Digitale Medien – das Medium ist die Botschaft

Image by Graphix Made from Pixabay

Wenn wir heute über Medien sprechen oder schreiben, geht es meistens um Digitale Medien. Der althergebrachte Gedanke, dass Digitale Medien eher neutral sind, und nur Botschaften übermitteln, ist heute nicht mehr zeitgemäß. Denn ganz nach McLuhan (1968) ist das Medium die Botschaft. Was heißt das?

„Für eine medienwissenschaftliche Betrachtung Digitaler Medien ist der von dem kanadischen Medienwissenschaftler Marshall McLuhan formulierte Medienbegriff relevant, wie er in dem häufig zitierten Satz „the medium is the message“ (McLuhan 1968:15) zum Ausdruck kommt. Die Botschaft eines Mediums ist nach McLuhan die „Veränderung des Maßstabs, Tempos, Schemas, die es der Situation der Menschen bringt“ (ebd.: 22). Das heißt, dass Medien unabhängig vom transportierten Inhalt neue Maßstäbe setzen (ebd.: 21). Digitale Medien setzen im Bereich der Informations-, Kommunikations-, Arbeits- und Lernmöglichkeiten neue Maßstäbe. Der McLuhan’sche Medienbegriff steht im Kontrast zu einem Medienverständnis, wonach Medien neutral sind und lediglich als Übermittler von Botschaften dienen“.

Quelle: Carstensen, T. Schachtner, C.; Schelhowe, H.; Beer, R. (2014): Subjektkonstruktion im Kontext Digitaler Medien. In: Carstensen, T. (Hrsg.) (2014): Digitale Subjekte. Praktiken der Subjektivierung im Medienumbruch der Gegenwart.

Gerade in Zeiten Künstlicher Intelligenz geht es daher nicht alleine um den Content, sondern auch darum, dass KI-Modelle neue Maßstäbe setzen. Gerade dieser Effekt von KI ist bei Verlagen, in der Musikbranche, bei Psychologen, Ärzten, usw. deutlich zu erkennen. Dabei ist auch der Hinweis von McLuhan wichtig, dass dadurch auch die Neutralität dieser Digitalen Medien verlorengeht.

KI-Modellen, mit den darin enthaltenen Ansichten zum Menschenbild,, zur Gesellschaftsformen usw., werden zu starken Beeinflusser von Individuen, die erst durch „das Gegenüber“ und durch Kontexte zu einem „Ich“ wird.

„Wer bin ich ohne die anderen? Niemand. Es gibt mich nur so, in einem Zusammenhang mit Menschen, Orten und Landschaften“ (Marica Bodroži 2012:81).

Künstliche Intelligenz und Mensch: Eine Meister-Lehrling-Beziehung?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Für komplexe Problemlösungen ist es wichtig, implizites Wissen zu erschließen. Wenig überraschend stellt Polanyi daher die Meister-Lehrling-Beziehung, in der sich Lernen als Enkulturationsprozess vollzieht, als essentielles Lern-Lern-Arrangement heraus:

„Alle Kunstfertigkeiten werden durch intelligentes Imitieren der Art und Weise gelernt, in der sie von anderen Personen praktiziert werden, in die der Lernende sein Vertrauen setzt“ (PK, S. 206). (Neuweg 2004).

Das setzt auch die Anerkenntnis der Autorität des Experten voraus. Nach Dryfus/Dryfus ergeben sich vom Novizen bis zum Experten folgende Stufen der Kompetenzentwicklung:

Das Modell des Fertigkeitserwerbs nach Dreyfus/Dreyfus (Neuweg 2004)

Wenn wir uns nun die Beziehung zwischen Künstlicher Intelligenz und dem (nutzenden) Menschen ansehen, so kann diese Beziehung oftmals wie eine Meister-Lehrling-Beziehung beschrieben werden.

Dabei ist die „allwissende“ Künstliche Intelligenz (z.B. in Form von ChatGPT etc.) der antwortende Meister, der die Fragen (Prompts) des Lehrlings (Mensch) beantwortet. Gleichzeitig wird vom Lehrling (Mensch) die Autorität des Meisters (ChatGPT) anerkannt. Dieser Aspekt kann dann allerdings auch für Manipulationen durch die Künstliche Intelligenz genutzt werden.

Ein weiterer von Polanyi angesprochene Punkt ist das erforderliche Vertrauen auf der Seite des Lernenden in den Meister. Kann ein Mensch als Nutzer von Künstlicher Intelligenz Vertrauen in die KI-Systeme haben? Siehe dazu Künstliche Intelligenz – It All Starts with Trust.

