterlegt, und nach einer kurzen Zeit kommen dann schon die Ergebnisse, die in der Abbildung grün hinterlegt sind. Wie Sie am Balken am rechten Rand der Grafik sehen können, gibt es noch mehrere Stakeholder, die man sieht, wenn man nach unten scrollt.

Ich bin zwar gegenüber Granite etwas skeptisch, da es von IBM propagiert wird, und möglicherweise eher zu den Open Weighted Models zählt, doch scheint es interessant zu sein, wie sich Granite im Vergleich zu anderen Modellen auf unserer LocalAI-Installation schlägt.

Bei allen Tests, die wir mit den hinterlegten Modellen durchführen, bleiben die generierten Daten alle auf unserem Server.

Digitale Souveränität: Was macht ihr denn so mit eurer Nextcloud? Antwort: Immer mehr!

Screenshot unserer Nextcloud-Startseite

Digitale Abhängigkeit kann für Personen, Organisationen oder ganze Gesellschaften kritisch sein. In Zeiten der Trump-Administration und der massiven Marktbeherrschung bei Software, Cloud-Anwendungen und Künstlicher Intelligenz durch US-amerikanische Tech-Konzerne wird es Zeit, auf allen Ebenen über Digitale Souveränität nachzudenken, und entsprechend zu handeln.

Zum Beispiel mit: Sovereign Workplace: Der unabhängige Arbeitsplatz auf integrierter Open Source Basis. Weiterhin wird vielen Verwaltungen in der Zwischenzeit klar, wie viel Geld an Rahmenverträgen, Lizenzen und Software an Big-Tech gezahlt werden muss. Es sind 13,6 Milliarden Euro pro Jahr (Quelle: Golem 04.07.2025).

In der Zwischenzeit gibt es viele Open Source Anwendungen die als Alternativen zur Verfügung stehen. Das dänische Digitalministerium ersetzt beispielsweise Microsoft Office durch Libre Office, Schleswig-Holstein setzt in der Verwaltung auf Nextcloud usw. usw.

Wir haben diese Entwicklung schon vor Jahren kommen sehen, und uns langsam aber sicher ein eigenes Open-Source-Ökosystem zusammengestellt, das wir immer stärker nutzen und ausbauen – Schritt für Schritt.

(1) Zunächst haben wir Nextcloud auf unseren Servern installiert. Damit konnten wir die bekannten Microsoft-Anwendungen, inkl. MS-Teams (jetzt mit Nextcloud Talk), Whiteboard, usw. ersetzen. Dateien können auch kollaborativ, also gemeinsam, bearbeitet werden. Siehe dazu beispielsweise auch Google Drive im Vergleich zu Nextcloud. Alle Möglichkeiten der Nextcloud finden Sie unter https://nextcloud.com/.

(2) Anschließend haben wir OpenProject auf unseren Servern installiert und mit unserer Nextcloud verknüpft. Wir können damit Plangetriebenes Projektmanagement, Hybrides und Agiles Projektmanagement abbilden. Die Integration mit unserer Nextcloud bietet die Möglichkeit, aus OpenProject heraus die komplette Dateiverwaltung in Nextcloud zu verwalten: Projektarbeit mit Nextcloud: Dateien kollaborativ organisieren und bearbeiten.

(3) Danach haben wir den Nextcloud-Assistenten integriert, sodass wir in jeder Nextcloud-Anwendung den Assistenten mit seinen verschiedenen Funktionen nutzen können; inkl. eines Chats mit hinterlegter lokaler Künstlichen Intelligenz – LocalAI (Siehe Punkt 5).

(4) Mit Nextcloud Flow können wir Abläufe automatisieren. Zunächst natürlich Routineabläufe, und wenn es komplexer wird mit KI-Agenten (Siehe Punkt 6).

(5) Eine weitere wichtige Ergänzung war dann LocalAI, das uns lokale KI-Anwendungen auf unserem Server ermöglicht – eingebunden in den Nextcloud-Assistenten (Siehe Punkt 3) Alle Daten bleiben auch hier auf unseren Servern.

