RKW Kompetenzzentrum: Das Twin Transition Tool

Quelle: https://www.rkw-kompetenzzentrum.de/twintransitiontool/

Das RKW Kompetenzzentrum veröffentlicht immer wieder Hilfen für die organisatorische Entwicklung von gerade mittelständischen Unternehmen. Diesmal wurden mit dem Twin Transition Tool (Abbildung) zwei wichtige Trans kombiniert. Einerseits ist das natürlich die Digitalisierung, und andererseits die Nachhaltigkeit.

“Die Twin Transition (auch doppelte Transformation oder Nachhaltige Digitalisierung genannt) ist eine der größten Herausforderungen unserer Zeit. Doch was ist die Idee dahinter? Gemeint ist, die grüne (nachhaltige) und die digitale Transformation von Wirtschaft und Gesellschaft gemeinsam zu denken und voranzutreiben” (ebd.).

Das Online-Tool kann direkt gestartet werden. Anschließend haben Sie die Möglichkeit, aus insgesamt 17 Themenfelder die Bereiche per drag&drop auswählen, die für Sie am wichtigsten erscheinen. Das weitere Vorgehen wird in einem kleinen Video erläutert.

Insgesamt ist das Tool gerade für Kleine und Mittlere Unternehmen (KMU) geeignet, sich die Zusammenhänge klar zu machen und geeignete Maßnahmen für die eigene Organisation abzuleiten.

Fehler ist nicht gleich Fehler: Fehlerkultur im Innovationsprozess

Fehlerkultur im Innovationsprozess (RKW 2010)

In Deutschland haben wir manchmal ein etwas schwieriges Verhältnis zu einzelnen Begriffen. So ist es beispielsweise mit dem Begriff “Fehler“, der oft negativ besetzt ist. Wenn ein Fehler passiert, ist das (oft) nichts Gutes – so die allgemeine Meinung.

Zu dieser Perspektive beigetragen hat die aus dem Qualitätsmanagement bekannte “0-Fehler” Strategie, die sich in den Köpfen von Mitarbeitern eingeprägt hat. Wenn wir an Prozesse in der Produktion denken, die immer gleich ablaufen sollen, so ist es natürlich schlecht, wenn es zu größeren Abweichungen kommt. Auch Fehler von Chirurgen können Folgen haben usw.. Man kann Fehler allerdings auch anders sehen.

In der Abbildung sind verschiedene Fehlertypen so sortiert, dass nach oben Fehler eher vermieden werden sollten, und nach unten Fehler zu Verbesserungen, und sogar zu Innovationen führen können. Es liegt auf der Hand, dass beispielsweise “Sabotage” nicht toleriert und somit sanktioniert werden sollte. Andererseits sollten “Kreative Fehler” toleriert, ja sogar unterstützt und durch Experimentieren ermöglicht werden.

Die Übersicht zeigt, dass Fehler nicht gleich Fehler ist, und wir daher in Organisationen und auch im zwischenmenschlichen Bereich sinnvoll unterscheiden sollten. Gerne können Sie daraus nun eine eigene Übersicht für Ihre Organisation entwickeln, sodass sich die Mitarbeiter darin wiederfinden und möglicherweise eine neue Fehlerkultur in Ihrer Organisation entsteht.

Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?

Projektmanagement: Gegenüberstellung der Merkmale klassisch vs. agil

Klassisch-PlangetriebenAgil
AnforderungenWeitgehend bekannt
Änderungen unerwünscht
Teilweise unbekannt
Änderungen erwartet
Umfang (Scope)Lasten- und PflichtenheftBacklog
ZieleLeistung: grundsätzlich fix
Dauer: ausgerichtet an der Leistungserbringung
Kosten: ausgerichtet an der Leistungserbringung
Leistung: ausgerichtet an der Dauer und dem Machbaren
Dauer: grundsätzlich fix
Kosten: grundsätzlich fix (Personalkosten)
PlanungPhasen, Meilensteine, Arbeitspakete,
Liefergegenstände/-objekte
Up-Front, aber rollierend möglich
Releases, Epics, Features, User Stories,
Inkremente
grundsätzlich rollierend
Aufwand (Personal)Schätzung im Gegenstromverfahren
(Management, Experten)
in Personentagen
Up-front, dann ggf. nachsteuernd
Schätzung durch das Team
in Story Points

rollierend
Steuerungs-
instrumente
Fortschrittsmetriken, Meilensteintrendanalyse,
Earned Value Analyse
Status Meeting, Berichte
Acceptance of Done, Taskboard,
Burn-Down-/-Up-Chart

