Anmerkungen zum World Social Report 2025

Quelle: World Social Reports 2025

In der aktuellen Wahrnehmung der Themen in den öffentlichen und privaten Diskussionen geht es fast nur noch um die Möglichkeiten von technologischen Entwicklungen wie der Künstlichen Intelligenz. Es geht um die Entwicklung von Märkten, ganzer Branchen (Automobilindustrie, Landwirtschaft, Lebensmittel, Pharma…) und systemrelevanter Organisationen (Banken) usw. Darauf ist auch unsere Politik fokussiert. Lobbyisten gehen hier ein und aus, um die geplanten Gesetze im Sinne einer Branche oder eines großen Konzerns zu beeinflussen – was auch oft genug funktioniert. Es wundert einen schon, dass Politiker sich fragen, warum die Menschen kein Vertrauen mehr in ihre Arbeit haben.

An dieser Stelle muss ich etwas klarstellen: Ich bin Demokrat und überzeugter Europäer. Ich plädiere hier nicht für extreme politische Richtungen (links oder rechts).

All das ist eine Perspektive, in der sich einzelne Menschen, Gruppen von Menschen, oder auch ganze Gesellschaften anpassen, oder besser unterordnen sollen/müssen. Wehe, wenn sie das nicht machen, wie beispielsweise die Europäische Union, die sich doch mit dem EU AI ACT gegen die Forderungen der US-amerikanischen Politik und KI-Unternehmen stellt. Oder wenn sich kleine Künstler und Autoren darüber beschweren, dass ihnen die Large Language Models (LLMs) einfach so die Inhalte nehmen und damit Geld verdienen (Urheberrechte missachten). Aus den hier nur kurz zusammengefassten Entwicklungen, entsteht ein Bild, das in der eingangs dargestellten Grafik visualisiert ist.

Die Abbildung aus dem World Social Report 2025 der United Nations zeigt verschiedene Einflussfaktoren, die sich zu einem selbst-verstärkenden Generator vernetzen (Wirkungsnetz): Die aktuelle Situation in vielen Ländern hat zu immer mehr Misstrauen (Distrust) und zu mehr Polarisation (Polarization) geführt – und damit zu weniger Kooperationen (Lack of collective action) und zu einer politischen Lähmung (Policy paralysis). Daraus wiederum entstehen Ungleichheit (Inequality) und Unsicherheit (Unsecurity), was wieder zum Anfang führt usw.

Wie kommen wir aus dem Kreislauf heraus?

Es fängt damit an, auf allen Ebenen (Individuum, Gruppe, Organisation, Netzwerk, Gesellschaft) den Menschen mit seinen Anforderungen in den Mittelpunkt zu rücken.

Dass das aktuell nicht der Fall ist, möchte ich an einigen wenigen Beispielen aufzeigen: Ist es die Anforderung von Menschen, massenhaft industriell produzierte Lebensmittel angeboten zu bekommen, die teilweise krank machen, und bei dem ein großer Anteil auch noch weggeworfen wird? Im Gesundheitswesen bekommen viele Akteure nur Geld, wenn ich krank bin. Welches Interesse haben diese Akteure, dass ich gesund bin und gesund bleibe? Ähnliches kann man für das Bildungswesen oder für die politischen Strukturen formulieren. Ist es die Anforderung der Menschen, dass immer mehr politische Ebenen auf EU-, Bundes, Landes- und regionaler Ebene mit immer mehr Personal und unnötigen Schnittstellen aufgebaut werden? usw. usw. Es geht nicht um mehr Geld, sondern darum, die vorhandenen Ressourcen für das Wohl der menschlichen Gemeinschaft einzusetzen, und Strukturen, die im Industriezeitalter angemessen waren, an die heutige Lebenswirklichkeit anzupassen.

Heute können wir mit Hilfe neuer Technologien (Additive Manufacturing, Künstliche Intelligenz…) vieles davon erreichen. WIE so etwas aussehen kann, hat Japan schon vor einigen Jahren in der Society 5.0 skizziert und teilweise schon umgesetzt. Im April 2025 waren wir 10 Tage in Japan – auch auf der Expo 2025 in Osaka – wo Elemente des Konzepts gezeigt wurden.

