DigComp 3.0: European Digital Competence Framework 2025

Quelle: https://publications.jrc.ec.europa.eu/repository/handle/JRC144121

Nach dem ersten Framework in 2013 wurde nun in 2025 schon die 5. Auflage veröffentlicht. Es geht dabei um einen technologieunabhängigen Rahmen für die Kompetenzentwicklung in einer immer stärker digitalisierten Welt.

COSGROVE, J. and CACHIA, R., DigComp 3.0: European Digital Competence Framework – Fifth Edition, Publications Office of the European Union, Luxembourg, 2025, https://data.europa.eu/doi/10.2760/0001149, JRC144121.

Kompetenzen werden hier verstanden „as a combination of knowledge, skills and attitudes“ (ebd.). Bei dem begriff „Digitale Kompetenz“ bezieht man sich auf eine Veröffentlichung der Europäischen Kommission:

…the confident, critical and responsible use of, and engagement with, digital technologies for learning, at work, and for participation in society. It includes information and data literacy, communication and collaboration, media literacy, digital content creation (including programming), safety (including digital well-being and competences related to cybersecurity), intellectual property related questions, problem solving and critical thinking. (European Commission, 2018, p. 9).

Insgesamt soll das DigComp-Framework helfen, entsprechende Kompetenzen zu entwickeln. Siehe dazu auch „Digitale Kompetenzen“ oder besser „Kompetenzen in digitalen Kontexten“?

Anmerkungen zur Wirtschaftlichkeit eines Projekts

Platz (1998): Der erfolgreiche Projektstart, in Möller et al. 9. Aktualisierung

Die Wirtschaftlichkeit eines Projekts kann mithilfe verschiedener Dimensionen bestimmt werden. In der Abbildung ist zunächst einmal die Y-Achse (Investitionen bzw. Gewinn) zu erkennen, an die sich die X-Achse (Zeit) am Nullpunkt anschließt.

Über die Projektdauer haben die Investitionen ein Maximum erreicht. Dass die Linie zunächst unterhalb der Zeitachse verläuft bedeutet, dass Investitionen getätigt werden müssen, allerdings noch keine Erträge erzielt werden.

Über die anschließenden Ertragsgewinn können diese Investitionen soweit wieder hereingespielt werden, dass im Idealfall der Break-even Point erreicht wird. Die Zeitspanne bis dahin wird Pay-off Periode genannt.

Nach dem Break-even Point wird der Ertrag immer größer und der Gewinn steigt. DB ist hier die Abkürzung für den Deckungsbeitrag.

Werden die Produktlebenszyklen immer kürzer und werden gleichzeitig die Investitionen in Projekte immer größer, wird die Zeitspanne, in denen Unternehmen Gewinne erzielen können, immer kürzer.

Mit neuen Technologien, wie der Künstlichen Intelligenz, oder auch mit Additive Manufacturing (3D-Druck) können solche Innovationsprozesse wirtschaftlicher gestaltet werden.

Balanced Resilience – Ansatz: Widerstandsfähigkeit entwickeln

Bourdon, B.; Katzmayr, K. (2012) in Möller et al 49. Aktualisierung

Bei allen Veränderungen stehen Risiken und Chancen im Fokus. Dabei geht es oft darum, beide Extreme auszubalancieren, um widerstandsfähiger (robuster) gegenüber Veränderungsimpulsen zu sein und zu werden.

Hilfreich kann es dabei sein, sich in allen Fällen Misserfolgsfaktoren und Erfolgsfaktoren bewusst zu machen. Die Zusammenhänge sind in der Abbildung in Form einer Kraftfeldanalyse dargestellt.

„Für eine ausbalancierte Risiken- und Chancenfokussierung sorgt hier der Balanced Resilience-Ansatz. Resilience im Sinne einer Widerstandsfähigkeit oder Robustheit fungiert – im Gegensatz zur Excellence – als realistische Leitidee, weil man dadurch sowohl den real existierenden, nicht selten spektakulären Termin- und Budgetüberschreitungen bei PM (Anmerkung RF: Projektmanagement) als auch dem Versanden so manchen Reformprozesses im CM (Anmerkung RF: Changemanagement) Rechnung tragen kann. Im Balanced Resilience-Ansatz sind die Performance-Determinanten im Sinne der Kraftfeld-Analyse als Kräfte modelliert. Zur Sicherstellung der Realistik und der Ausgewogenheit werden vier Performance-Determinanten erfasst. Sie unterscheiden sich hinsichtlich ihrer Richtung und Stärke, wie in der Abbildung verdeutlicht“ (vgl. Bourdon&Katzmar 2012).