Gerade wenn es um komplexe Probleme geht hat das Lernen von einer Person, gegenüber dem Lernen von einer Künstlichen Intelligenz, Vorteile. Die Begrenztheit von KI-Agenten wird beispielhaft auf der Plattform Rent a Human deutlich, wo: KI-Agenten Arbeit für Menschen anbieten, denn

„KI kann kein Gras anfassen“.

Common Crawl: Freie Daten für jeden?

Website: https://commoncrawl.org/

Large Language Models (LLMs) benötigen eine Unmenge an Daten. Bei den Closed Source KI-Modellen von OpenAI, Meta, etc. ist manchmal nicht so klar (Black Box), woher diese ihre Trainingsdaten nehmen. Eine Quelle scheint Common Crawl zu sein.

„Common Crawl maintains a free, open repository of web crawl data that can be used by anyone. The Common Crawl corpus contains petabytes of data, regularly collected since 2008“ (ebd.)

Die Daten werden von Amazon gehostet, können allerdings auch ohne Amazon-Konto genutzt werden. Eine Datensammlung, die für jeden frei nutzbar und transparent ist, und sogar rechtlichen und Datenschutz-Anforderungen genügt, wäre schon toll.

Doch es gibt auch Kritik: Wie auf der Wikipedia-Seite zu Common Crawl zu lesen ist, respektiert Common Crawl wohl nicht immer Paywalls bei ihrer Datensammlung: Wired (2024): Publishers Target Common Crawl In Fight Over AI Training Data.

Es ist also Vorsicht geboten, wenn man Common Crawl nutzen möchte. Dennoch kann diese Entwicklung interessant für diejenigen sein, die ihr eigenes, auf den Werten von Open Source AI basierendes KI-Modell nutzen wollen. Siehe dazu auch

Open Source AI: Common Corpus als größte offene Trainingsdatenbank veröffentlicht.

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Künstliche Cleverness statt Künstliche Intelligenz?

Eigene Darstellung, vgl. Martin Chiupa (2026) via LinkedIn

Sir Roger Penrose ist u.a. Mathematiker und theoretischer Physiker. In 2020 hat er eine Hälfte des Nobelpreises für Physik erhalten. Penrose hat sich darüber hinaus recht kritisch mit Künstlicher Intelligenz auseinandergesetzt.

Er ist zu der Auffassung gelangt, dass man nicht von Künstlicher Intelligenz (Artificial Intelligence), sondern eher von Künstlicher Cleverness (Artificial Cleverness) sprechen sollte. Dabei leitet er seine Erkenntnisse aus den beiden Gödelschen Unvollständigkeitssätzen ab. In einem Interview hat Penrose seine Argumente dargestellt:

Sir Roger Penrose, Gödel’s theorem debunks the most important AI myth. AI will not be conscious, Interview, YouTube, 22 February 2025. This Is World.
Available at: https://www.youtube.com/watch?v=biUfMZ2dts8

Da das alles ziemlich schwere Kost ist, hat Martin Chiupa (2026) via LinkedIn eine Übersicht (Abbildung) erstellt, die anhand verschiedener Kriterien Unterschiede zwischen Human Intelligence, AI Systems und Artificial Cleverness aufzeigt.

Penrose steht mit seiner Auffassung nicht alleine. Siehe dazu auch Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler.

MCP Community of Europe trifft sich im September in Balatonfüred, Ungarn

Die MCP Community of Europe trifft sich in diesem Jahr vom 16.-19.09.2026 auf der MCP 2026 in Balatonfüred, Ungarn. Neueste Entwicklungen zu Mass Customization and Personalization, auch in Zeiten von Künstlicher Intelligenz, werden auf der Konferenz vorgestellt und diskutiert. Die Konferenz findet seit 2004 durchgehend alle 2 Jahre statt – die MCP 2026 ist somit die 12. Konferenz ihrer Art.

Begleitend findet vor der Konferenz der 7. Doktoranden-Workshop (DSW 2026), und nach dem Konferenz-Teil das 4. Pro Panel Idea Sharing (Pro Forum MEA KULMA 2026) statt. Es ist ein spannendes Angebot für Wissenschaftler und Praktiker, um sich mit Experten auf dem Gebiet Customization und Personalization auszutauschen.

In der MCP Week gibt es natürlich auch viele Möglichkeiten des Networkings. Auf der Konferenz-Website MCP 2026 finden Sie ausführliche Informationen zu den vergangenen Konferenzen und zur Location.

Abstracts können Sie bis zum 31.03.2026 einreichen.