Quelle: https://www8.cao.go.jp/cstp/english/society5_0/index.html (Abgerufen am 19.11.2022)

KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie

Wenn es darum geht, die Auswirkungen der Künstlichen Intelligenz auf den Arbeitsmarkt zu prognostizieren, kommt es – wie immer – darauf an, wen man fragt.

Die eher technikorientierten Unternehmen verkaufen die angestrebte AGI (Artificial General Intelligence) als das non plus ultra der Intelligenzentwicklung. Dabei prognostizieren diese Unternehmen, dass AGI den menschlichen Fähigkeiten (Intelligenzen) überlegen sein wird. Daraus folgt zwingend, dass KI wohl alle arbeitsbezogenen Tätigkeiten in der nahen Zukunft übernehmen kann. Diese Argumentation erinnert mich an so viele Versprechen der Technik-Unternehmen; beispielsweise an die Unsinkbarkeit der Titanic oder die “100%-ige” Sicherheit von Kernkraftwerken, oder an die Verheißungen der Internetpioniere. Technologie muss wohl in dieser Form verkauft werden (Storytelling) – immerhin geht es ja um Investoren und sehr viel Geld. Ich weiß natürlich, dass diese Vergleiche “hinken”, dennoch …

Betrachten wir Künstliche Intelligenz mit seinen Möglichkeiten aus der eher gesamtgesellschaftlichen Perspektive, so sieht das etwas anders aus. Hier geht es darum, mit Hilfe der Künstlichen Intelligenz gesellschaftliche Probleme zu lösen, zum Wohle aller. Die Idee der japanischen Society 5.0 kommt diesem Anspruch sehr nahe. Da ich darüber schon verschiedene Blogbeiträge veröffentlich habe, gehe ich darauf nicht weiter ein. Siehe dazu beispielhaft Worin unterscheiden sich Industry 5.0 und Society 5.0?

Wie ist es dennoch möglich herauszufinden, wie sich Künstliche Intelligenz auf dem Arbeitsmarkt bemerkbar macht, bzw. machen wird?

Als Leser unseres Blogs wissen Sie, dass ich bei solchen Fragestellungen immer dazu tendiere, belastbare wissenschaftliche Studien von unabhängigen Forschern heranzuziehen. Eine dieser Studie ist folgende. Darin sind sehr ausführlich Vorgehensweise, Datenanalysen und Erkenntnisse dargestellt, mit einer zu beachtenden Einschränkung: Es geht um den amerikanischen Arbeitsmarkt.

“First, we find substantial declines in employment for early-career workers in occupations most exposed to AI, such as software development and customer support.

Second, we show that economy-wide employment continues to grow, but employment growth for young workers has been stagnant.

Third, entry-level employment has declined in applications of AI that automate work, with muted effects for those that augment it.

Fourth, these employment declines remain after conditioning on firm-time effects, with a 13% relative employment decline for young workers in the most exposed occupations

Fifth, these labor market adjustments are more visible in employment than in compensation.

Sixth, we find that these patterns hold in occupations unaffected by remote work and across various alternative sample constructions”

Source: Brynjolfsson et al. (2025): Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence | PDF

Herausheben möchte ich hier, dass gerade junge Menschen, die in den Arbeitsmarkt kommen und noch keine domänenspezifische Expertise entwickeln konnten, von Künstlicher Intelligenz betroffen sind. Das ist in mehrerer Hinsicht bemerkenswert.

Einerseits scheint Expertise nicht so leicht durch KI ersetzbar zu sein, was wiederum für erfahrene, auch ältere Mitarbeiter spricht. Diese sollten natürlich Künstliche Intelligenz nutzen und nicht ablehnen.

Weiterhin sind es ja gerade junge Menschen, die in ihren Jobs mit Digitalisierung und auch mit Künstlicher Intelligenz arbeiten möchten. Die Innovation “Künstliche Intelligenz” kann anhand der genannten Effekte durchaus als reflexiv angesehen werden. Siehe dazu auch  Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

AI 2027 Scenario: Wie wird sich Künstliche Intelligenz bis Ende 2027 entwickeln?

