Digitale Souveränität: Was macht ihr denn so mit eurer Nextcloud? Antwort: Immer mehr!

Screenshot unserer Nextcloud-Startseite

Digitale Abhängigkeit kann für Personen, Organisationen oder ganze Gesellschaften kritisch sein. In Zeiten der Trump-Administration und der massiven Marktbeherrschung bei Software, Cloud-Anwendungen und Künstlicher Intelligenz durch US-amerikanische Tech-Konzerne wird es Zeit, auf allen Ebenen über Digitale Souveränität nachzudenken, und entsprechend zu handeln.

Zum Beispiel mit: Sovereign Workplace: Der unabhängige Arbeitsplatz auf integrierter Open Source Basis. Weiterhin wird vielen Verwaltungen in der Zwischenzeit klar, wie viel Geld an Rahmenverträgen, Lizenzen und Software an Big-Tech gezahlt werden muss. Es sind 13,6 Milliarden Euro pro Jahr (Quelle: Golem 04.07.2025).

In der Zwischenzeit gibt es viele Open Source Anwendungen die als Alternativen zur Verfügung stehen. Das dänische Digitalministerium ersetzt beispielsweise Microsoft Office durch Libre Office, Schleswig-Holstein setzt in der Verwaltung auf Nextcloud usw. usw.

Wir haben diese Entwicklung schon vor Jahren kommen sehen, und uns langsam aber sicher ein eigenes Open-Source-Ökosystem zusammengestellt, das wir immer stärker nutzen und ausbauen – Schritt für Schritt.

(1) Zunächst haben wir Nextcloud auf unseren Servern installiert. Damit konnten wir die bekannten Microsoft-Anwendungen, inkl. MS-Teams (jetzt mit Nextcloud Talk), Whiteboard, usw. ersetzen. Dateien können auch kollaborativ, also gemeinsam, bearbeitet werden. Siehe dazu beispielsweise auch Google Drive im Vergleich zu Nextcloud. Alle Möglichkeiten der Nextcloud finden Sie unter https://nextcloud.com/.

(2) Anschließend haben wir OpenProject auf unseren Servern installiert und mit unserer Nextcloud verknüpft. Wir können damit Plangetriebenes Projektmanagement, Hybrides und Agiles Projektmanagement abbilden. Die Integration mit unserer Nextcloud bietet die Möglichkeit, aus OpenProject heraus die komplette Dateiverwaltung in Nextcloud zu verwalten: Projektarbeit mit Nextcloud: Dateien kollaborativ organisieren und bearbeiten.

(3) Danach haben wir den Nextcloud-Assistenten integriert, sodass wir in jeder Nextcloud-Anwendung den Assistenten mit seinen verschiedenen Funktionen nutzen können; inkl. eines Chats mit hinterlegter lokaler Künstlichen Intelligenz – LocalAI (Siehe Punkt 5).

(4) Mit Nextcloud Flow können wir Abläufe automatisieren. Zunächst natürlich Routineabläufe, und wenn es komplexer wird mit KI-Agenten (Siehe Punkt 6).

(5) Eine weitere wichtige Ergänzung war dann LocalAI, das uns lokale KI-Anwendungen auf unserem Server ermöglicht – eingebunden in den Nextcloud-Assistenten (Siehe Punkt 3) Alle Daten bleiben auch hier auf unseren Servern.

(6) Aktuell arbeiten und testen wir KI-Agenten auf Open-Source-Basis. Dabei verknüpfen wir über Ollama eine ausgewählte Trainingsdatenbank (Large Language Model oder Small Language Model – alles natürlich Open Source AI) mit unseren eigenen Daten, die in unserer Nextcloud zur Verfügung stehen. Dafür verwenden wir aktuell Langflow, das auch auf unserem Servern installiert ist – auch diese Daten bleiben alle bei uns.

(…..) und das ist noch lange nicht das Ende der Möglichkeiten. Sprechen Sie uns gerne an, wenn Sie zu den genannten Punkten Fragen haben.

Verbesserungen: Die drei Arten der Selbstreflexion

Image by This_is_Engineering from Pixabay

Wenn es um Verbesserungen geht denken wir oft daran, nach einer Tätigkeit zu reflektieren (Retrospective). um für die kommenden Schritte zu lernen. Die Retrospective ist sogar Bestandteil des Scrum-Frameworks.