Bei Fragen können Sie mich gerne ansprechen. Wir (Jutta und ich) werden selbstverständlich im September mit dabei sein.

Rent a Human: KI-Agenten bieten Arbeit für Menschen an

Website: https://rentahuman.ai/

Wir haben uns daran gewöhnt, dass Jobs auf verschiedenen Plattformen angeboten werden. In der Regel sind das Jobs von Unternehmen/Organisationen, für Projekte oder für die Mitarbeit in gemeinnützigen Einrichtungen.

Neu ist jetzt, dass auch KI-Agenten Jobs anbieten, wie z.B. auf der Plattform RentaHuman.ai. Da KI-Agenten in manchen Bereichen begrenzte Möglichkeiten haben, benötigen diese beispielsweise für analoge Tätigkeiten die menschlichen Kompetenzen.

„KI kann kein Gras anfassen“ (ebd.).

Es haben sich schon in kurzer Zeit viele Menschen auf der Plattform angemeldet, und Informationen zu ihren Kompetenzen und Preisen angegeben. Wenn man nach Personen in Deutschland sucht, wird man schnell fündig:

Es ist eine interessante, allerdings auch eine etwas zwiespältige Entwicklung, auf die Noëlle Bölling am 05.02.2026 in dem Beitrag Rent a Human: Bei dieser Jobbörse heuern KI-Agenten Menschen an hingewiesen hat:

„Mit der neuen Jobbörse treibt er die gegenwärtigen Entwicklungen auf die Spitze: Während immer mehr Mitarbeiter:innen ihre Arbeitsplätze an KI-Agenten verlieren, können sie sich jetzt von ihnen anheuern lassen – und das zu einem deutlich niedrigeren Lohn“ (ebd.).

Soziale Kompetenz – eine Einordnung

Kanning, U. P. (2005): Soziale Kompetenzen. Göttingen: Hofgrefe.

In vielen Diskussionen verwenden Teilnehmer gleichlautende Begriffe, deren Bedeutungen allerdings unterschiedlich interpretiert werden. Weiterhin kann es vorkommen, dass Begriffe synonym verwendet werden, wodurch auch ein ziemliches Durcheinander entstehen kann.

In der Abbildung ist beispielsweise zu erkennen, dass der Oberbegriff Soziale Kompetenz, die Bereiche Soziale Intelligenz, Emotionale Intelligenz und auch Soziale Fertigkeiten umfasst – mit diesen Begriffen somit nicht gleichzusetzen ist.

Weiterhin können auch Emotionale Intelligenz und Emotionale Kompetenz unterschieden werden.

Ähnlich sieht es bei Persönlichkeitseigenschaften, -fähigkeiten und Kompetenzen aus.

Auch sollte bedacht werden, dass wir bei Intelligenz oft and den Intelligenz-Quotienten denken, was gerade in der Diskussion um Künstliche Intelligenz tückisch sein kann: OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Hier hat die Multiple Intelligenzen Theorie möglicherweise eine bessere Passung.

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Loyal Agents – it all starts with trust

Website: https://loyalagents.org/

KI-Agenten sind aktuell in aller Munde. Gerade in Software-Unternehmen wurde schon früh damit angefangen, Agenten zu nutzen: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

Im Außenverhältnis, z.B. mit Kunden , wird es schon schwieriger, KI-Agenten einzusetzen, da hier weitergehende Herausforderungen zu bewältigen sind. Es wundert daher nicht, dass es an dieser Stelle Forschungsbedarf gibt.

In dem Projekt Loyal Agents arbeiten dazu beispielsweise das Stanford Digital Economy Lab und Consumer Report zusammen. Worum es ihnen geht, haben sie auf der Website Loyal Agents so formuliert:

„Agentic AI is transforming commerce and services; agents are negotiating, transacting and making decisions with growing autonomy and impact. While agents can amplify consumer power, there is also risk of privacy breaches, misaligned incentives, and manipulative business practices. Trust and security are essential for consumers and businesses alike“ (ebd.).