Quelle: https://ai-2027.com/summary

Der Mensch war schon immer daran interessiert heute schon zu wissen, was in der Zukunft auf ihn zukommen wird, oder zukommen soll. Es ist daher ganz selbstverständlich, dass verschiedene Interessengruppen wie Unternehmen, Berater, Soziologen oder auch einzelne Personen versuchenden, die Entwicklungen bei der Künstlichen Intelligenz vorherzusagen, zu prognostizieren.

Um ein relativ ausgewogenes Bild zu bekommen ist es gut, wenn sich unabhängige Wissenschaftler damit befassen. In dem AI Futures Project haben sich solche Personen zusammengetan. Es handelt sich hier um eine Nonprofit Research Organization, die im April 2025 eine erste Veröffentlichung zum Thema herausgebracht hat:

Kokotajlo et al. (2025): AI 2027 | Website

Es macht durchaus Sinn sich mit den dargestellten Schritten auseinanderzusetzen. denn die zusammengestellten Erkenntnisse sind ausführlich mit Forschungsergebnissen hinterlegt – was mir durchaus gefällt.

Dennoch: Mir sind die Perspektiven immer noch zu einseitig technologiegetrieben, denn Künstliche Intelligenz schafft auch gesellschaftliche, soziale Veränderungen.

Wie können ethische Überlegungen im Scrum-Framework beachtet werden?

Embedding ethical deliberations into Scrum; based on Zuber et al. (2022) http:// creativecommons.org/licenses/by/4.0/, zitiert in Zuber et al (2024) in Werther et al. (eds) (2024)

Wenn es um Technik geht wird immer wieder die Frage nach der Ethik gestellt, denn Technik kann zum Wohle oder zum Nachteil von (allen) Menschen und der Umwelt genutzt werden. Aktuell geht es dabei beispielsweise um die Ethik bei der Nutzung von Künstlicher Intelligenz. Siehe dazu auch Technikethik (Wikipedia).

In der Softwareentwicklung hat sich der Einsatz von Scrum als Rahmenwerk (Framework) bewährt. In der Abbildung sind die verschiedenen Events, Artefakte und Rollen zu erkennen. Die Autoren Zuber et al. (2024) schlagen nun vor, ethische Überlegungen (ethical deliberations) mit in das Scrum-Framework einzubauen. Diese sind in der Abbildung grün hervorgehoben.

“The core idea is that, before the regular agile cadence begins, in a sprint 0, we first proceed descriptively and align ourselves with societal and organizational value specifications, i.e., we start from a framework defined by society and organization. Second, in the relationship between the product owner and the client, central ethical values are identified within this framework on a project-specific basis, if necessary, and become part of the product backlog. This can be done on the basis of existing codes of conduct or with other tools and methods that are specific to culture and context. We call this the normative horizon that is established during disclosive contemplation. Value-Sensitive Software Design: Ethical Deliberation in Agile. Within each individual sprint, it is a matter of identifying new values and implementing normative demands through suitable technical or organizational mechanisms” (Zuber et al 2024, in Werther et al (eds.) 2024).

Es ist wichtig, dass wir uns mit den ethischen Fragen neuer Technologien wie z.B. der Künstliche Intelligenz auseinandersetzen und es nicht zulassen, dass Tech-Konzerne die Vorteile der neuen Möglichkeiten in Milliarden von Dollar Gewinn ummünzen, und die sozialen Folgen der der neuen KI-Technologien auf die Gesellschaft abwälzen. Hier muss es eine Balance geben, die durch ethische Fragestellungen in den Entwicklungsprozessen von Technologien mit integriert sein sollten – nicht nur im Scrum-Framework.

