Digitale Souveränität: Nextcloud Workflow

Screenshot: Nextcloud Workflow auf unserem Server

Mit Nextcloud haben wir eine Open Source Software auf unserem Server installiert, die je nach Bedarf mit Hilfe von Apps (Anwendungen) erweitert werden kann. Für die Verbesserung der Produktivität gibt es zunächst einmal die App Flow, mit der einfache Abläufe automatisiert werden können.

Sind die Ansprüche etwas weitreichender, bietet sich die App Workflow an, die wir auch installiert haben. Die App basiert auf Windmill und ermöglicht es uns, Abläufe (Workflows) per bekannter Symbole darzustellen. In der Abbildung sind links die zwei einfachen Symbole “Input” und “Output” zu sehen. Rechts daneben werden die Details zu den einzelnen Button und Schritte angezeigt – das Prinzip dürfte klar sein, Einzelheiten zu den vielfältigen Optionen erspare ich mir daher.

Es ist immer wieder erstaunlich, wie schnell viele Apps auf Open Source Basis zur Verfügung stehen, und je nach Bedarf genutzt werden können. Aktuell ist die Anzahl der generierbaren Workflows über die freie Version von Nextcloud noch begrenzt. Alternativ könnten wir auch Windmill direkt auf unserem Server installieren: Self-host Windmill. Ähnlich haben wir es schon mit OpenProject gemacht. Wobei es dann aus der Anwendung heraus möglich ist, auf Nextcloud-Daten zuzugreifen.

Ob wir das machen hängt davon ab, ob wir mit Workflow in Zukunft weiterarbeiten, oder alle Arten von Flows direkt in Langflow abbilden, da wir dort den direkten Übergang zu KI-Agenten haben. Alle Open Source Anwendungen laufen auf unseren Servern, sodass alle generierten Daten auch bei uns bleiben. Ganz im sinne einer Digitalen Souveränität.

WEF (2025): Future of Jobs Report 2025

Es ist allen klar, dass sich die Jobs in den nächsten Jahren weiter stark verändern werden. Möglicherweise geht es dabei um einzelne Tätigkeiten, Tätigkeitsportfolios oder komplette Jobs. Das World Economic Forum (WEF) veröffentlicht dazu immer wieder Reports. Einer davon wurde Anfang des Jahres veröffentlicht: WEF (2025): Future of Jobs Report 2025 (PDF).

Darin geht es um den Zeitraum 2025-2030, in dem aufgrund der laufenden technischen und energetischen Transition wohl 170 Millionen neue Jobs geschaffen, und 92 Millionen verschwinden werden:

“The world of work is changing fast. While 92 million jobs may disappear over the next 5 years, nearly 170 million new ones will emerge, driven by new technology and the energy transition. What are these new jobs and which sectors will see the greatest changes?” (WEF 2025).

Ich möchte an dieser Stelle nicht auf alle Details der Veröffentlichung eingehen, doch halte ich folgenden Punkt durchaus für bemerkenswert:

“Additionally, Software and Applications Developers, General and Operations Managers, and Project Managers, are among the job categories driving the most net job growth” (WEF 2025).

Die wachsende Nachfrage nach Projektmanagern wird hier allerdings nicht weiter erläutert. Ich gehe davon aus, dass Projektmanager in Zukunft die ganze Palette des Projektmanagement-Kontinuums mehr oder weniger intensiv (je nach Branche und Organisation) bewältigen müssen.

Dabei kann es im Laufe der Jahre natürlich auch zu Verschiebungen kommen. Beispielsweise von einer eher plangetriebenen Projektmanagement über das Agile Projektmanagement zu einem situationsspezifischen Hybriden Projektmanagement, das eher pragmatisch als dogmatisch ist. Alles natürlich auch immer zusammen mit den Entwicklungen bei der Künstlichen Intelligenz. Eine weiterhin anspruchsvolle Aufgabe.

Künstliche Intelligenz im Projektmanagement: Ethische Kompetenz für die Projektleitung?

In allen Projekten werden mehr oder weniger oft digitale Tools, bzw. komplette Kollaborationsplattformen eingesetzt. Hinzu kommen jetzt immer stärker die Möglichkeiten der Künstlicher Intelligenz im Projektmanagement (GenAI, KI-Agenten usw.).