Sprint-Review, Daily Stand Up
Hüsselmann/Hergenröder (2024): Integrierte Earned Value Analyse, nach Fiedler (2020)

Das klassische, eher plangetriebene Vorgehen beim Projektmanagement ist seit vielen Jahren bekannt und etabliert. Es wundert daher nicht, dass es gerade etablierten Organisationen schwer fällt, die beim agilen Projektmanagement zu berücksichtigen Vorgehensweise zu integrieren..

Die in der Tabelle zusammengefasste Gegenüberstellung der Merkmale “Anforderungen”, “Umfang (Scope”, “Ziele”, “Planung”, “Aufwand (Scope)” und “Steuerungsinstrumente” gibt Ihnen noch einmal einen Gesamtüberblick dazu.

Dabei sollten Sie allerdings bedenken, dass es oft nicht um ein Entweder-oder, sondern um ein Sowohl-als-auch geht, was als Hybrides oder auch Adaptives Projektmanagement bezeichnet werden kann.

Siehe dazu auch DAS Projektmanagement-Kontinuum in der Übersicht.

Ein aufgeklärter “Ich-Begriff” bedeutet, dass Individuen ihren Einfluss perspektivisch drastisch ausbauen können

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.

Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.

Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.

Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.

Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:

“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).

Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.

Dabei steht nicht der Profit im Mittelpunkt, sondern das soziale Miteinander zum Wohle aller.

GPM (2025): Künstliche Intelligenz im Projektkontext – Studie

Es ist schon eine Binsenweisheit, dass Künstliche Intelligenz (GenAI) alle Bereiche der Gesellschaft mehr oder weniger berühren wird. Das ist natürlich auch im Projektmanagement so. Dabei ist es immer gut, wenn man sich auf verlässliche Quellen, und nicht auf Berater-Weisheiten verlässt.

Eine dieser Quellen ist die Gesellschaft für Projektmanagement e.V., die immer wieder Studien zu verschiedenen Themen veröffentlicht. In der Studie GPM (2025): Gehalt und Karriere im Projektmanagement. Sonderthema: Die Anwendung Künstlicher Intelligenz im Projektmanagement findet sich auf Seite 13 folgende Zusammenfassung:

Künstliche Intelligenz im Projektkontext
Künstliche Intelligenz (KI) wird im Bereich Projektmanagement in der Mehrheit der Unternehmen eingesetzt, allerdings in noch geringem Maße.
(1) KI-basierte Tools werden insgesamt eher selten genutzt, wenn sie zum Einsatz kommen, dann sind es hauptsächlich ChatGPT, Jira, MS Pilot oder eigenentwickelte Tools.
(2) Es zeichnet sich kein eindeutiger Projektmanagement-Bereich ab, in dem KI bevorzugt zum Einsatz kommt. Am deutlichsten noch in der Projektplanung und in der Projektinitiierung, am seltensten im Projektportfolio- und im Programmmanagement.
(3) Der Nutzen der KI wird tendenziell eher positiv gesehen, insbesondere als Unterstützung der alltäglichen Arbeit, zur Erleichterung der Arbeit im Projektmanagement und zur Erhöhung der Produktivität.
(4) Der Beitrag von KI zu einem höheren Projekterfolg wird von der Mehrheit der Befragten nicht gesehen – allerdings nur von einer knappen Mehrheit.
(5) Es besteht eine grundlegende Skepsis gegenüber KI, was verschiedene Leistungsparameter im Vergleich zum Menschen betrifft. Alle hierzu gestellten Fragen wie Fehleranfälligkeit, Genauigkeit, Konsistenz der Information oder Konsistenz der Services wurden mehrheitlich zu Gunsten des Menschen bewertet.
(6) Die überwiegende Mehrheit der befragten Projektmanagerinnen und Projektmanager teilt diverse Ängste gegenüber der KI nicht, wie z. B. diese werde Jobs vernichten oder dem Menschen überlegen sein.”
Quelle: GPM (2025). Anmerkung: Im Originaltext wurden Aufzählungszeichen verwendet. Um besser auf einzelnen Punkte einzugehen, habe ich diese nummeriert, was somit keine Art von Priorisierung darstellt.

