Digitale Souveränität: Mit Langflow einen einfachen Flow mit Drag & Drop erstellen

Eigener Screenshot vom Langflow-Arbeitsbereich, inkl. der Navigation auf der linken Seite

Langflow haben wir als Open Source Anwendung auf unseren Servern installiert. Mit Langflow ist es möglich, Flows und Agenten zu erstellen – und zwar einfach mit Drag&Drop. Na ja, auch wenn es eine gute Dokumentation und viele Videos zu Langflow gibt, steckt der “Teufel wie immer im Detail”.

Wenn man mit Langflow startet ist es erst einmal gut, die Beispiele aus den Dokumentationen nachzuvollziehen. Ich habe also zunächst damit begonnen, einen Flow zu erstellen. Der Flow unterscheidet sich von Agenten, auf die ich in den nächsten Wochen ausführlicher eingehen werde.

Wie in der Abbildung zu sehen ist, gibt es einen Inputbereich, das Large Language Model (LLM) oder auch ein kleineres Modell, ein Small Language Model (SLM). Standardmäßig sind die Beispiele von Langflow darauf ausgerichtet, dass man OpenAI mit einem entsprechenden API-Key verwendet. Den haben wir zu Vergleichszwecken zwar, doch ist es unser Ziel, alles mit Open Source abzubilden – und OpenAI mit ChatGPT (und andere) sind eben kein Open Source AI.

Um das zu erreichen, haben wir Ollama auf unseren Servern installiert. In der Abbildung oben ist das entsprechende Feld im Arbeitsbereich zu sehe,n. Meine lokale Adresse für die in Ollama hinterlegten Modelle ist rot umrandet unkenntlich gemacht. Unter “Model Name” können wir verschiedene Modelle auswählen. In dem Beispiel ist es custom-llama.3.2:3B. Sobald Input, Modell und Output verbunden sind, kann im Playground (Botton oben rechts) geprüft werden, ob alles funktioniert. Das Ergebnis sieht so aus:

Screenshot vom Playground: Ergebnis eines einfachen Flows in Langflow

Es kam mir jetzt nicht darauf an, komplizierte oder komplexe Fragen zu klären, sondern überhaupt zu testen, ob der einfache Flow funktioniert. Siehe da: Es hat geklappt!

Alle Anwendungen (Ollama und Langflow) sind Open Source und auf unseren Servern installiert. Alle Daten bleiben auf unseren Servern. Wieder ein Schritt auf dem Weg zur Digitalen Souveränität.

Künstliche Intelligenz: Vorteile von Small Language Models (SLMs)

Aktuell bekannte KI-Anwendungen rühmen sich seit Jahren, sehr große Mengen an Trainingsdaten (Large Language Models) zu verarbeiten. Der Tenor war und ist oft noch: Je größer die Trainingsdatenbank, um so besser.

In der Zwischenzeit weiß man allerdings, dass das so nicht stimmt und Large Language Models (LLMs) durchaus auch Nachteile haben. Beispielsweise ist die Genauigkeit der Daten ein Problem – immerhin sind die Daten oft ausschließlich aus dem Internet. Daten von Unternehmen und private Daten sind fast gar nicht verfügbar. Weiterhin ist das Halluzinieren ein Problem. Dabei sind die Antworten scheinbar plausibel, stimmen aber nicht.

Muddu Sudhaker hat diese Punkte in seinem Artikel noch einmal aufgeführt. Dabei kommt er zu dem Schluss, dass es in Zukunft immer mehr darauf ankommen wird, kleinere, speziellere Trainingsdatenbanken zu nutzen – eben Small Language Models (SLMs).

Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, Forbes, LINK

Große Vorteile der SLMs sieht der Autor natürlich einmal in der Genauigkeit der Daten und damit in den besseren Ergebnissen. Weiterhin sind SLMs natürlich auch kostensparender. Einerseits sind die Entwicklungskosten geringer, andererseits benötigt man keine aufwendige Hardware, um SLMs zu betreiben. Teilweise können solche Modelle auf dem eigenen PC, oder auf dem Smartphone betrieben werden.

Solche Argumente sind natürlich gerade für Kleine und Mittlere Unternehmen (KMU) interessant, die mit den geeigneten SLMs und ihren eigen, unternehmensinternen Daten ein interessantes und kostengünstiges KI-System aufbauen können.

Voraussetzung dafür ist für mich, dass alle Daten auf den eigenen Servern bleiben, was aktuell nur mit Open Source AI möglich ist. OpenAI mit ChatGPT ist KEIN Open Source AI.

