(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

Digitale Innovationen und organisationale Ambidextrie

Image by fancycrave1 from Pixabay

In Organisationen kommt es immer wieder zu der Frage, ob Routineprozesse (Exploration) oder eher Innovationen (Exploitation) in den Fokus organisationaler Entwicklung stehen sollten. In der Zwischenzeit wird deutlich, dass beides in einer Organisation wechselseitig bewältig und entwickelt werden sollten. Diese Ambidextrie hatte ich schon einmal in dem Blogbeitrag Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation erläutert.

Es stellt sich natürlich gleich die Frage, wie eine geeignete Strategie gerade für Digitale Innovationen aussehen kann. Forscher vom Fraunhofer Institut Stuttgart und der Universität Stuttgart sind der Frage anhand von Literaturrecherchen und Interviews nachgegangen und haben ihre Erkenntnisse veröffentlicht:

Schrader et al. (2025): Organizing digital innovations. Journal of Open Innovation: Technology, Market, and Complexity 11 (2025) | Link

Ein Ergebnis war, dass organisationale Ambidextrie eine wichtige Voraussetzung für Digitale Innovationen darstellt. Weiterhin haben die Forscher in ihrem Paper ein Framework dargestellt, das einer Organisation hilft, die geeignete Strategie auszuwählen und umzusetzen.

Ergänzend sollte noch erwähnt sein, dass organisationale Ambidextrie auch sehr viel von den Menschen einfordert. Es ist nicht leicht, permanent zwischen den “beiden Welten” zu pendeln.

Report 2025: Commercial Open Source Software (COSS)

Quelle: Linux Foundation Infographic

Wir alle nutzen mehr oder weniger intensiv Open Source Anwendungen. Gerade in der Diskussion um die Digitale Souveränität in Europa kommt dem Thema allerdings eine besondere Bedeutung zu – es geht um mehr Unabhängigkeit und dadurch um mehr Eigenverantwortung für Daten. Darüber hinaus gibt es auch eine dynamische Entwicklung bei der Kommerzialisierung von Open Source Anwendungen (COSS: Commercial Open Source Software). In dem aktuell vorliegenden Report

Sam Boysel, Linux Foundation; Matthiueu Lavergne, Serena; Matt Trifiro, Commercial Open Source Startup Alliance (COSSA) (2025): The State of Commercial. Open Source 2025. The Data-Backed Financial Case from 25 Years of Commercial Open Source | PDF

geht es darum aufzuzeigen, wie sich Commercial Open Source Software (COSS) auch bei wichtigen finanziellen Kennzahlen schlägt. Die Ergebnisse sind erstaunlich:

“This report sets out to settle that debate with data. Drawing from 25 years of venture capital activity and a matched dataset of over 800 VC-backed COSS startups, we benchmark the funding trajectories and liquidity outcomes of open source companies against their closed-source peers. The results are conclusive: not only is COSS financially viable, it consistently outperforms on key venture metrics especially in infrastructure software” (ebd.).

Seit vielen Jahren sind Personen und Organisationen, die Open Source Software favorisieren, eher eine “Randnotiz” gewesen. Diese Sicht scheint sich seit einigen Jahren kontinuierlich zu verändern. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit?

Wenn es um Menschliche Intelligenz geht, sprechen wir auch oft über die scheinbare Menschliche Dummheit. In meinen Blogbeiträgen Reden wir über Dummheit und Steckt hinter der Künstlichen Intelligenz keine echte Intelligenz? Wie ist das zu verstehen? bin ich auf das Thema eingegangen. Weiterhin finden sich in der Rezension Ina Rösing: Intelligenz und Dummheit weitere interessante Anmerkungen.

Im Zusammenhang mit Künstlicher Intelligenz könnte man natürlich auch über eine Art Künstliche Dummheit nachdenken. Wie schon länger bekannt, stellen beispielsweise Halluzinationen und falsche Antworten ein nicht zu vernachlässigendes Phänomen dar. Darüber hinaus gibt es allerdings auch noch eine Art Bullshit-Faktor. Es geht dabei um die Missachtung der Wahrheit in großen Sprachmodellen. Genau diesen Aspekt haben sich verschiedene Forscher der Princeton University einmal genauer angesehen und ein interessantes Paper dazu veröffentlicht:

Liang et al. (2025): Machine Bullshit: Characterizing the Emergent Disregard for Truth in Large Language Models | PDF

Es stellt sich hier natürlich die Frage, wie sich Halluzination und der genannte Bullshit-Faktor unterscheiden. Dazu habe ich folgendes gefunden:

“Daher gebe es auch einen entscheidenden Unterschied zwischen Halluzinationen und dem, was er als „Bullshit“ bezeichnet – und der liegt in der internen Überzeugung des Systems. Wenn ein Sprachmodell halluziniert, ist es nicht mehr in der Lage, korrekte Antworten zu erzeugen. „Beim Bullshit hingegen ist das Problem nicht Verwirrung über die Wahrheit, sondern eine fehlende Verpflichtung, die Wahrheit zu berichten” (t3n vom 21.08.2025).