Weitere Beiträge zu Resilienz finden Sie hier.

Anders über gesellschaftliche Transformation nachdenken

Image by Engin Akyurt from Pixabay

Früher haben alle in den Organisationen von Change gesprochen, heute reden alle über Transformation. In dem Blogbeitrag Wandel, Change, Transformation oder doch Transition? habe ich dazu verschiedene Perspektiven zusammengefasst.

Auf der gesellschaftlichen Ebene wird im Zusammenhang mit Transformation oft davon ausgegangen, dass es eine relativ homogene Gesellschaft gibt, doch dem ist nicht so. Ein gut gemeinter Wille, beispielsweise der Politik, zur Veränderungen in einer Gesellschaft reicht einfach nicht.

Gerade bei Veränderungsprozessen merken alle Beteiligten – manchmal schmerzhaft- , dass es in einer Gesellschaft viele und vielschichtige Widerstände gibt. Es ist wieder einmal bezeichnend, dass es gerade Soziologen sind, die darauf hinweisen – beispielsweise Armin Nassehi:

„Aber dieser Triumph des Willens rechnet nicht mit dem Eigensinn, mit der inneren Komplexität und den Widerständen einer Gesellschaft, die eben kein ansprechbares Kollektiv ist. Und sie rechnet nicht mit der populistischen Reaktion auf Krisenerfahrungen. Dabei wird immer deutlicher: Man kann nicht gegen die Gesellschaft transformieren, sondern nur in ihr und mit ihr – und nur mit ihren eigenen Mitteln“ (Der Soziologe Armin Nassehi in einem Interview in brand eins 12/2024).

In seinem Buch weist Nassehi auch darauf hin, dass die notwendigen Veränderungen trotz des vielschichtigen Widerstandes in allen Ecken der Gesellschaft schon geschehen.

»Gesellschaftliche Transformation kann nicht als große Form funktionieren, sondern nur als eine, die in konkreten Situationen erfolgreich sein kann. Das ganze Programm der kleinen Schritte läuft längst …“ Armin Nassehi (2024): Kritik der großen Geste. Anders über gesellschaftliche Transformation nachdenken | Bei Amazon

Es ist auch hier wieder interessant zu sehen, dass es immer wieder Soziologen sind, die bei komplexen Zusammenhänge spannende alternative Deutungsmuster anbieten. Der Mainstream wird diese allerdings nicht aufnehmen, da Mainstream häufig nicht klären und aufklären, sondern eher beeinflussen will. Weitere Blogbeiträge dazu finden Sie hier.

Ein Wust von Indikatoren führt zu einer nicht mehr beherrschbaren Kompliziertheit

Image by Gerd Altmann from Pixabay

In meinem Blogbeitrag Kennzahlen als risikoreiche Reduzierung der Komplexität? ging es schon einmal darum, dass in vielen Bereichen komplexe Sachverhalte in Zahlen ausgedrückt werden. Dazu zählen das Bruttoinlandsprodukt (BIP), der Intelligenz-Quotient (IQ), der Return on Investment (ROI) usw. Und was nicht so recht messbar ist, wird eben messbar gemacht.

Möglicherweise benötigen Menschen Zahlen, um einen gewissen Anker in komplexen Zeiten zu haben (Taleb 2007). Das führt allerdings zu einer paradoxen Situation:

„Hier soll nur in Bezug auf die Vereinfachungsproblematik nachgefragt werden. Denn diesbezüglich landen wir in einer geradezu paradoxen Situation: Die scheinbare Vereinfachung durch Reduktion eines komplexen Messzusammenhangs auf immer elementarere Indikatoren führt zu einem unübersehbaren Wust solcher Indikatoren und damit zu einer nicht mehr beherrschbaren Kompliziertheit. Umgekehrt kommt man, wenn man sich auf die „Indikatorenverschmelzung“ des menschlichen Erkenntnisvermögens verlässt, auf eine sehr einfache Form der Erfassung solcher komplexen Zusammenhänge. Durch komplexe Erfassung zu einem vereinfachten Verständnis, so könnte man die dahinter liegende Strategie kennzeichnen“ (Erpenbeck 2010).

Die Indikatoren führen also nicht zu einem besseren Verständnis von Komplexität – im Gegenteil. Komplexere Erfassungen werden der Komplexität eher gerechtet und führen zu einem besseren Verständnis.