Digitale Souveränität: Souveränitätsscore für KI Systeme

Souveränitätsscore für KI-Systeme – Ausschnitt (Quelle: https://digital-sovereignty.net/score/score-ai)

In der Zwischenzeit sind sehr viele KI-Modelle (AI Model) verfügbar, sodass es manchmal zu etwas unscharfen Beschreibungen kommt. Eine erste Unterscheidung ist, Closed Source AI, Open Weights AI und Open Source AI nicht zu verwechseln. In dem Beitrag AI Kontinuum wird das erläutert.

“OpenAI” wurde beispielsweise als Muttergesellschaft von ChatGPT 2015 als gemeinnützige Organisation gegründet, seit 2019 ist “OpenAI” gewinnorientiert und wird von Microsoft dominiert. Durch geschicktes Marketing wird oftmals suggeriert, dass von kommerziellen Anbietern bereitgestellte Modelle “Open Source AI” sind.

Dabei stellt sich natürlich gleich die Frage, nach einer entsprechenden Definition, die es auch seit 2024 gibt: Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht.

Wenn Sie sich also für AI Modelle interessieren, können Sie dieses Modell gegenüber den in der Definition genannten Kriterien prüfen.

Weiterhin können Sie den Souveränitätsscore für KI Systeme von Prof. Wehner nutzen (Abbildung). Schauen Sie sich auf der Website auch noch weiter um – es lohnt sich.

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Aktuell überschlagen sich die Meldungen darüber, wie die Zukunft von Künstlicher Intelligenz (AI: Artificial Intelligence) wohl aussehen wird. Die Dynamik ist in diesem Feld allerdings so groß, dass es unmöglich ist, genauere Voraussagen zu machen.

Dennoch glauben einige, dass ein Modell, wie z.B. ChatGPT, Gemini usw. mit ihren vielfältigen Möglichkeiten, die Lösung für alles sein wird. Grundannahme ist hier also One Size fits all.

Demgegenüber steht der Gedanke, dass es viele unabhängig und vernetzt nutzbare KI-Anwendungen geben wird, die eher den Anforderungen der Menschen und Organisationen entsprechen. Weiterhin sollten diese KI-Apps Open Source sein, also offen und transparent. Dazu habe ich den folgenden aktuellen Text gefunden:

“The future of AI is not one amazing model to do everything for everyone (you will hear us tell you time and time again in this book: one model will not rule them all). AI’s future will not just be multimodal (seeing, hearing, writing, and so on); it will also most certainly be multimodel (in the same way cloud became hybrid). AI needs to be democratized—and that can only happen if we collectively leverage the energy and the transparency of open source and open science—this will give everyone a voice in what AI is, what it does, how it’s used, and how it impacts society. It will ensure that the advancements in AI are not driven by the privileged few, but empowered by the many” (Thomas, R.; Zikopoulos, P.; Soule, K. 2025).

Es wird hier noch einmal deutlich herausgestellt, dass Künstliche Intelligenz demokratisiert werden muss. Das wiederum kann durch Open Source und Open Science ermöglicht werden. Siehe dazu auch

Digitale Souveränität: Europa, USA und China im Vergleich

Open Source AI: Nun gibt es endlich eine Definition – und damit interessante Erkenntnisse zu OpenAI und Co.

RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Von Democratizing Innovation zu Free Innovation

European alternatives for digital products

Screenshot: https://european-alternatives.eu/

Die aktuellen Entwicklungen zeigen unsere (europäische) digitale Abhängigkeit von amerikanischen Tech-Riesen. Ob es sich um Starlink, ein Unternehmen von Elon Musk, oder um OpenAI (dominiert von Microsoft), Amazon Cloud, Google usw. handelt, überall haben sich die amerikanischen Tech-Unternehmen in Europa durchgesetzt.

Immer mehr Privatpersonen, Unternehmen und Verwaltungen überlegen allerdings aktuell, ob es nicht besser ist, europäische Alternativen zu nutzen, um die genannte digitale Abhängigkeit zu reduzieren.

Die Website European alternatives for digital products hat nun angefangen, verschiedene europäische Alternativen zu den etablierten Angeboten aufzuzeigen. Die Übersicht ist nach verschiedenen Kategorien gegliedert. Die Website ist eine Initiative eines österreichischen Softwareentwicklers und steht erst am Anfang.

Insgesamt kann diese Website in die Initiative Sovereign Workplace eingeordnet werden, an dem wir uns auch schon länger orientieren. Dabei werden Vorschläge gemacht, welche Anwendungen auf Open Source Basis geeignet erscheinen.

AI: Was ist der Unterschied zwischen Open Source und Open Weights Models?