Interessant finde ich, dass die Forscher wohl auch eine erste Möglichkeit gefunden haben, um diesen Bullshit-Faktor zu überprüfen. Gut wäre es natürlich, wenn die Ergebnisse dann allen zur Verfügung stehen würden. Gespannt bin ich besonders darauf, wie Open Source AI Modelle abschneiden.

Projektmanager: Modell einer hybriden Laufbahn in Organisationen

Modell einer hybriden Laufbahn (Hölzle 2010, in Anlehnung an Kessler und Hönle 2002, S. 43)

Über den Trend zu einem Hybriden Projektmanagement habe ich hier schon oft geschrieben. Dabei geht es im Kern darum, die beiden extremen Pole “Plangetriebenes Projektmanagement” und “Agiles Projektmanagement” je nach Projekt, Programm, Portfolio angemessen zu kombinieren. Siehe dazu PMI (2024) Global Survey: Hybrides Projektmanagement wird immer wichtiger.

Der Begriff “Hybrid” wird allerdings auch in anderen Kontexten verwendet – beispielsweise bei der Entwicklung von Karrieren für Projektverantwortliche in einer Organisation. Dabei wird der Mitarbeitern oftmals die Rolle eines Projektmanagers aufgedrängt, ohne dass die Mitarbeiter bewusst danach gesucht hätten:

“Few individuals grow up with the dream of one day becoming a project manager. It is neither a well-defined nor a well understood career path within most modern organizations. Generally, the role is thrust upon people rather than being sought” (Hölzle 2010, nach Pinto und Kharbanda 1997, S. 216).

In der Abbildung ist beispielhaft das Prinzip einer hybriden Laufbahn dargestellt: Nach der Ausbildung, bzw. des Studiums werden zunächst erste Projekte in dem Bereich X bearbeitet. Anschließend kommen noch weitere Bereiche (Y und Z) dazu, und es wird der Status “Teamleiter” erreicht.

Mit der nachgewiesenen Erfahrung (mit den nachgewiesenen Kompetenzen) wird der Teamleiter über die Zeit zum Projektleiter – international ist die Bezeichnung Projektmanager üblich. Auf der gleichen Führungsebene gibt es auch noch den Abteilungsleiter. Über beide Führungsanforderungen ist der Weg zum z.B. Bereichsleiter geebnet.

Der Begriff “hybride Laufbahn” bezieht sich hier also nicht auf den Einsatz von plangetriebenen, hybriden oder agilen Vorgehensmodellen im Projektmanagement, sondern meint hier die wechselseitige Kompetenzentwicklung im Kontext Projekt und im Kontext Abteilung/Bereich. Die dabei entwickelten Kompetenzen führen dann zu den übergeordneten Positionen in Organisationen.

Siehe dazu auch Projektmanager: Verknüpfung von Laufbahnstufen mit Projektklassen.

Künstliche Intelligenz: LLM (Large Language Models) und Large Reasoning Models (LRMs) in Bezug auf komplexes Problemlösen

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

KI-Anwendungen basieren oft auf Trainingsdaten, sogenannter Large Language Models (LLM). Um die Leistungsfähigkeit und die Qualität der Antworten von solchen Systemen zu verbessern, wurde inzwischen ein “Denkprozess” (Reasoning) vor der Ausgabe der Antwort vorgeschaltet. Siehe dazu ausführlicher What are Large Reasoning Models (LRMs)?

Die Frage stellt sich natürlich: Liefern LRMs wirklich bessere Ergebnisse als LLMs?

In einem von Apple-Mitarbeitern veröffentlichten, viel beachteten Paper wurde nun die Leistungsfähigkeit nicht aufgrund logisch-mathematischer Zusammenhänge alleine untersucht, sondern anhand von drei Komplexitätskategorien – mit überraschenden Ergebnissen:

“Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers.. (…) By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse

Source: Shojaee et al. (2025): The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity.