9 Anzeichen für einen falschen Umgang mit Komplexität im Unternehmen

In unserem Blog habe ich schon oft über komplizierte und komplexe Aufgabenstellungen geschrieben. Siehe dazu beispielsweise Was sind Eigenschaften von komplexen Aufgabenstellungen? oder Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Je vernetzter die Strukturen einer Organisation (innen und außen) sind, um so höher ist der Grad an Komplexität. Dabei unterliegen viele einem Irrtum, denn der Begriff „komplex“ ist keine Steigerungsform von „kompliziert“. Interessant ist, dass es durchaus Anzeichen für den falschen Umgang mit Komplexität in Unternehmen git. Dazu habe ich folgendes gefunden:

9 Anzeichen für einen falschen Umgang mit Komplexität im Unternehmen:

(1) Bekämpfung der Symptome anstelle der Ursachen
Es wird immer nur das repariert, was gerade hakt. Eine Suche nach der Ursache hinter dem
Symptom findet nicht statt. Symptom und Problem werden gleichgesetzt.

(2) Übergeneralisierung
Wenige (oft unzusammenhängende) Ereignisse führen zu allgemeinen Regeln und Schlussfolgerungen für ähnliche Situationen in der Zukunft.

(3) Methodengläubigkeit
Um Fehler künftig zu vermeiden und Unwägbarkeiten „bestimmbar“ zu machen, sucht man ständig nach neuen Methoden oder überarbeitet die bestehenden.

(4) Projektmacherei
„Wenn du nicht mehr weiterweißt, bilde einen Arbeitskreis.“ Sobald Aufgaben nicht mehr leicht zu lösen sind, werden Projekte initiiert.

(5) Betriebsame Hektik
Gerade wenn Aufgaben unlösbar erscheinen und der Überblick fehlt, wird viel „gearbeitet“ und wenig übers Handeln kommuniziert und reflektiert.

(6) Denken in „kurzen Laufzeiten“
Bei Entscheidungen wird nur der direkte Wirkzusammenhang in der nahen Zukunft betrachtet, ohne die zeitlich verzögerten Effekte zu berücksichtigen. Der Zeithorizont wird dabei meist durch Rahmenbedingungen (Projektlaufzeit, Zeitvertrag, Berufung Aufsichtsrat usw.) bestimmt, die mit dem System nichts zu tun haben.

(7) Schutz des mentalen Modells vor der Welt
„Das, was ich denke, ist richtig!“, ist eine verbreitete Überzeugung.

(8) Feedback wird weder gehört noch verstanden
Der wichtigste Regelungsmechanismus für komplexe Systeme wird nicht verwendet. Man überhört jede Form von Kritik, Bestätigung, Ideen, Hinweisen und schwachen Signalen und nichts davon findet Eingang in das System.

(9) Mangelndes Systemdenken:
Gedacht, diskutiert und geplant wird in linearen Kausalzusammenhängen, ohne Wechselwirkungen zu betrachten. Der Fokus liegt auf Details, das Big Picture bleibt außen
vor.

Quelle: Stephanie Borgert (2015) : Irrtümer der Komplexität. Gabal, Offenbach.

Künstliche Intelligenz und die ursprüngliche Bedeutung von Bildung

Image by dumcarreon from Pixabay

Es ist deutlich zu erkennen, dass Künstliche Intelligenz in seinen verschiedenen Formen (GenAI, AI Agenten usw.) Berufsbilder, Lernen, Wissens- und Kompetenzentwicklung beeinflusst, bzw. in Zukunft noch stärker beeinflussen wird. Siehe dazu beispielsweise WEF Jobs Report 2025.

Auch Strukturen im Bildungsbereich müssen sich daher fragen, welche Berechtigung sie noch in Zukunft haben werden, da sich der aktuelle Bildungssektor in fast allen Bereichen noch stark an den Anforderungen der Industriegesellschaft orientiert. Wenn es beispielsweise um Schulen geht, hat sich seit mehr als 100 Jahren nicht viel geändert. Siehe dazu Stundenplan von 1906/1907: Geändert hat sich bis heute (fast) nichts. Dazu passt folgendes Zitat:

„Every time I pass a jailhouse or a school, I feel sorry for the people inside.“
— Jimmy Breslin, Columnist, New York Post (Quelle)

Wohin sollen sich die Bildungsstrukturen – hier speziell Schulen – entwickeln?

(1) Wir können die Technologischen Möglichkeiten von Künstlicher Intelligenz in den Mittelpunkt stellen, und Menschen als nützliches Anhängsel von KI-Agenten verstehen. Dabei werden Menschen auf die KI-Technologie trainiert,, weiter)gebildet, geschult.