Projektverantwortliche stehen dabei vor der Frage, ob sie den KI-Angeboten der großen Tech-Konzerne vertrauen wollen – viele machen das. Immerhin ist es bequem, geht schnell und es gibt auch gute Ergebnisse. Warum sollte man das hinterfragen? Möglicherweise gibt es Gründe.

Es ist schon erstaunlich zu sehen, wie aktuell Mitarbeiter ChatGPT, Gemini usw. mit personenbezogenen Daten (Personalwesen) oder auch unternehmensspezifische Daten (Expertise aus Datenbanken) füttern, um schnelle Ergebnisse zu erzielen – alles ohne zu fragen: Was passiert mit den Daten eigentlich? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Je innovativer ein Unternehmen ist, desto einzigartiger sind seine Daten. Was mit diesen Daten dann passiert, ist relativ unklar. Es wundert daher nicht, dass nur ein kleiner Teil der Unternehmensdaten in den bekannten LLM (Large Language Models) zu finden ist. Siehe dazu Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden.

Es stellt sich zwangsläufig die Frage, wie man diesen Umgang mit den eigenen Daten und das dazugehörende Handeln bewertet. An dieser Stelle kommt der Begriff Ethik ins Spiel, denn Ethik befasst sich mit der “Bewertung menschlichen Handelns” (Quelle: Wikipedia). Dazu passt in Verbindung zu KI in Projekten folgende Textpassage:

“In vielen Projektorganisationen wird derzeit intensiv darüber diskutiert, welche Kompetenzen Führungskräfte in einer zunehmend digitalisierten und KI-gestützten Welt benötigen. Technisches Wissen bleibt wichtig – doch ebenso entscheidend wird die Fähigkeit, in komplexen, oft widersprüchlichen Entscheidungssituationen eine ethisch fundierte Haltung einzunehmen. Ethische Kompetenz zeigt sich nicht nur in der Einhaltung von Regeln, sondern vor allem in der Art, wie Projektleitende mit Unsicherheit, Zielkonflikten und Verantwortung umgehen” (Bühler, A. 2025, in Projektmanagement Aktuell 4/2025).

Unsere Idee ist daher, eine immer stärkere eigene Digitale Souveränität – auch bei KI-Modellen. Nextcloud, LocalAI, Ollama und Langflow auf unseren Servern ermöglichen es uns, geeigneter KI-Modelle zu nutzen, wobei alle generierten Daten auf unseren Servern bleiben. Die verschiedenen KI-Modelle können farbig im Sinne einer Ethical AI bewertet werden::

Quelle: https://nextcloud.com/de/blog/nextcloud-ethical-ai-rating/

Digitale Souveränität: Mit Langflow einen einfachen Flow mit Drag & Drop erstellen

Eigener Screenshot vom Langflow-Arbeitsbereich, inkl. der Navigation auf der linken Seite

Langflow haben wir als Open Source Anwendung auf unseren Servern installiert. Mit Langflow ist es möglich, Flows und Agenten zu erstellen – und zwar einfach mit Drag&Drop. Na ja, auch wenn es eine gute Dokumentation und viele Videos zu Langflow gibt, steckt der “Teufel wie immer im Detail”.

Wenn man mit Langflow startet ist es erst einmal gut, die Beispiele aus den Dokumentationen nachzuvollziehen. Ich habe also zunächst damit begonnen, einen Flow zu erstellen. Der Flow unterscheidet sich von Agenten, auf die ich in den nächsten Wochen ausführlicher eingehen werde.

Wie in der Abbildung zu sehen ist, gibt es einen Inputbereich, das Large Language Model (LLM) oder auch ein kleineres Modell, ein Small Language Model (SLM). Standardmäßig sind die Beispiele von Langflow darauf ausgerichtet, dass man OpenAI mit einem entsprechenden API-Key verwendet. Den haben wir zu Vergleichszwecken zwar, doch ist es unser Ziel, alles mit Open Source abzubilden – und OpenAI mit ChatGPT (und andere) sind eben kein Open Source AI.

