Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.

Mit Künstlicher Intelligenz zu Innovationen – aber wie?

Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.

Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.

„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).

Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.

Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.

Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.

Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:

LocalAI: Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI

Ollama und Langflow: Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.

Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Künstliche Intelligenz: Hohe Investitionen und keine Rendite?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es ist schon erstaunlich: Tag für Tag lesen wir von Milliardeninvestitionen der Unternehmen in GenAI. Es gibt in der Zwischenzeit auch genügend Beispiele aus allen Branchen die zeigen, wie mit Künstlicher Intelligenz (GenAI) produktiver als vorher gearbeitet werden kann. Somit sollten diese Effekte auch betriebswirtschaftlich nachgewiesen werden können.

Die Frage st also: Gibt es auch eine gewisse Rendite auf die Investitionen, die in solche Projekte gesteckt werden?

Eine MIT-Studie vom Juli 2025 zeigt ein überraschendes Ergebnis: Der Erfolg, in Form einer messbaren Rendite (Return on Investment). kann bei 95% der Organisationen nicht nachgewiesen werden. Hier der Originalabsatz aus der Studie:

Despite $30–40 billion in enterprise investment into GenAI, this report uncovers a surprising result in that 95% of organizations are getting zero return. The outcomes are so starkly divided across both buyers (enterprises, mid-market, SMBs) and builders (startups, vendors, consultancies) that we call it the GenAI Divide. Just 5% of integrated AI pilots are extracting millions in value, while the vast majority remain stuck with no measurable P&L impact. This divide does not seem to be driven by model quality or regulation, but seems to be determined by approach“ (MIT NANDA 2025).

Interessant ist, dass der jeweils gewählte Ansatz (determined by approach) wohl das Grundübel ist. Möglicherweise ist es gar nicht so gut, sich nur auf die sehr großen, proprietären KI-Anbieter zu konzentrieren – ja, sich von diesen abhängig zu machen. Siehe dazu beispielsweise auch KI-Modelle: Monitoring einer Entwicklungsumgebung.

Digitale Souveränität: Projekt SOOFI (Sovereign Open Source Foundation Models) gestartet

Quelle: Pressemitteilung | PDF | zu SOOFI

In unserem Blog habe ich schon oft über die notwendige Digitale Souveränität von einzelnen Personen, Organisationen und Länder geschrieben. Es wird dabei immer deutlicher, dass wir in Europa Modelle benötigen, die nicht vom Mindset amerikanischer Tech-Konzernen oder vom Mindset chinesischer Politik dominiert werden, und auf Open Source Basis zur Verfügung stehen.

So etwas soll nun mit SOOFI (Sovereign Open Source Foundation Models) entwickelt werden. In der Abbildung ist der prinzipielle Aufbau zu erkennen. Auf Basis geeigneter Daten können Foundation Models an die jeweiligen Bedürfnisse ganzer Branchen angepasst werden. Darauf aufbauend, schließen sich u.a. auch AI Agenten an.

„Ein wichtiger Schritt für die europäische KI-Souveränität: Unter SOOFI arbeiten zukünftig Wissenschaftlerinnen und Wissenschaftler aus 6 führenden deutschen Forschungseinrichtungen zusammen, um souveräne europäische Alternativen zu KI Technologien aus den USA und China bereitzustellen. Der Fokus liegt darin, mit den Modellen einen Beitrag für die industrielle Nutzung von KI zu leisten“ (Quelle: Pressemitteilung | PDF).

Möglicherweise interessieren Sie auch noch folgende Beiträge zum Thema:
Digitale Souveränität: Europa, USA und China im Vergleich
Von der digitalen Abhängigkeit zur digitalen Souveränität,
Digitale Souveränität: Welche Open Source Alternativen gibt es?
Digitale Souveränität: Souveränitätsscore für KI Systeme
Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Künstliche Intelligenz für die Menschen

UN (2024): Governing AI For Humanity

Immer mehr Regionen und Länder stellen fest, dass die Entwicklung der Künstlichen Intelligenz – wie alle Innovationen – mindestens zwei Seiten hat. Es gibt einerseits den Nutzen für Menschen, Unternehmen und Gesellschaften und andererseits auch Schwierigkeiten.

Solche Entwicklungen geben immer Anlass, darüber nachzudenken, ob Künstliche Intelligenz so gesteuert werden kann, dass es nicht nur einzelnen Unternehmen zugute kommt, sondern einer ganzen Gesellschaft.

In der Zwischenzeit gibt es sehr viele nationale und regionale Initiativen, die versuchen, einerseits die Entwicklungen von Künstlicher Intelligenz zu fördern, andererseits aber auch Grenzen zu ziehen, deren Überschreitung zu möglichen gesellschaftlichen Schäden führen können.

Die United Nations (UN) ist für so eine Fragestellung prädestiniert, und hat mit der Veröffentlichung UN /2024): Governing AI For Humanity (PDF) eine gute Basis geschaffen, um ausgewogen über das Thema diskutieren zu können.