An dieser Stelle möchte ich nur zwei der hier genannten Ergebnisse kommentieren:

Punkt (1): Es wird deutlich, dass hauptsächlich Closed Source Modelle verwendet werden. Möglicherweise ohne zu reflektieren, was mit den eigenen Daten bei der Nutzung passiert – gerade wenn auch noch eigene, projektspezifische Daten hochgeladen werden. Besser wäre es, ein Open Source basiertes KI-System und später Open Source basierte KI-Agenten zu nutzen. Dazu habe ich schon verschiedene Blogbeiträge geschrieben. Siehe dazu beispielhaft Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Punkt (6): Es geht bei der Nutzung von KI nicht immer um die “Vernichtung” (Was für ein schreckliches Wort) von Jobs, sondern darum, dass viele verschiedene Aufgaben (Tasks) in Zukunft von KI autonom bearbeitet werden können. Siehe dazu auch The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen

Quelle: Xu et al. (2025): The Agent Company | https://the-agent-company.com/

Es ist mehr als eine interessante Spielerei von KI-Enthusiasten: KI-Agenten (AI-Agents) können immer mehr Aufgaben in einem Unternehmen autonom übernehmen. Um das genauer zu untersuchen, haben Wissenschaftler in dem Paper

Xu et al. (2025): TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

wichtige Grundlagen dargestellt, und auch untersucht, welche Tasks in einem Unternehmen von KI-Agenten autonom übernommen werden können.

Wie in der Abbildung zu erkennen ist, wurden Mitarbeiterrollen simuliert (Engineer, CTO, HR) und verschiedene Tasks angenommen. Bei dem Admin beispielsweise “arrange meeting room” und bei dem Projektmanager (PM) “teams sprint planning”, was auf das Scrum Framework hinweist. Als Modelle für Trainingsdaten wurden Large Language Models (LLMs) genutzt – closed source und open weight models:

“We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that the most competitive agent can complete 30% of tasks autonomously” (Xu et al (2025).

Es wird zwar ausdrücklich auf die Beschränkungen (Limitations) hingewiesen, doch gibt diese Untersuchung konkrete Hinweise darauf, welche Aufgaben (Tasks) in Zukunft möglicherweise von KI-Agenten in Unternehmen übernommen werden können.

Interessant bei dem Paper ist, dass dazu auch eine ausführliche Website https://the-agent-company.com/ aufgebaut wurde, auf der Videos, inkl. der verschiedenen KI-Agenten zu finden sind. Interessiert Sie das? Wenn ja, nutzen Sie einfach den Quick Start Guide und legen Sie los!

Natürlich sollte jedes Unternehmen für sich herausfinden, welche Tasks von KI-Agenten sinnvoll übernommen werden sollten. Dabei wird schon deutlich, dass es hier nicht darum geht, ganze Berufe zu ersetzen, sondern ein Sammelsurium von unterschiedlichen Tasks (Ausgaben) autonom durchführen zu lassen.

Hervorzuheben ist aus meiner Sicht natürlich, dass die Autoren mit dem letzten Satz in ihrem Paper darauf hinweisen, dass die Nutzung von Open Source AI in Zukunft ein sehr vielversprechender Ansatz sein kann – aus meiner Sicht: sein wird!

“We hope that TheAgentCompany provides a first step, but not the only step, towards these goals, and that we or others may build upon the open source release of TheAgentCompany to further expand in these promising directions” (Xu et al 2025).