(2) Wir können alternativ Menschen und ihr soziales Zusammenleben in den Mittelpunkt stellen, bei dem Künstliche Intelligenz einen wertvollen Beitrag liefern kann. Ganz im Sinne einer Society 5.0.

Aktuell dominiert fast ausschließlich die Nummer (1) der genannten Möglichkeiten, was dazu führen kann, dass der Bildungsbereich Menschen so trainiert, dass sie zu den von Tech-Giganten entwickelten Technologien passen.

Möglicherweise hilft es in der Diskussion, wenn man den Ursprung des Wortes „Schule“ betrachtet. Der Begriff geht auf das griechische Wort „Skholè“ zurück, was ursprünglich „Müßiggang“, „Muße“, bedeutet und später zu „Studium“ und „Vorlesung“ wurde (Quelle: Wikipedia).

Bei Forschungen zur Künstlichen Intelligenz sind Autoren genau darauf eingegangen, weil sie vermuten, dass gerade diese ursprüngliche Perspektive besser zu den aktuellen Entwicklung passen kann:

„We find this etymology deeply revealing because it undercovers a profound truth about education´s original purpose: it wasn´t about preparing workers for jobs, but about providing space for thoughtful reflection and exploration of life´s fundamental questions. What inspires us about the ancient´s Greek approach is how they saw education as a means to help people find their purpose and develop their full potential as human beings“ (Bornet et al. 2025).

Menschen und AI Agenten im Zusammenspiel

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Immer mehr Organisationen fragen sich, inwiefern Workflows und besonders AI Agenten die bisher von Menschen durchgeführten Arbeiten ersetzen werden. In dem Blogbeitrag The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen wird deutlich, was heute schon in einzelnen Branchen möglich ist.

Auch der Jobs Reports 2025 des WEF zeigt auf, dass bis 2030 wohl 172 Millionen neue Jobs entstehen, und 92 Millionen wegfallen werden. Es geht dabei nicht immer um komplette Jobs, sondern auch um Teilbereiche oder Tätigkeitsportfolios, die immer mehr von AI Agenten übernommen werden (können).

Alles was mit Logik und Speicherung zu tun hat, ist eher die Stärke von Künstlicher Intelligenz, den Workflows, bzw. den AI Agenten. Doch in welchen Bereichen versagen AI Agenten noch? Dazu habe ich den folgenden Text gefunden:

„AI agents don’t fail because they’re weak at logic or memory. They fail because they’re missing the “L3” regions — the emotional, contextual, and motivational layers that guide human decisions every second“ (Bornet 2025 via LinkedIn).

Dabei bezieht sich Bornet auf eine Veröffentlichung von Bang Liu et al. (2025:19-20), in dem die Autoren drei Hirnregionen in Bezug auf AI (Artificial Intelligence) untersuchten. L1: Well developed; L2: Partially developed; L3: Underexplored.

Das Ergebnis ist also, dass AI Agenten in den Ebenen Emotionen, Kontext und Motivation unterentwickelt sind (L3), wenn es um menschliche Entscheidungen geht.

Erkenntnis (Cognition) entsteht dabei nicht nur in einem Bereich im Gehirn, sondern durch das Zusammenspiel vieler unterschiedlich vernetzter Areale. Bei komplexen Problemlösungsprozesse (CPS: Complex Problem Solving) geht es verstärkt um Emotionen, Kontext und Motivation.

Im Idealfall könnten Menschen an diesen Stellen einen Mehrwert für eine qualitativ gute Problemlösung (Erkenntnis) einbringen. Es stellt sich dabei allerdings auch die Frage, wie stark sich Menschen an die Möglichkeiten einer Künstlichen Intelligenz (AI Agenten) anpassen sollen.

Zusätzlich können die in dem sehr ausführlichen wissenschaftlichen Paper von Bang Liu et al. (2025) erwähnten Zusammenhänge Hinweise geben, wie die Zusammenarbeit – das Zusammenspiel – zwischen Menschen und AI Agenten organisiert, ja ermöglicht werden kann.

WEF (2025): Future of Jobs Report 2025

Es ist allen klar, dass sich die Jobs in den nächsten Jahren weiter stark verändern werden. Möglicherweise geht es dabei um einzelne Tätigkeiten, Tätigkeitsportfolios oder komplette Jobs. Das World Economic Forum (WEF) veröffentlicht dazu immer wieder Reports. Einer davon wurde Anfang des Jahres veröffentlicht: WEF (2025): Future of Jobs Report 2025 (PDF).