Aktuell habe ich den Eindruck, dass die Diskussionen über die Entwicklung und Nutzung Künstlicher Intelligenz von den amerikanischen Tech-Konzernen dominiert werden, die ihre wirtschaftlichen Vorteile sehen, die gesellschaftlich negativen Auswirkungen gerne den jeweiligen Ländern überlassen wollen.

Siehe dazu auch Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century und die Erläuterungen zu einer Society 5.0.

Gedanken zu Vertrauen und Misstrauen

Image by Gerd Altmann from Pixabay

Gerade in Zeiten mit vielfältigen und turbulenten Veränderungen ist es wichtig zu wissen, wem (Personen, Organisationen) man vertrauen kann. Es gibt immer wieder ausführliche Darstellungen darüber, dass „Vertrauen verloren gegangen ist“, wenn es Unternehmen schlecht geht, und dass Vertrauen die Basis für ein gutes Zusammenleben ist.

Vertrauen stellt also einen nicht unerheblichen Faktor im Wirtschaftsleben, aber auch im gesellschaftlichen Zusammenleben dar. Deshalb sollte man sich zunächst einmal darüber klar werden, was unter Vertrauen zu verstehen ist.

Vertrauen als Fähigkeit, soziale Beziehungen in Situationen der Ungewissheit und Mehrdeutigkeit (temporär) zu stabilisieren (vgl. Weick, 1995).

Vertrauen stabilisiert also soziale Beziehungen, was wiederum bedeutet, dass Misstrauen soziale Beziehungen destabilisiert. Es scheint, dass Misstrauen gegenüber Vertrauen stärker verbreitet ist. Im World Social Report 2025 wir deutlich dargestellt, welche Auswirkungen Misstrauen hat.

Hier das eine oder andere Beispiel aus meiner Perspektive:

Lebensmittelbranche: Ich misstraue der Branche grundsätzlich, da sie immer mehr Produkte industriell fertigt und dabei viele Zusatzstoffe verwendet, die Menschen auf Dauer krank machen können. Siehe dazu Die Tricks mit Brot und Brötchen – ARD Mediathek oder die vielen Sendungen von Sebastian Lege.

Gastronomie: Kann man den vielen Gastronomen wirklich vertrauen? Manche schaffen es ja sogar, dem Gast Leitungswasser als „“Eigenmarke“ zu Höchstpreisen zu verkaufen.

Gesundheitswesen: Kann ich den Akteuren vertrauen, wenn z.B. ein Arzt nur Geld verdient, wenn ich krank bin? Natürlich gibt es im System Personen, denen ich vertraue, doch kann ich dem Gesundheitssystem vertrauen?

Finanzwesen: Die verschiedenen Finanzprodukte sind schon seit Jahren in der Kritik, da es of an Transparenz fehlt, und mehr der Profit der Bank im Fokus steht, als das Wohl der Kunden.

Künstliche Intelligenz: Kann ich den KI-Angeboten der Tech-Konzerne vertrauen? Es gibt bei den proprietären Angeboten keine Transparenz darüber, welche Daten für die Modelle genutzt wurden und wie mit neuen Daten umgegangen wird. Siehe dazu Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Es wäre schön, wenn nicht mehr die Manipulationen von Menschen (Kunden) im Mittelpunkt stehen würden, sondern die wirklichen Bedürfnisse von Menschen.

Siehe dazu auch Neue Arbeitswelt: Vertrauen als Ersatz für Kontrolle? und Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

IT ALL STARTS WITH TRUST

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Screenshot: https://allenai.org/blog/olmoearth-models

Über die Open Source AI-Modelle der Olmo2-Familie habe ich schon einmal in diesem Blogbeitrag geschrieben. Grundsätzlich soll mit diesen Modellen die Forschung an Sprachmodellen unterstützt werden. Anfang November hat Ai2 nun bekannt gegeben, dass mit OlmoEarth eine weitere Modell-Familie als Foundation Models (Wikipedia) zur Verfügung steht.

OlmoEarth is a family of open foundation models built to make Earth AI practical, scalable, and performant for real-world applications. Pretrained on large volumes of multimodal Earth observation data“ (Source: Website).

Es handelt sich also um eine offene, trainierte Modell-Familie, die zur Lösung realer Probleme (real world problems) beitragen sollen. Hier ein Beispiel von der Nutzung der Daten für eine Fragestellung in Nigeria:

Es gibt vier unterschiedliche Modelle. Interessant dabei ist, dass es auch kleine Modelle (Nano und Tiny) gibt, die kostengünstig sind, und schnell genutzt werden können:

OlmoEarth-v1-Nano (~1.4M parameters) & OlmoEarth-v1-Tiny (~6.2M)—for fast, cheap inference at scale
OlmoEarth-v1-Base (~90M)—balanced accuracy and speed for most use cases
OlmoEarth-v1-Large (~300M)—best performance on challenging tasks

Auf der OlmoEarth-Platform können die Modelle getestet werden.