Kultur beeinflusst Daten <> Daten beeinflussen Kultur

Image by This_is_Engineering from Pixabay

Kultur ist ein häufig verwendeter Begriff, der oftmals auf Länder bezogen ist (Französische Kultur, Italienische Kultur, Westliche Kultur, Chinesische Kultur etc.) und doch nicht so einfach an irgendwann einmal gezogenen Ländergrenzen halt macht. Dabei sollte auch die Diskussion über Kultur und Werte kritisch gesehen werden. Entsteht Kultur top-down oder bottom-uo, bzw. sowohl-als-auch? Siehe dazu beispielsweise Kritische Anmerkungen zum Wertansatz von Kultur.

Auch bei Unternehmen sprechen wir von Unternehmens-Kultur, die Kultur in verschiedenen Abteilungen oder sogar in verschiedenen Teams. Siehe dazu beispielsweise Innere und äußere Projektkulturen beachten oder auch Unternehmenskultur und Projektkultur im Spannungsfeld zwischen “Tight” und “Loose”. In Zeiten von Künstlicher Intelligenz wird beispielsweise auch gefordert, eine KI-förderliche Organisationskultur aufzubauen, inkl. Leitfaden.

Kann es in dieser vielschichtigen Betrachtung überhaupt EINE Kultur geben (Kultur ist statisch), oder ist Kultur ein sich permanent wandelnder Begriff mit über die Zeit immer wieder neuen Anpassungen an die Wirklichkeit?

Eine weitere Frage ist: Welche Zusammenhänge gibt es zwischen Kultur und Daten?

Einerseits kann eine Kultur natürlich Daten beeinflussen, indem Werte und damit Grenzen und Bewertungen vorgegeben werden. Darüber hinaus entscheidet Kultur auch, ob Daten frei oder eher verschlossen zur Verfügung stehen.

Andererseits können generierte Daten, gerade Big Data, Open Data usw., eine Kultur beeinflussen, indem neue Erkenntnisse und damit oft verbunden neue Möglichkeiten/Innovationen entstehen. Aktuell sehen wir an den Entwicklungen bei der Künstlichen Intelligenz, wie große Trainingsdaten (Large Language Models) starken Einfluss auf eine Gesellschaft und die jeweilige(n) Kultur(en) nehmen.

Es bleibt abzuwarten, in welchen Bereichen positiv, und in welchen negativ. Aktuell sieht es für mich so aus, als ob die Tech-Unternehmen die Gewinne aus der Nutzung Künstlicher Intelligenz für sich beanspruchen, und sich um die sozialen Konsequenzen für eine Gesellschaft nicht kümmern.

Wer etwas tiefer einsteigen möchte, kann sich folgendes Buch (Open Access) ansehen:

Schäfer, M. T.; van Els, K. (Eds.) (2017): The Datafied Society. Studying Culture through Data | PDF.

Einfache Checkliste: Eignung von Projektmitarbeitern

Ausschnitt aus der Checkliste (GPM 2019)

Nicht jeder Mitarbeiter in einer Organisation möchte in Projekten arbeiten. Viele möchten sich eher mit Routineprozessen in stabilen Abteilungen befassen , die sich relativ wenig verändern. Weiterhin ist auch nicht jeder Mitarbeiter für ein bestimmtes Projekt geeignet.

Anhand verschiedener Kriterien kann die Eignung des Projektmitarbeiters überprüft werden.

Die Checkliste GPM (2019): Eignung Projektmitarbeiter (PDF) kann ein erster Schritt sein, sich Gedanken darüber zu machen. Dabei unterscheidet die einfache Übersicht zwischen Hard Skills und Soft Skills.

Der nächste Schritt kann etwas ausführlicher sein und beispielsweise mit Hilfe der Kompetenzräder von Prof. North erfolgen. Siehe dazu Kompetenzprofile eines Fachmanns, einer Führungskraft und eines Projektmanagers im Vergleich.

Darüber hinaus bietet die Individual Competence Baseline 4.0 (ICB 4.0) eine weitere Orientierung zu den erforderlichen Kompetenzen im Projektmanagement. Siehe dazu auch Kompetenzbereiche nach ICB 4.0.