Dass Vertrauen und Sicherheit eine besonders wichtige Bedeutung in den Prozessen mit der Beteiligung von KI-Agenten haben, wird hier noch einmal deutlich – It all starts with Trust. Ähnliche Argumente kommen von Bornet, der sich für Personalized AI Twins ausspricht:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins oder Loyal Agents ihre eigenen Ideen besser selbst entwickeln, oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Aufmerksamkeit: The global attention deficit disorder

Image by Gerd Altmann from Pixabay

Aufmerksamkeit generieren und für die eigenen Belange zu nutzen, ist ein zentrales Element der Aktivitäten in allen Medien – besonders natürlich in den Sozialen Medien und bei der Nutzung von Künstlicher Intelligenz. Es ist verständlich, dass alles getan wird, um die Aufmerksamkeit nicht zu verlieren. Dennoch ist global ein Aufmerksamkeits-Defizit zu beobachten:

„Diese Entwicklung ist global zu erkennen und als global attention deficit bekannt, „(..) verursacht durch Psychotechnologien, die durch keine politische Macht reguliert werden. Sie sind die Ursache für die Regression der Intelligenz und für ein Konsumverhalten, das sich auf die Zukunft des Planeten zunehmend zerstörerisch auswirkt“ (Stiegler 2008).

Die Aufmerksamkeitsstörung wird zu einem Aufmerksamkeitsdefizit, das durch ein immer stärkeres Benutzer-Profiling reguliert werden soll. Die Überlegung dazu ist: Wenn eine Organisation den Nutzer besser kennt, also das User-Profil kennt, kann die Organisation dafür sorgen, dass sie die Aufmerksamkeit des Users gewinnen, bzw. behalten kann.

Interessant ist allerdings, dass diese Profilingsysteme dazu führen können, dass sie genau das Gegenteil bewirken – es ist paradox:

„Die Profilingsysteme zerstören die beobachtende Aufmerksamkeit und ersetzen sie durch eine konservierende Aufmerksamkeit, durch eine Standardisierung des Subjekts, das offenkundig in das Stadium seiner eigenen Grammatisierung eingetreten ist: eine Grammatisierung seines „psychischen Profils“ – hier seines „Aufmerksamkeitsprofils“ -, die es im Grunde ermöglicht, das Subjekt gewissermaßen am Ursprung seines Bewusstseinsstroms, durch den es bisher als Aufmerksamkeit existierte, zu entindividualisieren“ (Stiegler 2008).

Eine „konservierende Aufmerksamkeit“, die auch von KI-Bots offen und subtil angestrebt wird. Bei vielen Nutzern scheint das auch zu funktionieren.

Siehe dazu ausführlicher Bernsteiner, A. (2025): Die Grammatisierung sozialer Praktiken (PDF) und Personas sind für Personalization ungeeignet.

Emotionale Intelligenz: Der Begriff hat eine recht lange und bewegte Geschichte

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

In der heutigen Diskussion um „Intelligenz“ geht es gerade in Bezug auf Künstliche Intelligenz auch um Emotionale Intelligenz. Die meisten werden den Begriff von der Veröffentlichungen Daniel Golemans kennen. Stellvertretend möchte ich sein Buch „Emotional Intelligence“ aus dem Jahr 1995 nennen.

Goleman, D. (1995): Emotional Intelligence. Why It Can Matter More Than IQ.

Wenn man sich allerdings etwas genauer mit dem Begriff befasst, stößt man recht schnell auf Salovay/Meyer, die schon 1990 von „Emotionaler Intelligenz“ geschrieben haben.

Salovey, P.; Mayer, J. D. (1990): Emotional Intelligence. In: Imagination, Cognition and Personality. 9. Jg. Heft 3, S. 185-211.

Dabei ist interessant, dass sich die beiden bei ihren Überlegungen schon 1993 direkt auf die Multiple Intelligenzen Theorie bezogen haben. Was bedeutet, dass Emotionale Intelligenz als Teil der von Howard Gardner angenommenen Multiplen Intelligenzen Theorie gesehen werden kann.

In der Zwischenzeit habe ich in einer weiteren Quelle eine Notiz gefunden, die besagt, dass der Schwede Björn Rosendal schon 1976 den Begriff „Emotional Intelligence“ geprägt hat. Manchmal ist es gut, sich die Historie eines oft verwendeten Begriffs klar zu machen.

„He coined the term „emotional intelligence“ in 1976″
Rosendal , Björn (1981): The Emotional Intelligence, Edition Sellem.

Der Hinweis auf Rosendal fehlt auf der Wikipedia-Seite zu Emotionale Intelligenz. Dort gibt es allerdings noch zwei weitere Quellen:

„The term „emotional intelligence“ may have first appeared in a 1964 paper by Michael Beldoch. and a 1966 paper by B. Leuner“ (ebd.).

Möglicherweise gibt es noch weitere, frühere Erwähnungen von Emotionaler Intelligenz. Das Konstrukt hat sich – wie viele – über die Jahrzehnte weiterentwickelt. Das zu analysieren, würde allerdings diesen Beitrag sprengen.