Darüber hinaus gibt es allerdings auch noch die Prospective, bei der im Vorfeld eines Prozesses, darüber nachgedacht wird, was auf mich zukommen kann.

Zwischen den beiden genannten Arten kommt noch das Accompanying hinzu, bei der ich darüber nachdenke, wie ich aktuell meine Arbeit verrichte.

Etwas vereinfacht kann das so aussehen:

Prospective >Accompanying< Retrospective
Die drei Arten der Reflexion (vgl. Brand et al. 2024)

Alle drei Arten der Selbstreflexion führen zu Lernaktivitäten und letztendlich zu kontextspezifischen Wissen. Dieses Wissen wird selbstorganisiert so angewendet, dass ein komplexes Problem gelöst werden kann.

In diesem Sinne entsteht Kompetenz als Selbstorganisationsdisposition auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Siehe dazu auch Qualitätsnetzwerk zur Analyse für mögliche Verbesserungen.

Arbeitsgruppe Dach30 zu Shu Ha Ri und Agilität

Agilität war in den letzten mehr als 20 Jahren (Agiles Manifest 2001) ein Schwerpunkt für kollaboratives Arbeiten in komplexen Problemlösungssituationen – beispielsweise in innovativen Projekten. In der Zwischenzeit wird Agilität durch die Entwicklungen bei der Künstlichen Intelligenz etwas in der Wahrnehmung zurückgedrängt.

Dennoch möchte ich hier einen Ansatz zu Agilität vorstellen, den ich in einer Veröffentlichung der Dach30 gefunden habe. Dach30 bezeichnet eine Arbeitsgruppe aus 30 führenden Großunternehmen, für die Start-up-Standards wohl oft nicht ausreichen.

Dach30 (2019): Mindeststandards für Unternehmensagilität | PDF.

Darin wird gleich am Anfang der Zusammenhang zwischen Agilität und Shu Ha Ri hergestellt, das aus der asiatischen Kampfkunst hervorgegangen ist. Im Zusammenhang mit Agilität bedeutet Shu so viel wie kopieren, nachmachen, HA so etwas wie durchbrechen, abweichen, und RI so etwas wie neu verwenden. Die Arbeitsgruppe Dach 30 hat diese Zusammenhänge im folgenden Stufenmodell zusammengefasst:

ShuHaRi
Kennt agile Werte und PrinzipienLebt agile Werte und PrinzipienVerankert nachhaltig agile Werte und Prinzipien, gestaltet Governance aktiv
Begleitung durch einen ExpertenAlleineAnderen helfen
Doing AgileBecoming AgileBeing Agile
Dach30 (2019)

Aus diesen grundlegenden Überlegungen leitet die Arbeitsgruppe sehr viele “Learning Objects” ab, was wiederum insgesamt ein umfangreiches Framework ergibt. Zunächst einmal erscheint alles sehr schlüssig und umsetzbar zu sein. Ergänzend möchte ich folgende Punkte anmerken:

(1) Shu Ha Ri wird hier mit Lernebenen, oder auch Kompetenzebenen assoziiert. Das erinnert stark an Dreyfus model of skill acquisition – Ebenen der Kompetenzentwicklung. Warum wird das Modell von Dreyfus nicht gleich verwendet? Warum der “Umweg” über Shu Ha Ri? Weiterhin sollte man bedenken, dass Stufen-Modelle immer wieder kritisiert werden – auch im agilen Kontext.

(2) Wenn es um Stufen der Kompetenzentwicklung bei Agilität geht, so stellt sich für mich die Frage, ob Agilität in Organisationen nicht letztendlich bedeutet, Kompetenzentwicklung (Kompetenz als Selbstorganisationsdisposition) auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk umzusetzen. Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

(3) “Learning Objects” sind hier als Inhalte gemeint, die gelernt werden sollten (Lernziele, Kompetenzentwicklung). Es sind allerdings Subjekte (nicht Objekte) die Lernen. Der Begriff “Learning Objects” kann hier in die Irre führen. In meinen Veröffentlichungen habe ich in verschiedenen Paper immer wieder darauf hingewiesen. Das erste Mal ausführlich in Freund, R. (2003): Mass Customization in Education and Training, ELearnChina 2003, Edinburgh, Scotland. Download | Flyer.