Technologie-Grid Deutschland: Relative Bedeutung von Innovationsfeldern und Zeit bis zum kommerziellen Durchbruch

Quelle: Weber, T.; Süssenguth, S. (Hrsg.) (2024): Innovationsfähigkeit in der Zeitenwende, acatech IMPULS vom 27.11.2024 | Website

Über die Innovationsfähigkeit Deutschlands habe ich in den letzten Jahren verschiedene Beiträge geschrieben. Es war schon lange abzusehen, dass Deutschland (Europa) den Anschluss an die USA und an China bei den wichtigsten Innovationsfeldern verloren hat. Von der Politik wird allerdings immer noch versucht, Innovation auf allen Ebenen Top-Down zu planen, und zu fördern/steuern. Dadurch werden sehr viele Ressourcen im gesamten Innovations-Ökosystem verschwendet, und ein Bottom-Up-Ansatz vernachlässigt. Um es etwas drastisch auszudrücken: Es gibt mehr Innovations-Preise als wirkliche Innovationen (Siehe beispielhaft meinen Blogbeitrag aus dem Jahr 2010).

Wenn wir uns der Zukunft zuwenden ist es interessant sich klarzumachen, wie sich wichtige Innovationsfelder entwickeln. Dabei sollte die jeweilige Bedeutung und das zeitliche Eintreten beachtet werden. Genau das wurde mit Hilfe von Hintergrundgesprächen und der Sichtung verschiedener Quellen gemacht, und in ein Technologie-Grid überführt (Abbildung), das durchaus interessante Ergebnisse liefert.

Deutlich zu erkennen ist beispielsweise, dass viele der Pfeile nach links zeigen, was bedeutet, dass die jeweilige Technologie früher als noch in 2021 erwartet ihren Durchbruch erzielen soll. Weiterhin ist zu erkennen, dass Cybersecurity, von seiner Bedeutung in 2021 eher “mittel”, nun als “sehr hoch” eingestuft wird.

Es lohnt sich, diesen Teil der Veröffentlichung genauer zu analysieren um zu erkennen, welche Möglichkeiten – welche Innovationsprojekte – sich aus diesen Entwicklungen für die eigene Organisation ableiten lassen.

Quelle: Weber, T.; Süssenguth, S. (Hrsg.) (2024): Innovationsfähigkeit in der Zeitenwende, acatech IMPULS vom 27.11.2024 | Website.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Vermindert der Einsatz Künstlicher Intelligenz menschliche Fähigkeiten?

Wenn wir ein Navigationssystem nutzen hilft uns das, schnell und bequem unser Ziel zu erreichen. Andererseits vermindert sich dadurch auch die menschliche Fähigkeit, sich zu orientieren. Die Nutzung eines Autos hilft uns, große Strecken zurückzulegen, doch vermindert es auch unsere körperlichen Fähigkeiten. Die Nutzung eines Computers erleichtert uns die Bearbeitung von Zahlenkolonnen, doch reduziert es auch unsere Rechen-Fähigkeiten. Die Nutzung von Suchmaschinen wie Google hat es uns erleichtert, Daten und Informationen schnell zu finden. Manche Fähigkeiten der Recherche und des Prüfens von Daten und Informationen bleiben hier manchmal wegen den schnellen Zyklen der Veränderungen auf der Strecke.

Warum sollten diese Effekte also bei der Nutzung von Künstlicher Intelligenz anders sein?

“Eine grundlegende Erkenntnis besagt, dass jedes technische Hilfsmittel die Fähigkeiten der Kombination «Mensch-Tool» zwar erhöht, jene des Menschen alleine aber potenziell vermindert (every augmentation is also an amputation, frei nach Marshall McLuhan)” (Digital Society Initiative 2023)

Im Kontext der universitären Bildung haben Forscher ermittelt, welche menschlichen Fähigkeiten in Zukunft in einem von KI dominierten Umfeld erhalten und gestärkt werden sollten (vgl. Digital Society Initiative 2023):

Grundlegende technische Fähigkeiten in Bezug auf KI-Technologien.

Sozialisationsfähigkeiten: Soziales Lernen, Einfühlungsvermögen, Resilienz und effektives
Teamwork gefördert werden. Dies bedingt auch ein Verständnis und eine Reflexion über ethische Werte und wissenschaftlichen Ethos.