Emotionale Intelligenz und Künstliche Intelligenz am Arbeitsplatz

Wenn es um Künstliche Intelligenz geht, kommt auch immer öfter der Hinweis auf, dass Emotionale Intelligenz immer wichtiger wird. In dem Blogbeitrag AI City und Emotionale Intelligenz wird beispielsweise auf den Zusammenhang mit AI Citys verwiesen:

“For a smart city, having only “IQ” (intelligence quotient) is not enough; “EQ” (emotional quotient) is equally essential. (…) the emotions of citizen communities …“

Hier wird also vorgeschlagen, neben dem Intelligenz-Quotienten (IQ) noch einen Emotionalen Quotienten (EQ) bei der Betrachtung zu berücksichtigen.

Doch was verstehen wir unter „Emotionale Intelligenz“?

Ich beziehe mich hier auf eine Beschreibung von Salovay und Mayer, und bewusst nicht auf den populären Ansatz von Goleman:

“Emotional intelligence is a type of social intelligence that involves the ability to monitor one’s own and others’ emotions to discriminate among them, and to use the information to guide one’s thinking and actions (Salovey & Mayer 1990)”, cited in Mayer/Salovay 1993, p. 433).

Die Autoren sehen also Emotionale Intelligenz als Teil einer Sozialen Intelligenz. Spannend ist weiterhin, dass Mayer und Salovay ganz bewusst einen Bezug zur Multiplen Intelligenzen Theorie von Howard Gardner herstellen. Siehe Emotionale Intelligenz: Ursprung und der Bezug zu Multiplen Intelligenzen.

Betrachten wir nun Menschen und AI Agenten im Zusammenspiel, so muss geklärt werden, woran AI Agenten (bisher) bei Entscheidungen scheitern. Dazu habe ich folgenden Text gefunden:

“AI agents don’t fail because they’re weak at logic or memory. They fail because they’re missing the “L3” regions — the emotional, contextual, and motivational layers that guide human decisions every second” (Bornet 2025 via LinkedIn).

Auch Daniel Goleman, der den Begriff „Emotionale Intelligenz“ populär gemacht hat, beschreibt den Zusammenhang von Emotionaler Intelligenz und Künstlicher Intelligenz am Arbeitsplatz, und weist auf die erforderliche Anpassungsfähigkeit (Adaptability) hin:

Adaptability: This may be the key Ei competence in becoming part of an AI workplace. Along with emotional balance, our adaptability lets us adjust to any massive transformation. The AI future will be different from the present in ways we can’t know in advance“ (EI in the Age of AI, Goleman via LinkedIn, 30.10.2025).

Was mir allerdings an der Formulierung nicht gefällt ist der Begriff „Ei competence“, denn Intelligenz und Kompetenz sind durchaus unterschiedlich. Siehe dazu Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler.

Innovationen: Künstliche Intelligenz und Neu-Kombinationen

Bei Innovationen sollten wir uns zunächst einmal klar machen, was im Unternehmenskontext darunter zu verstehen ist. Das Oslo Manual schlägt vor, Innovation wie folgt zu interpretieren:

„(…) a new or improved product or process (or combination thereof) that differs significantly from the unit’s previous products or processes and that has been made available to potential users (product) or brought into use by the unit (process)” (Oslo Manual 2018).

Dass Innovation u.a. eine Art Neu-Kombination von Existierendem bedeutet, ist vielen oft nicht so klar (combination thereof). Neue Ideen – und später Innovationen – entstehen oft aus vorhandenen Konzepten. oder Daten.

An dieser Stelle kommen nun die Möglichkeiten der Künstlichen Intelligenz (GenAI oder auch AI Agenten) ins Spiel. Mit KI ist es möglich, fast unendlich viele Neu-Kombinationen zu entwickeln, zu prüfen und umzusetzen. Das können Unternehmen nutzen, um ihre Innovationsprozesse neu zu gestalten, oder auch jeder Einzelne für seine eigenen Neu-Kombinationen im Sinne von Open User Innovation nutzen. Siehe dazu Von Democratizing Innovation zu Free Innovation.

Entscheidend ist für mich, welche KI-Modelle dabei genutzt werden. Sind es die nicht-transparenten Modelle der Tech-Unternehmen, die manchmal sogar die Rechte von einzelnen Personen, Unternehmen oder ganzer Gesellschaften ignorieren, oder nutzen wir KI-Modelle, die frei verfügbar, transparent und für alle nutzbar sind (Open Source AI)?

Wenn wir das Wohl der Menschen, und nicht nur den Profit einzelner Tech-Konzerne in den Mittelpunkt stellen, kommt für mich im Sinne einer Digitalen Souveränität nur Open Source AI infrage. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.