(6) Aktuell arbeiten und testen wir KI-Agenten auf Open-Source-Basis. Dabei verknüpfen wir über Ollama eine ausgewählte Trainingsdatenbank (Large Language Model oder Small Language Model – alles natürlich Open Source AI) mit unseren eigenen Daten, die in unserer Nextcloud zur Verfügung stehen. Dafür verwenden wir aktuell Langflow, das auch auf unserem Servern installiert ist – auch diese Daten bleiben alle bei uns.

(…..) und das ist noch lange nicht das Ende der Möglichkeiten. Sprechen Sie uns gerne an, wenn Sie zu den genannten Punkten Fragen haben.

RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Gerade Kleine und Mittlere Unternehmen (KMU) können es sich oftmals nicht leisten, eigene Trainingsmodelle (Large Language Models) zu entwickeln. KMU greifen daher gerne auf bekannte Modelle wie ChatGPT usw. zurück.

Es wird allerdings gerade bei innovativen KMU immer klarer, dass es gefährlich sein kann, eigene Datenbestände in z.B. ChatGPT einzugeben. Da diese Modelle nicht transparent sind ist unklar, was mit den eigenen Daten passiert.

Eine Möglichkeit aus dem Dilemma herauszukommen ist, RAG (Retrieval-Augmented Generation) zu nutzen – also ein Basismodell mit einer internen Wissensbasis zu verknüpfen:

Retrieval-Augmented Generation (RAG): Bei RAG wird ein Basismodell wie GPT-4, Jamba oder LaMDA mit einer internen Wissensbasis verknüpft. Dabei kann es sich um strukturierte Informationen aus einer Datenbank, aber auch um unstrukturierte Daten wie E-Mails, technische Dokumente, Whitepaper oder Marketingunterlagen handeln. Das Foundation Model kombiniert die Informationen mit seiner eigenen Datenbasis und kann so Antworten liefern, die besser auf die Anforderungen des Unternehmens zugeschnitten sind” (heise business services (2024): KI für KMU: Große Sprachmodelle erfolgreich einsetzen – mit Finetuning, RAG & Co.).

Wir gehen noch einen Schritt weiter, indem wir (1) einerseits LocalAI und Open Source AI mit einem Assistenten nutzen, und (2) darüber hinaus mit Hilfe von Ollama und Langflow eigene KI-Agenten entwickeln, die auf Basis von Open Source AI Modellen und beliebig konfigurierbaren eigenen Input einen gewünschten Output generieren In dem gesamten Prozess bleiben alle Daten auf unserem Server.

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Künstliche Intelligenz (KI oder AI: Artificial Intelligence) einzusetzen ist heute in vielen Organisationen schon Standard. Dabei nutzen immer noch viele die von den kommerziellen Anbietern angebotenen KI-Systeme. Dass das kritisch sein kann, habe ich schon in vielen Blogbeiträgen erläutert.

Wir wollen einen anderen Weg, aufzeigen, der die Digitale Souveränität für Organisationen und Privatpersonen ermöglicht: Open Source AI und eine Open Source Kollaborationsplattform. Siehe dazu Von der digitalen Abhängigkeit zur digitalen Souveränität.

Im ersten Schritt haben wir unsere NEXTCLOUD über einen ASSISTENTEN mit Künstlicher Intelligenz verknüpft, wobei alle Daten auf unserem Server bleiben. Siehe LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten.

Im zweiten Schritt haben wir für die Entwicklung von AI-Agenten Langflow (Open Source) auf unserem Server installiert. Dabei ist es möglich, ChatGPT von OpenAI, oder über Ollama sehr viele unterschiedliche Open Source Modelle zu nutzen. Wir wollen natürlich den zweiten Weg gehen und haben daher Ollama auf unserem Server installiert.

Ollama Startseite auf unserem Server: Eigener Screenshot

In der Abbildung ist zu sehen, dass wir für den ersten Test zunächst vier Modelle installiert haben, inkl. DeepSeek-R1 und LLama 3.2. Demnächst werden wir noch weitere Modelle installieren, die wir dann in Langflow integrieren, um AI-Agenten zu entwickeln. In den kommenden Wochen werden wir über die Erfahrungen berichten.