In Zukunft werden immer mehr hoch-komplexe Problemlösungen in den Mittelpunkt von Arbeit rücken. Gerade in diesem Bereich scheinen LLMs und sogar LRMs allerdings ihre Schwierigkeiten zu haben. Ehrlich gesagt, wundert mich das jetzt nicht so sehr. Mich wundert eher, dass das genannte Paper die KI-Welt so aufgewühlt hat 🙂 Siehe dazu auch Was sind eigentlich Multi-Kontext-Probleme?

Sicher werden die Tech-Unternehmen der KI-Branche jetzt argumentieren, dass die nächsten KI-Modelle auch diese Schwierigkeiten meistern werden. Das erinnert mich an unseren Mercedes-Händler, der ähnlich argumentierte, sobald wir ihn auf die Schwachstellen des eingebauten Navigationssystems hingewiesen hatten: Im nächsten Modell ist alles besser.

Technologiegetriebene Unternehmen – insbesondere KI-Unternehmen – müssen wohl so argumentieren, und die Lösungen in die Zukunft projizieren – Storytelling eben, es geht immerhin um sehr viel Geld. Man muss also daran glauben….. oder auch nicht.

Möglicherweise handelt sich es hier um einen Kategorienfehler. Siehe dazu ausführlicher Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler.

Projektmanager/in (IHK) startet am 02.09.2025 in Düsseldorf

Der von uns entwickelte Blended Learning Lehrgang Projektmanager/in (IHK) startet am 02.09.2025 bei der IHK Düsseldorf (IHK Forum).

Projektmanager/in (IHK) – Blended Learning Lehrgang (FlyerIHK-Website) 02.09.-07.10.2025, IHK Düsseldorf, Ansprechpartnerin: Frau Wanke, Telefon: 0211/17243-35, E-Mail: petra.wanke@duesseldorf.ihk.de  

An dem Lehrgang werden Personen aus den unterschiedlichsten Branchen teilnehmen, was die Entwicklung der Projektmanagement-Kompetenzen spannend macht.

Weiterhin wechseln sich in dem Blended Learning Format Präsenztage im IHK Forum Düsseldorf mit Onlinephasen ab. Diese moderne Lernform ermöglicht es Ihnen, individuell und in der Gruppe zu lernen.

In einem Projektteam arbeiten Sie über den gesamten Lehrgangszeitraum hinweg an einer Fallstudie. Zu den einzelnen Übungen erhalten die Projektteams Feedback., das in die Projektdokumentation eingearbeitet wird.

In dem oben erwähnten Flyer zum Lehrgang finden Sie eine Zusammenfassung der Inhalte, des Blended Learning Konzepts und der Zertifikatsanforderungen.

KI-Agenten im Projektmanagement

Künstliche Intelligenz kann ganz generell in vielen Bereichen einer Organisation eingesetzt werden – natürlich auch im Projektmanagement. Zu KI im Projektmanagement gibt es in der Zwischenzeit viele Beiträge. Siehe dazu beispielsweise auch Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit.

In der Zwischenzeit geht es in der Diskussion zu KI auch immer stärker um die Frage, wie KI Agenten im Projektmanagement genutzt werden können. Dazu gibt es den Beitrag KI-Agenten im Projektmanagement: So unterstützen digitale Rollen den Projektalltag von Jörg Meier, vom 15.07.2025 im GPM Blog. Darin werden erste gute Hinweise gegeben. Dennoch:

Ich hätte mir hier gewünscht, dass der Author auch auf die Problematik der Nutzung von Closed Sourced Modellen wie ChatGPT oder Gemini hinweist. Ausgewählte KI Modelle sollten möglichst “wirklich” Open Source AI (Definition aus 2024) sein. Es wäre m.E. auch die Aufgabe der GPM die Digitale Souveränität insgesamt stärker bewusst zu machen. Siehe dazu beispielsweise auch Digitale Souveränität: Souveränitätsscore für KI Systeme.

Dass KI Agenten gerade in der Software-Entwicklung erhebliche Potenziale erschließen können, wird in diesem Beitrag deutlich: The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

NANDA – die Idee eines Open Agentic Web

Nanda Roadmap (Quelle: https://nanda.media.mit.edu/)

Mit KI Agenten (AI Agents) ist es möglich, in der Geschäftswelt vielfältige Prozesse zu optimieren, oder innovative Prozesse, Produkte und Dienstleistungen zu generieren, die bisher aus den verschiedensten Gründen nicht möglich waren. Dazu zählen oftmals nicht verfügbare Daten und die dazugehörenden Kosten.