Digitale Souveränität: Was macht ihr denn so mit eurer Nextcloud? Antwort: Immer mehr!

Screenshot unserer Nextcloud-Startseite

Digitale Abhängigkeit kann für Personen, Organisationen oder ganze Gesellschaften kritisch sein. In Zeiten der Trump-Administration und der massiven Marktbeherrschung bei Software, Cloud-Anwendungen und Künstlicher Intelligenz durch US-amerikanische Tech-Konzerne wird es Zeit, auf allen Ebenen über Digitale Souveränität nachzudenken, und entsprechend zu handeln.

Zum Beispiel mit: Sovereign Workplace: Der unabhängige Arbeitsplatz auf integrierter Open Source Basis. Weiterhin wird vielen Verwaltungen in der Zwischenzeit klar, wie viel Geld an Rahmenverträgen, Lizenzen und Software an Big-Tech gezahlt werden muss. Es sind 13,6 Milliarden Euro pro Jahr (Quelle: Golem 04.07.2025).

In der Zwischenzeit gibt es viele Open Source Anwendungen die als Alternativen zur Verfügung stehen. Das dänische Digitalministerium ersetzt beispielsweise Microsoft Office durch Libre Office, Schleswig-Holstein setzt in der Verwaltung auf Nextcloud usw. usw.

Wir haben diese Entwicklung schon vor Jahren kommen sehen, und uns langsam aber sicher ein eigenes Open-Source-Ökosystem zusammengestellt, das wir immer stärker nutzen und ausbauen – Schritt für Schritt.

(1) Zunächst haben wir Nextcloud auf unseren Servern installiert. Damit konnten wir die bekannten Microsoft-Anwendungen, inkl. MS-Teams (jetzt mit Nextcloud Talk), Whiteboard, usw. ersetzen. Dateien können auch kollaborativ, also gemeinsam, bearbeitet werden. Siehe dazu beispielsweise auch Google Drive im Vergleich zu Nextcloud. Alle Möglichkeiten der Nextcloud finden Sie unter https://nextcloud.com/.

(2) Anschließend haben wir OpenProject auf unseren Servern installiert und mit unserer Nextcloud verknüpft. Wir können damit Plangetriebenes Projektmanagement, Hybrides und Agiles Projektmanagement abbilden. Die Integration mit unserer Nextcloud bietet die Möglichkeit, aus OpenProject heraus die komplette Dateiverwaltung in Nextcloud zu verwalten: Projektarbeit mit Nextcloud: Dateien kollaborativ organisieren und bearbeiten.

(3) Danach haben wir den Nextcloud-Assistenten integriert, sodass wir in jeder Nextcloud-Anwendung den Assistenten mit seinen verschiedenen Funktionen nutzen können; inkl. eines Chats mit hinterlegter lokaler Künstlichen Intelligenz – LocalAI (Siehe Punkt 5).

(4) Mit Nextcloud Flow können wir Abläufe automatisieren. Zunächst natürlich Routineabläufe, und wenn es komplexer wird mit KI-Agenten (Siehe Punkt 6).

(5) Eine weitere wichtige Ergänzung war dann LocalAI, das uns lokale KI-Anwendungen auf unserem Server ermöglicht – eingebunden in den Nextcloud-Assistenten (Siehe Punkt 3) Alle Daten bleiben auch hier auf unseren Servern.

(6) Aktuell arbeiten und testen wir KI-Agenten auf Open-Source-Basis. Dabei verknüpfen wir über Ollama eine ausgewählte Trainingsdatenbank (Large Language Model oder Small Language Model – alles natürlich Open Source AI) mit unseren eigenen Daten, die in unserer Nextcloud zur Verfügung stehen. Dafür verwenden wir aktuell Langflow, das auch auf unserem Servern installiert ist – auch diese Daten bleiben alle bei uns.

(…..) und das ist noch lange nicht das Ende der Möglichkeiten. Sprechen Sie uns gerne an, wenn Sie zu den genannten Punkten Fragen haben.