In verschiedenen Beiträgen habe ich schon erläutert, dass sich Open Source AI und Closed Source AI unterscheiden. Die bekannten Closed Source AI Modelle wie z.B. ChatGPT von (OpenAI) sind beispielsweise nicht wirklich Open Source sind, da dsolche Modelle intransparent sind und den eigentlichen Zweck haben, wirtschaftliche Gewinne zu generieren – koste es was es wolle. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Zwischen diesen beiden Polen Open Source AI und Closed Source AI gibt es allerdings – wie immer – ein Kontinuum von weiteren Möglichkeiten. Beispielsweise sind LLama, Mistral und Gemma nicht so ohne weiteres den beiden Extremen zuzuordnen, da diese Modelle teilweise offen sind. Solche Modelle werden Open Weights Models genannt:

“As a result, the term “Open Source” has been used to describe models with various levels of openness, many of which should more precisely be described as “open weight” models. Among the Big AI companies, attitudes towards openness vary. Some, like OpenAI or Anthropic, do not release any of their models openly. Others, like Meta, Mistral or Google, release some of their models. These models — for example, Llama, Mistral or Gemma — are typically shared as open weights models” (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).

Warum nur werden solche Modelle angeboten? Der Grund kann sein, dass man mit dieser Strategie versucht, dem Regulierungsbestreben z.B. der Europäischen Union entgegenzuwirken. Ich hoffe, dass das nicht funktioniert und Big Tech gezwungen wird, sich an die Spielregeln in der Europäischen Union zu halten. Aktuell sieht es so aus, dass die neue Regierung der USA die Europäische Union auch bei diesem Thema vor sich hertreiben möchte.

AI Agents: Langflow (Open Source) auf unserem Server installiert

Das nächste große Ding in der KI-Entwicklung ist der Einsatz von KI-Agenten (AI Agents). Wie schon in vielen Blogbeiträgen erwähnt, gehen wir auch hier den Weg dafür Open Source zu verwenden. Bei der Suche nach entsprechenden Möglichkeiten bin ich recht schnell auf Langflow gestoßen. Die Vorteile lagen aus meiner Sicht auf der Hand:

(1) Komponenten können per Drag&Drop zusammengestellt werden.
(2) Langflow ist Open Source und kann auf unserem eigenen Server installiert werden. Alle Daten bleiben somit auf unserem Server.

Die Abbildung zeigt einen Screenshot von Langflow – installiert auf unserem Server.

Auf der linken Seite der Abbildung sind viele verschiedene Komponenten zu sehen, die in den grau hinterlegten Bereich hineingezogen werden können. Per Drag&Drop können INPUT-Komponenten und OUTPUT-Format für ein KI-Modell zusammengestellt – konfiguriert – werden. Wie weiterhin zu erkennen, ist standardmäßig OpenAI als KI-Modell hinterlegt. Für die Nutzung wird der entsprechende API-Schlüssel eingegeben.

Mein Anspruch an KI-Agenten ist allerdings, dass ich nicht OpenAI mit ChatGPT nutzen kann, sondern auf unserem Server verfügbare Trainingsdaten von Large Language Models (LLM) oder Small Language Models (SML), die selbst auch Open Source AI sind. Genau diesen Knackpunkt haben wir auch gelöst. Weitere Informationen dazu gibt es in einem der nächsten Blogbeiträge. Siehe in der Zwischenzeit auch

Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Digitale Souveränität: Europa, USA und China im Vergleich

LocalAI: KI-Modelle und eigene Daten kombinieren

NEXTCLOUD ASSISTENT – Eigener Screenshot

Wenn Sie die bekannten Trainingsmodelle (LLM: Large Language Modells) bei ChatGPT (OpenAI), Gemini (Google) usw. nutzen, werden Sie sich irgendwann als Privatperson, oder auch als Organisation Fragen, was mit ihren eingegebenen Texten (Prompts) oder auch Dateien, Datenbanken usw. bei der Verarbeitung Ihrer Anfragen und Aufgaben passiert.

Antwort: Das weiß keiner so genau, da die KI-Modelle nicht offen und transparent sind.

Ein wirklich offenes und transparentes KI-Modell orientiert sich an den Vorgaben für solche Modelle, die in der Zwischenzeit veröffentlicht wurden. Siehe dazu beispielsweise Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Um die eigene Souveränität über unsere Daten zu erlangen, haben wir seit einiger Zeit angefangen, uns Stück für Stück von kommerziellen Anwendungen zu lösen. Angefangen haben wir mit NEXTCLOUD, das auf unserem eigenen Server läuft. NEXTCLOUD Hub 9 bietet die Möglichkeiten, die wir alle von Microsoft kennen.