Kritisches Denken: Kritische Diskurs, das Denken in Modellen und Abstraktionen sowie die Fähigkeit zur multiperspektivischen Kognition und Analyse.

Handeln unter Unsicherheit: Um mit der Geschwindigkeit des technischen Fortschritts (und auch den bekannten globalen Herausforderungen wie z.B. dem Klimawandel) umgehen zu können, sind Fähigkeiten zu fördern, welche das Handeln unter Unsicherheit erleichtern. Unter anderem zu nennen ist hier eine Schulung der Intuition und abstraktes Problemlösen.

Anmerken muss ich an dieser Stelle, dass persönliche Fähigkeiten nicht mit Persönlichkeitseigenschaften gleich gesetzt werden sollten. Siehe dazu auch Über den Umgang mit Ungewissheit. Es geht hier darum, dass gerade der Mensch als soziales und emotionales Wesen komplexe Problemlösungssituationen besser bewältigen kann, als es Technologie vermag. Wie ein Idealszenario der Arbeitsteilung zwischen menschlicher und künstlicher Intelligenz aussehen kann, lesen Sie in diesem Blogbeitrag.

Der Einsatz neuer Technologien im Projektmanagement setzt ein “Sich verstehen” zwischen Auftraggeber und Auftragnehmer voraus

Gnädinger, H.; Glitscher, W. (2024), in: projektmanagementaktuell 2/2024

Die GPM-Studie 2.0 zeigt den Projekterfolg in den Jahren 2013 bis 2022 auf. Wie in der Abbildung zu erkennen ist, wurde deutlich, dass die Zufriedenheit der Stakeholder zunahm, die Projekt-Performance abnahm und der Projekterfolgsindex rückläufig war. Obwohl in den letzten Jahren durch die starke Digitalisierung viele neue Technologien und Tools im Projektmanagement eingesetzt wurden, ist wohl die Ursache für die genannten Ergebnisse, dass sich Auftraggeber und Auftragnehmer nicht verstehen.

“Was ist falsch gelaufen? Es wurde missachtet, dass der Einsatz neuer Technologien?/ Tools in den Fachgebieten „Sich verstehen“ voraussetzt. „Sich verstehen“ braucht ein ganzheitliches Verständnis im Projekt, damit die Fachexperten des Auftraggebers mit den Fachexperten der Auftragnehmer reibungslos zusammenarbeiten und die Tools Daten nahtlos austauschen” (Gnädinger, H.; Glitscher, W. (2024)).

Die Autoren schlagen u.a. vor, sich dabei die Produktsprache und die Projektsprache genauer anzusehen. Darüber hinaus wird in dem Artikel auch eine “ganzheitliche” Lösung für das Problem vorgestellt, auf die ich hier nicht weiter eingehen möchte.

Solche Zusammenhänge thematisieren wir auch in dem von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Der “reflexible Mensch” und der Umgang mit Wissen

In den vergangenen Jahrzehnten der Industriegesellschaft wurde es zunächst immer wichtiger flexibel zu sein (Der flexible Mensch), um sich den Veränderungen im Umfeld anzupassen. Der Strukturbruch zwischen Einfacher und Reflexiver Modernisierung hat gezeigt, dass Flexibilität nicht ausreicht, um das turbulente Umfeld zu bewältigen. Bei der Reflexiven Modernisierung geht es um Kontingenzzuwachs, um die Nebenfolgen sozialen Handelns, und um die Krise der Realitätsunterstellungen und Rationalisierbarkeitserwartungen. Der reflexive Mensch muss daher auch sein Verständnis von Lernen und Wissen den neuen Gegebenheiten anpassen. In Arnold, R. (2017) geht man noch einen Schritt weiter und verbindet den flexiblen Menschen und den reflexiven Menschen zum reflexiblen Menschen.

Der reflexible Mensch lernt dabei nicht nur „etwas“, sondern erweitert seine persönlichen Fähigkeiten
– zur Erschließung von Wissensquellen,
– zum Umgang mit Neuem,
– zur Planung und Gestaltung eigener Lernprojekte,
– sowie zur Veränderung vertrauter Sichtweisen und Routinen” (ebd.).