Auf Basis dieser Entwicklungen können wir in Zukunft immer stärker von einer Agentenbasierten Wirtschaft sprechen – Agentic Economy (Siehe Abbildung). Dabei geht es um die Nutzung von KI-Agenten in Unternehmen oder in ganzen Branchen. Siehe dazu The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen oder auch Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen.

Denken wir etwas weiter, so müssen in Zukunft auch immer stärker KI-Agenten miteinander kommunizieren, also von Agent zu Agent – A2A. Passiert das zwischen sehr vielen Agenten eines Wirtschaftssystems, bzw. einer ganzen Gesellschaft, entsteht so etwas wie eine Agentic Society.

Das Projekt NANDA hat sich in dem Zusammenhang das Ziel gesetzt, diese Entwicklung mit einem Open Agentic Web zu unterstützen:

“Imagine billions of specialized AI agents collaborating across a decentralized architecture. Each performs discrete functions while communicating seamlessly, navigating autonomously, socializing, learning, earning and transacting on our behalf” (Source).

Das vom MIT initiierte Projekt NANDA arbeitet in Europa u.a. mit der TU München und der ETH Zürich zusammen. Das Ziel ist, alles Open Source basiert zur Verfügung zu stellen..

Ich bin an dieser Stelle immer etwas vorsichtig, da beispielsweise OpenAI auch beim Start das Ziel hatte, KI als Open Source zur Verfügung zu stellen. In der Zwischenzeit wissen wir, dass OpenAI ein Closed Source Model, bzw. ein Open Weights Model ist, und kein Open Source Model. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

UNDP Accelerator Labs: 89 Labs in 113 Ländern

Quelle: Ausschnitt vom Cover der UNDP-Veröffentlichung

In Blogbeiträgen hatte ich schon des Öfteren darüber geschrieben, dass die vielen Innovationsprogramme der Politik (EU, Deutschland, Bundesländer, Landkreise, Städte und Gemeinden) oftmals wenig Innovationen zustande bringen. Wenig bedeutet hier, Innovationen im Vergleich nicht nur zu sich selbst (Beispielsweise: Deutschland 2024 zu 2023), sondern im weltweiten Vergleich.

Dabei fällt auf, dass es ein entsprechendes Europäisches Innovations-Paradox gibt. Kurz zusammengefasst: Es wird viel Geld Top-Down in die Innovations-Systeme gesteckt, doch wenig umgesetzt. Denn: Forschung und Entwicklung ist nicht gleich Innovation. Siehe dazu auch Perspektiven auf Innovation: Von “eng” zu “erweitert” bis gesellschaftlich “zielgerichtet”.

Was wäre, wenn wir Innovationen stärker Bottom-Up denken und fördern würden? Ich erspare es mir, hier auf die vielen Beispiele hinzuweisen, die Eric von Hippel und Kollegen in der Zwischenzeit zusammengetragen, wissenschaftlich analysiert, und veröffentlicht haben.

Darüber hinaus gibt es auch Initiativen, die als eine art Hybrid verstanden werden können. Gemeint ist, dass eine Organisation (möglichst Non Profit) die Rahmenbedingungen schafft, dass Innovationen Bottom Up entstehen können. Am Beispiel des UNDP, des United Nations Development Program, wird das deutlich. Unter dem Dach der UN (United Nations) hat sich das UNDP Accelerator Lab gegründet, dass weltweit lokale und regionale Innovationen Bottom Up fördert:

“The UNDP Accelerator Labs is the world’s largest and fastest learning network on wicked sustainable development challenges. Co-built as a joint venture with the Federal Ministry for Economic Cooperation and Development of Germany and the Qatar Fund for Development, the Network is composed of 90 Lab teams covering 115 countries and taps into local innovations to create actionable insights and reimagine sustainable development for the 21st century” (UNDP Website, 22.08.2025).

Anmerkung: An anderer Stelle steht, dass es aktuell 89 Labs sind in 113 Ländern. Sicher kommt es bei den Zahlen immer wieder zu Veränderungen.

Aus den regionalen Aktivitäten können Muster erkannt werden, die zu einer nachhaltigen, und auf Problemlösungen für Menschen ausgerichteten Entwicklung von Innovationen führen können.