Dazu kommt in der Zwischenzeit auch ein NEXTCLOUD-Assistent, mit dem wir auch KI-Modelle nutzen können, die auf unserem Serverlaufen. Dieses Konzept einer LOCALAI – also einer lokal angewendeten KI – ist deshalb sehr interessant, da wir nicht nur große LLM hinterlegen, sondern auch fast beliebig viele spezialisierte kleinere Trainingsmodelle (SML: Small Language Models) nutzen können. Siehe dazu Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet.

In dem Blogbeitrag LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten haben wir dargestellt, wie im NEXTCLOUD Assistenten mit einer lokalen KI gearbeitet werden kann.

Wie in der Abbildung zu sehen, können wir mit dem NEXTCLOUD Assistenten auch Funktionen nutzen, und auch eigene Dateien hochladen. Dabei werden die Dateien auch mit Hilfe von dem jeweils lokal verknüpften lokalen KI-Modell bearbeitet. Alle Daten bleiben dabei auf unserem Server – ein unschätzbarer Vorteil.

Die Kombination von LOCALAI mit eigenen Daten auf dem eigenen Server macht dieses Konzept gerade für Kleine und Mittlere Unternehmen (KMU) interessant.

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data

Immer mehr Privatpersonen und Organisationen realisieren, dass die populären Trainingsdaten (LLM: Large Language Models) für ChatGPT von OpanAI, oder auch Gemini von Google usw., so ihre Tücken haben können, wenn es beispielsweise im andere oder um die eigenen Urheberrechte geht. In diesem Punkt unterscheiden wir uns in Europa durchaus von den US-amerikanischen und chinesischen Ansätzen. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich. Darüber hinaus liegen die Daten der bekannten (closed source) LLMs zu einem überwiegenden Teil in englischer oder chinesischer Sprache vor.

Die Alternativen waren bisher entweder nicht leistungsstark genug, oder einfach nicht für die Allgemeinheit als Open Source Model verfügbar. Siehe dazu Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht. Das hat sich in der Zwischenzeit geändert. Beispielsweise wurde Open Source AI: Common Corpus als größte offene Trainingsdatenbank veröffentlicht, die gerade Daten für KI-Anwendungen enthält, die urheberrechtlich freigegeben wurden. Weiterhin gibt es das geförderte Projekt OpenGPT-X, das nun Teuken 7B-v0.4 veröffentlicht hat.

Quelle: https://opengpt-x.de/en/models/teuken-7b/

“Multilingual, open source models for Europe – instruction-tuned and trained in all 24 EU languages…. Training on >50% non English Data. (…) This led to the creation of a custom multilingual tokenizer” (ebd.).

Neben der freien Verfügbarkeit (Open Source AI) (via Hugging Face) ist somit ein großer Pluspunkt, dass eine große Menge an Daten, nicht englischsprachig sind. Das unterscheidet dieses Large Language Model (LLM) sehr deutlich von den vielen englisch oder chinesisch dominierten (Closed Source) Large Language Models.

Insgesamt halte ich das alles für eine tolle Entwicklung, die ich in der Geschwindigkeit nicht erwartet hatte!

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

In dem Beitrag Open Source AI: Nun gibt es endlich eine Definition – und damit interessante Erkenntnisse zu OpenAI und Co. hatte ich schon im August 2024 darauf hingewiesen, dass die Open Source Initiative (OSI) an einer Definition arbeitet die klärt, was unter Open Source AI zu verstehen ist.

Das ist deshalb besonders wichtig, da beispielsweise OpenAI sich eher zu einem von Microsoft dominierten Geschäftsmodell entwickelt. Auch LLama von Meta ist nicht wirklich Open Source, da einige wichtige Kriterien von Open Source AI nicht erfüllt sind. Meta verwendet dennoch in seinen Marketingaktivitäten bewusst den Begriff “Open Source” – hony soit qui mal y pense. Die am 21.10.2024 veröffentlichte Version von Open Source AI ist ein Release Candidate 2 (RC2):

An Open Source AI is an AI system made available under terms and in a way that grant the freedoms to:

Use the system for any purpose and without having to ask for permission.
Study how the system works and inspect its components.
Modify the system for any purpose, including to change its output.
Share the system for others to use with or without modifications, for any purpose.

These freedoms apply both to a fully functional system and to discrete elements of a system. A precondition to exercising these freedoms is to have access to the preferred form to make modifications to the system (Quelle).

Alle Large Language Models (LLM), die für Anwendungen der Künstlichen Intelligenz (Artificial Intelligence) genutzt werden, sollten also diesen Anforderungen genügen. Alleine der erste Eindruck zeigt schon, dass dies bei den meisten LLM nicht der Fall ist. Es wird Zeit, dass sich die aktuellen Anbieter nicht mehr mit dem Attribut “Open Source” schmücken können.