Um das zu erreichen, haben wir Ollama auf unseren Servern installiert. In der Abbildung oben ist das entsprechende Feld im Arbeitsbereich zu sehe,n. Meine lokale Adresse für die in Ollama hinterlegten Modelle ist rot umrandet unkenntlich gemacht. Unter “Model Name” können wir verschiedene Modelle auswählen. In dem Beispiel ist es custom-llama.3.2:3B. Sobald Input, Modell und Output verbunden sind, kann im Playground (Botton oben rechts) geprüft werden, ob alles funktioniert. Das Ergebnis sieht so aus:

Screenshot vom Playground: Ergebnis eines einfachen Flows in Langflow

Es kam mir jetzt nicht darauf an, komplizierte oder komplexe Fragen zu klären, sondern überhaupt zu testen, ob der einfache Flow funktioniert. Siehe da: Es hat geklappt!

Alle Anwendungen (Ollama und Langflow) sind Open Source und auf unseren Servern installiert. Alle Daten bleiben auf unseren Servern. Wieder ein Schritt auf dem Weg zur Digitalen Souveränität.

Über die Unterscheidung zwischen “Werte” und “Wert”

Image by Michaela ? from Pixabay

Das gesellschaftliche Zusammenleben wird durch Gesetze geregelt, die sich oftmals historisch entwickelt haben. Dabei spielen Kultur und die damit verbundenen “Werte” eine große Rolle. Die Bedeutung des Begriffs soll nun geklärt, und zu dem Begriff “Wert” abgegrenzt werden. Dazu habe ich folgende Texte in einer aktuellen Studie gefunden:

“Der Begriff »Werte« unterscheidet sich vom Begriff »Wert« dadurch, dass der erste Begriff die Gründe beschreibt, warum etwas für jemanden wichtig ist. Werte repräsentieren normative Grundlagen, die als Leitprinzipien für individuelles Verhalten und gesellschaftliche Strukturen dienen. Sie bilden die Basis für die Bewertung von Wert und beeinflussen die Art und Weise, wie Individuen und Gesellschaften Güter, Dienstleistungen oder Handlungen priorisieren” (Hämmerle et al. 2025, Fraunhofer HNFIZ).

Die Autoren weisen in ihrer Studie zur Transformation zu einer Wertschöpfung der Zukunft darauf hin, dass der Begriff »Wert« durchaus unterschiedlich interpretiert werden kann. Beispielhaft wird auf von Froese (2024) hingewiesen, der meint, in unseren westlichen Gesellschaften ginge es dabei eher um ökonomische oder auch statusbezogene Bewertungen. Andererseits hat Mazzucato (2018) darauf verwiesen, “dass Wert stets politisch und gesellschaftlich geprägt ist und über rein ökonomische Kategorien hinausgeht” (ebd.).

Es wird meines Erachtens immer deutlicher, dass wir uns gesellschaftlich und wirtschaftlich mehr und mehr in ein neues Werte- und Wertverständnis hineinbewegen (müssen), das über die rein wirtschaftlichen Dimensionen hinausgeht. Siehe dazu auch

Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

Open Source Community und die United Nations teilen die gleichen Werte.

Wertemanagement: 2 Veröffentlichungen und ein kritischer Beitrag.

Nextcloud Collective App: Ein Wiki für die kollaborative Zusammenarbeit

Screenshot von unserer Nextcloud: Beispielseite einer Zusammenarbeit über die Collective App

Die Collective App haben wir in unserer Nextcloud (Open Source) aktiviert. Dabei wird das entsprechende Symbol im oberen Bereich angezeigt. Das Aktivieren oder auch Deaktivieren von Apps je nach Bedarf, ist ein sehr komfortable uns einfache Möglichkeit, mit Nextcloud zu arbeiten.

In der Abbildung ist beispielhaft ein Ausschnitt aus einem Arbeitsbereich in der Collective App zu sehen, den ich für das Thema Agentic AI Company angelegt habe. Die Navigation ist klassisch auf der linken Seite zu finden. Die Inhalte werden dann je Seite angezeigt (hier für Kapitel 2.1) und können dann von allen bearbeitet werden, die ich dem Bereich zugeordnet habe, und die entsprechende Berechtigung haben.