Darin geht es um den Zeitraum 2025-2030, in dem aufgrund der laufenden technischen und energetischen Transition wohl 170 Millionen neue Jobs geschaffen, und 92 Millionen verschwinden werden:

„The world of work is changing fast. While 92 million jobs may disappear over the next 5 years, nearly 170 million new ones will emerge, driven by new technology and the energy transition. What are these new jobs and which sectors will see the greatest changes?“ (WEF 2025).

Ich möchte an dieser Stelle nicht auf alle Details der Veröffentlichung eingehen, doch halte ich folgenden Punkt durchaus für bemerkenswert:

„Additionally, Software and Applications Developers, General and Operations Managers, and Project Managers, are among the job categories driving the most net job growth“ (WEF 2025).

Die wachsende Nachfrage nach Projektmanagern wird hier allerdings nicht weiter erläutert. Ich gehe davon aus, dass Projektmanager in Zukunft die ganze Palette des Projektmanagement-Kontinuums mehr oder weniger intensiv (je nach Branche und Organisation) bewältigen müssen.

Dabei kann es im Laufe der Jahre natürlich auch zu Verschiebungen kommen. Beispielsweise von einer eher plangetriebenen Projektmanagement über das Agile Projektmanagement zu einem situationsspezifischen Hybriden Projektmanagement, das eher pragmatisch als dogmatisch ist. Alles natürlich auch immer zusammen mit den Entwicklungen bei der Künstlichen Intelligenz. Eine weiterhin anspruchsvolle Aufgabe.

Künstliche Intelligenz im Projektmanagement: Ethische Kompetenz für die Projektleitung?

In allen Projekten werden mehr oder weniger oft digitale Tools, bzw. komplette Kollaborationsplattformen eingesetzt. Hinzu kommen jetzt immer stärker die Möglichkeiten der Künstlicher Intelligenz im Projektmanagement (GenAI, KI-Agenten usw.).

Projektverantwortliche stehen dabei vor der Frage, ob sie den KI-Angeboten der großen Tech-Konzerne vertrauen wollen – viele machen das. Immerhin ist es bequem, geht schnell und es gibt auch gute Ergebnisse. Warum sollte man das hinterfragen? Möglicherweise gibt es Gründe.

Es ist schon erstaunlich zu sehen, wie aktuell Mitarbeiter ChatGPT, Gemini usw. mit personenbezogenen Daten (Personalwesen) oder auch unternehmensspezifische Daten (Expertise aus Datenbanken) füttern, um schnelle Ergebnisse zu erzielen – alles ohne zu fragen: Was passiert mit den Daten eigentlich? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Je innovativer ein Unternehmen ist, desto einzigartiger sind seine Daten. Was mit diesen Daten dann passiert, ist relativ unklar. Es wundert daher nicht, dass nur ein kleiner Teil der Unternehmensdaten in den bekannten LLM (Large Language Models) zu finden ist. Siehe dazu Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden.

Es stellt sich zwangsläufig die Frage, wie man diesen Umgang mit den eigenen Daten und das dazugehörende Handeln bewertet. An dieser Stelle kommt der Begriff Ethik ins Spiel, denn Ethik befasst sich mit der „Bewertung menschlichen Handelns“ (Quelle: Wikipedia). Dazu passt in Verbindung zu KI in Projekten folgende Textpassage:

„In vielen Projektorganisationen wird derzeit intensiv darüber diskutiert, welche Kompetenzen Führungskräfte in einer zunehmend digitalisierten und KI-gestützten Welt benötigen. Technisches Wissen bleibt wichtig – doch ebenso entscheidend wird die Fähigkeit, in komplexen, oft widersprüchlichen Entscheidungssituationen eine ethisch fundierte Haltung einzunehmen. Ethische Kompetenz zeigt sich nicht nur in der Einhaltung von Regeln, sondern vor allem in der Art, wie Projektleitende mit Unsicherheit, Zielkonflikten und Verantwortung umgehen“ (Bühler, A. 2025, in Projektmanagement Aktuell 4/2025).

Unsere Idee ist daher, eine immer stärkere eigene Digitale Souveränität – auch bei KI-Modellen. Nextcloud, LocalAI, Ollama und Langflow auf unseren Servern ermöglichen es uns, geeigneter KI-Modelle zu nutzen, wobei alle generierten Daten auf unseren Servern bleiben. Die verschiedenen KI-Modelle können farbig im Sinne einer Ethical AI bewertet werden::

Quelle: https://nextcloud.com/de/blog/nextcloud-ethical-ai-rating/