Siehe dazu auch Agiles Lernen und selbstorganisierte Kompetenzentwicklung.

Innovationen: Blue Ocean Strategie im Zeitalter Künstlicher Intelligenz

Image by Elias from Pixabay

Es ist für Unternehmen heute nicht leicht, eine geeignete Strategie für Innovationen zu entwickeln. Dabei können inkrementelle oder auch disruptive Innovationen im Fokus stehen. Kleine, inkrementelle Verbesserungen sind möglicherweise in Zeiten von Künstlicher Intelligenz (Artificial Intelligence) nicht mehr ausreichend. An dieser Stelle kommt die Blue-Ocean-Strategie ins Spiel:

“Die Blue-Ocean-Strategie beschäftigt sich mit disruptiven Verbesserungen von Produkten bzw. Produktideen. Disruption (= zerstören, unterbrechen) beschreibt einen Prozess, bei dem ein bestehendes Geschäftsmodell oder ein Markt von Innovationen abgelöst bzw. verdrängt wird. Die Blue-Ocean-Strategie unterteilt Märkte in sogenannte Red Oceans und Blue Oceans. Blue Oceans umfassen zukünftige, noch zu schaffende Markträume, in denen Wettbewerb eine Zeit lang wenig Relevanz hat. Der Fokus von Unternehmen liegt auf dem Aufbau von Nutzeninnovationen für die Kundschaft in neuen Markträumen. Dadurch erreichen Blue-Ocean-Produkte eine Differenzierung (Alleinstellungsmerkmale); sie sind zunächst wettbewerbsarm und erlauben höhere Gewinne (vgl. Kim/ Mauborgne 2015). Red Oceans umfassen hingegen die Gesamtheit des bereits bestehenden Wettbewerbs. Es gilt die existierende Nachfrage zu nutzen und zu steigern, um sich im bestehenden Wettbewerb zu behaupten” (RKW 2018).

Was hat das nun mit Künstlicher Intelligenz zu tun? Wie ich in dem Beitrag Warum wird GESCHÄFTSMODELL + AI nicht ausreichen? erläutert habe, ist es in Zukunft nicht mehr ausreichend, einfach zu den bestehenden Innovationsprozessen Künstliche Intelligenz hinzuzunehmen. Es kommt eher darauf an, die Möglichkeiten von Künstlicher Intelligenz (Artificial Intelligence) für ganz neue/neuartige Produkte und Dienstleistungen zu nutzen. Ganz im Sinne von AI +. Mit AI meine ich dabei immer Open Source AI.

Projektmanagement: Das geeignete Vorgehensmodell finden

Quelle: Timinger, H.; Seel, C. (2016) nach Boehm und Turner

Im Projektmanagement gibt es in der Zwischenzeit die Erkenntnis, dass es zwischen den beiden Polen “Plangetriebenes Projektmanagement” und Agiles Projektmanagement” sehr viele Möglichkeiten für geeignete Vorgehensmodelle gibt.

Diese für seine Projekte zu analysieren (manchmal auch mehrmals während des Projektverlaufs) ist in Zukunft eine wichtige Aufgabe in Organisationen. Dafür stehen in der Zwischenzeit mehrere Optionen zur Verfügung. Siehe dazu DAS Projektmanagement-Kontinuum in der Übersicht, die für das eigene Projekt anhand verschiedener Kriterien ausgewählt werden können.

Zunächst einmal kann das mit der allseits bekannten Stacey-Matrix erfolgen, die eine einfache Möglichkeit bietet, schnell einen Überblick zu erhalten.

Cinefin wiederum nutzt eher die Wissensperspektive und zu analysieren, welches Vorgehensmodell geeignet erscheint.

Boehm und Turner schlagen vor, ein Projekt nach insgesamt 5 Dimensionen zu charakterisieren (siehe Abbildung): Menschen, Stabile Anforderungen, Kultur, Projektgröße und Gefährdungspotenzial.