Dabei spielen die neuen technologischen Möglichkeiten wie z.B. Künstliche Intelligenz eine bedeutende Rolle, da sie ganz neue Lernmöglichkeiten und Wissenskonstruktionen ermöglichen.

Wissensarbeiter benötigen pro Woche fast einen ganzen Tag für die Informationssuche

Image by Firmbee from Pixabay

In einer aktuellen Studie von Researchscape im Auftrag von Lucid Software wurden 2.196 Wissensarbeiter aus den USA, aus UK, den Niederlanden, Deutschland und Australien befragt. Dabei kamen doch recht überraschende Ergebnisse heraus, die in der englischsprachigen Website von Lucid Software zu finden sind. ZDNET hat die wichtigsten Erkenntnisse in einem deutschsprachigen Artikel zusammengefasst.

“Demnach wenden deutsche Wissensarbeiter im Schnitt etwa 6,5 Stunden für die Suche nach Informationen auf, bevor sie mit der eigentlichen Arbeit beginnen können – was fast einem ganzen Arbeitstag pro Woche entspricht. Zudem erschwert eine schlechte Koordination im Team die produktive Arbeit” (Quelle: ZDNET vom 01.06.2023).

Qualitativ gute Daten und Informationen sind für die Wissensarbeit elementar. Insofern ist es wichtig, diese Basis mit Hilfe digitaler Strukturen aufzubauen und die Koordination im Team zu verbessern. Technologisch kann das durch Kollaborationsplattformen geschehen, die auch eine stärkere Selbstorganisation unterstützen sollte. Kollaborationsplattformen unterscheiden sich dadurch auch von Software. Siehe dazu auch Von der Projektmanagement-Software zur Kollaborationsplattform.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Übernimmt die Künstliche Intelligenz jetzt alles?

Die schon vor Jahrzehnten thematisierte “Künstliche Intelligenz” basiert auf der Annahme “that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it” (McCarthy et al., 1955:2). Die aktuellen Entwicklungen von ChatGPT 3.5 oder ChatGPT 4 (um nur Beispiele zu nennen) scheinen McCarthy zu bestätigen . Es hat den Anschein, als ob die Künstliche Intelligenz alle Lebensbereiche verändert, erweitert oder sogar ganz übernimmt (z.B. bestimmte Arbeitsbereiche). Doch ist das wirklich so? Dazu habe ich folgenden Text gefunden:

KI als neue Weltlenkerin? Nein! Zumindest für absehbare Zeit ist ein solches Horrorszenario nicht zu befürchten. Zwar werden die Änderungen im Alltagsleben durch KI stärker als bisher erkennbar – aber trotzdem: Bei KI-Systemen handelt es sich bei weitem nicht um eine dem Menschen vergleichbare Intelligenz, sondern eher um sehr spezifische Nischenfähigkeiten, die bei eng definierten Aufgaben überlegen sind, aber außerhalb ihres Daseinszwecks oft bei den einfachsten Tätigkeiten scheitern. Sie können viel, haben aber klare Limitationen. Während Alpha Zero, eine Schach-KI, zwar den Schachweltmeister besiegen kann, fehlt Computern eigener Antrieb, Willensfreiheit, Bewusstsein, Fähigkeit zur Selbstreflexion und Verständnis unserer Welt. Sinn, Verstehen und Verantwortung sind Konzepte, die für KI schon kategorial unpassend sind. KI kann damit auch weder böswillige noch heimtückische Intentionen verfolgen und auch keine Verantwortung für ihr Tun übernehmen – verantwortlich ist und bleibt der Mensch” (Ehlers, U.-D. (2023:271-272): Wie wollen wir leben?, in Schmohl et al. (Hrsg.) (2023): Künstliche Intelligenz in der Hochschulbildung, S. 271-278.

Den Hinweis auf einen Kategorienfehler hat auch Howard Gardner in seiner Betrachtung von menschlicher Intelligenz thematisiert, und damit die menschliche Intelligenz von den Möglichkeiten einer Künstlichen Intelligenz unterschiedenen. Siehe dazu auch