Timinger wiederum hat in seinen Veröffentlichungen eine umfangreiche Liste an Kriterien zusammengestellt, die eine noch differenziertere Beurteilung ermöglicht. Siehe dazu Projektmanagement: Einfaches Tool zur Analyse des angemessenen Vorgehensmodells – Planbasiert, Hybrid, Agil.

Überlegen Sie, welche Instrumente für Ihre Organisation genutzt werden sollten. Möglicherweise entwickeln Sie aus den genannten Optionen ein eigenes Analysetool, für Projekte, Programme und Portfolios.

Management 1.0 bis 4.0 und das Agile Manifest

Eigene Darstellung. Quelle: Oswald (2016); GPM-Workshop “Agiles Projekt Management 4.0

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Ähnlich kann auch für das Management argumentiert werden (siehe Abbildung), das sich von einem Management 1.0 (Command and Control, wissenschaftlich) zum Management 2.0 (Markt-Strategien, add on Tools) weiterentwickelt hat, und über das Management 3.0 Komplexität, wissenschaftliche Analogien) zu Management 4.0 (Komplexität als Geschenk, vernetzte Modelle) weiterentwickelt hat. Dabei ist zu beachten, dass in Organisationen oftmals Arbeit 1.0-4.0 und Management 1.0-4.0 vorhanden sind.

Wie in der Abbildung weiterhin zu erkennen ist, stellt das Agile Manifest (Manifest für agile Softwareentwicklung) aus dem Jahr 2001 einen Vorschlag dar, besser mit Komplexität umzugehen. Daraus ist wiederum das Framework Scrum entstanden, wobei der Begriff Scrum in einem Paper aus dem Jahr 1986 geprägt wurde.

Siehe dazu auch Agiles Projektmanagement und das Agile Manifest – passt das wirklich zusammen?

Zwischen >potemkinschem< Lean und empowertem Team

Eigene Darstellung. Quelle: Boes et al. (2018)

Die Abbildung zeigt verschiedene Entwicklungsszenarien von Teams in Organisationen. In einer bürokratischen Kultur wird sich zunächst bürokratisches Team bilden, mit den genannten Eigenschaften und den entsprechenden Vorgaben der Führung.

Die Entwicklung zu einem formalen Lean ergibt die Möglichkeit, in eine agile Kultur überzugehen. An dieser Stelle kann es allerdings auch sein, dass ein potemkinsches Lean entsteht, das wiederum zu einem verbrannten Team führt.

In einer agilen Kultur kann sich ein empowertes Kollektivteam später in Richtung Nachhaltigkeit auf allen Ebenen entwickeln.

Schauen Sie sich die jeweiligen Merkmale an. Finden Sie sich mit Ihrem Team an einer Stelle wieder?

Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner)

Die Überschrift ist reißerisch und soll natürlich Aufmerksamkeit generieren. Dabei stellt man sich natürlich gleich die Frage: Wie kommt das? Geschickt ist, dass Gartner selbst die Antwort gibt:

“Over 40% of agentic AI projects will be canceled by the end of 2027, due to escalating costs, unclear business value or inadequate risk controls, according to Gartner, Inc.” (Gartner vom 25.06.2025).

Es ist nun wirklich nicht ungewöhnlich, dass in der ersten Euphorie zu Agentic AI alles nun wieder auf ein sinnvolles und wirtschaftliches Maß zurückgeführt wird. Dennoch haben Unternehmen, die entsprechende Projekte durchgeführt haben, wertvolles (Erfahrungs-)Wissen generiert.

Schauen wir uns in diesem Zusammenhang den bekannten Gartner Hype Cycle 2025 an, so können wir sehen, dass AI Agents ihren “Peak of Inflated Expectations” erreicht haben, und es nun in das Tal “Through of Desillusionment” geht. Dabei wird in dem oben genannten Artikel natürlich auch darauf hingewiesen, dass Gartner gerne beratend behilflich ist, Agentic AI wirtschaftlicher und besser zu gestalten. Honi soit qui mal y pense.

Dennoch können gerade Kleine und Mittlere Unternehmen (KMU) von dieser Entwicklung profitieren, indem sie bewusst und sinnvoll KI Agenten nutzen. Am besten natürlich in Zusammenhang mit Open Source AI. Komisch ist, dass Open Source AI in dem Gartner Hype Cycle gar nicht als eigenständiger Begriff vorkommt. Honi soit qui mal y pense.

Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden

Wenn es um allgemein verfügbare Daten aus dem Internet geht, können die bekannten Closed Source KI-Modelle erstaunliche Ergebnisse liefern. Dabei bestehen die genutzten Trainingsdaten der LLMs (Large Language Models) oft aus den im Internet verfügbaren Daten – immer öfter allerdings auch aus Daten, die eigentlich dem Urheberrecht unterliegen, und somit nicht genutzt werden dürften.

Wenn es um die speziellen Daten einer Branche oder eines Unternehmens geht, sind deren Daten nicht in diesen Trainingsdaten enthalten und können somit bei den Ergebnissen auch nicht berücksichtigt werden. Nun könnte man meinen, dass das kein Problem darstellen sollte, immerhin ist es ja möglich ist, die eigenen Daten für die KI-Nutzung zur Verfügung zu stellen – einfach hochladen. Doch was passiert dann mit diesen Daten?

Immer mehr Unternehmen, Organisationen und Verwaltungen sind bei diesem Punkt vorsichtig, da sie nicht wissen, was mit ihren Daten bei der KI-Nutzung durch Closed Source oder auch Closed Weighted Modellen passiert. Diese Modelle sind immer noch intransparent und daher wie eine Black Box zu bewerten. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI oder Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Wollen Sie wirklich IHRE Daten solchen Modellen zur Verfügung stellen, um DEREN Wettbewerbsfähigkeit zu verbessern?

“So here’s the deal: you’ve got data. That data you have access to isn’t part of these LLMs at all. Why? Because it’s your corporate data. We can assure you that many LLM providers want it. In fact, the reason 99% of corporate data isn’t scraped and sucked into an LLM is because you didn’t post it on the internet. (…) Are you planning to give it away and let others create disproportionate amounts of value from your data, essentially making your data THEIR competitive advantage OR are you going to make your data YOUR competitive advantage?” (Thomas et al. 2025).

Doch was ist die Alternative? Nutzen Sie IHRE Daten zusammen mit Open Source AI auf ihren eigenen Servern. Der Vorteil liegt klar auf der Hand: Alle Daten bleiben bei Ihnen.

Siehe dazu auch

LocalAI: KI-Modelle und eigene Daten kombinieren

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Digitale Souveränität: Wo befinden sich deine Daten?

Spannungsfelder des Kompetenzmanagements

Gefunden in einem Workshop von Oliver P. Müller aus dem Jahr 2006 zu Mitarbeiterwissen identifizieren, entwickeln und dauerhaft erhalten

Die etwas ältere Abbildung zeigt gut auf, welche Spannungsfelder bei einem modernen Kompetenzmanagement zu beachten sind:

Kompetenzträger: Hier geht es um die Ebenen Individuum, Gruppe und Organisation. Hinzufügen würde ich noch die Ebene Netzwerk.

Kompetenzart: Gemeint sind hier die Fachkompetenz, die Methodenkompetenz und die Sozial-/Persönlichkeitskompetenz . Wie Sie als Leser unseres Blogs wissen, gehe ich nach Erpenbeck/Heyse von Kompetenz als Selbstorganisationsdisposition aus.

Anwendungsrahmen: Dieser Aspekt bezieht sich auf die drei Dimensionen Identifikation, Verteilung und Entwicklung. Kompetenzen sind also nicht fix, sondern relational entwickelbar.

Durch die drei Spannungsfelder entsteht eine dreidimensionale Abbildung, die einen ersten Einblick in die Dynamik des gesamten Systems gibt.

Weiterhin ist zu beachten, dass Kompetenz auf der organisationalen Ebene eher aus der betriebswirtschaftlichen Perspektive, Ressource Based View, Kernkompetenzen usw.) und Kompetenz auf der individuellen Ebene eher aus der pädagogischen Perspektive (Selbstorganisiertes Lernen etc.) betrachtet wird. In einer Organisation sollte allerdings auf allen Ebenen ein stimmiges, einheitliches Verständnis von Kompetenz und Kompetenzmanagement vorhanden sein.

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.