In dem Kapitel 2.1 thematisiere ich beispielsweise die Vorteile und Nachteile von einer Cloud AI im Vergleich zu einer LocalAI. Hier sammeln wir gemeinsam Informationen, Dateien, Links, Quellen usw.. Das können externe Inhalte sein, oder auch direkt Inhalte, die in unserer Nextcloud gespeichert sind Alle Änderungen werden dokumentiert und können nachverfolgt werden. Weiterhin können wir überall den Nextcloud Assistenten aufrufen und nutzen.

Der Vorteil: Alle Dateien und alle Transaktionen bleiben alle auf unseren Servern. Das ist für uns ein wichtiges Kriterium auf dem Weg zu einer (wirklichen) Digitalen Souveränität.

Künstliche Intelligenz: Das menschliche Gehirn benötigt maximal 30 Watt für komplexe Problemlösungen

Weltweit werden KI-Giga-Factories gebaut, um den erforderlichen Rechenkapazitäten der großen Tech-Konzerne gerecht zu werden. Europa fällt auch hier immer weiter zurück, wodurch eine zusätzliche digitale Abhängigkeit entsteht.

Prof. Lippert vom Kernforschungszentrum hat das so ausgedrückt: “”Unser geistiges Eigentum geht in andere Länder” (MDR vom 05.09.2025). Teilweise wird prognostiziert, dass KI-Rechenzentren bis 2030 so viel Energie benötigen, wie ganz Japan.

Es stellt sich daher die Frage, ob das langfristig der richtige Weg ist. Eine Antwort liefert möglicherweise der Energieverbrauch eines menschlichen Gehirns:

“Das menschliche Gehirn leistet vieles, was Maschinen überfordert – und das mit minimalem Energieverbrauch. Im Durchschnitt verbraucht es nur etwa 20 Watt, so viel wie eine schwache Glühbirne” Knees (2025): Wie Forscher die Tech-Konzerne entmachten wollen, in Handelsblatt vom 11.10.2025.

“Unser Gehirn benötigt für hochkomplexe Informationsübertragungen und -verarbeitungen weniger Energie als eine 30-Watt-Glühbirne” (Prof. Dr. Amunts).

Mit so einer geringen Energiemenge leistet unser menschliches Gehirn erstaunliches. Es wundert daher nicht, dass die Entwicklung immer größerer Modelle (Large Language Models) infrage gestellt wird.

Forscher sind aktuell auf der Suche nach Modellen, die ganz anders aufgebaut sind und nur einen Bruchteil der aktuell benötigten Energie verbrauchen. Gerade in China gibt es dazu schon deutliche Entwicklungen. Auch in Deutschland befassen sich Forscher mit dem Thema neuroinspirierte Technologien.

Digitale Souveränität: Wie kann ein KI-Modell aus LocalAI in den Nextcloud Assistenten eingebunden werden?

Um digital souveräner zu werden, haben wir seit einiger Zeit Nextcloud auf einem eigenen Server installiert – aktuell in der Version 32. Das ist natürlich erst der erste Schritt, auf den nun weitere folgen – gerade wenn es um Künstliche Intelligenz geht.

Damit wir auch bei der Nutzung von Künstlicher Intelligenz digital souverän bleiben, haben wir zusätzlich LocalAI installiert. Dort ist es möglich, eine Vielzahl von Modellen zu testen und auszuwählen. In der folgenden Abbildung ist zu sehen, dass wir das KI-Modell llama-3.2-3B-instruct:q4_k_m für einen Chat ausgewählt haben. In der Zeile “Send a massage” wurde der Prompt “Nenne wichtige Schritte im Innovationsprozess” eingegeben. Der Text wird anschließend blau hinterlegt angezeigt. In dem grünen Feld ist ein Teil der Antwort des KI-Modells zu sehen.

LocalAI auf unserem Server: Ein Modell für den Chat ausgewählt

Im nächsten Schritt geht es darum, das gleiche KI-Modell im Nextcloud Assistant zu hinterlegen. Der folgende Screenshot zeigt das Feld (rot hervorgehoben). An dieser Stelle werden alle in unserer LocalAI hinterlegten Modelle zur Auswahl angezeigt, sodass wir durchaus variieren könnten. Ähnliche Einstellungen gibt es auch für andere Funktionen des Nextcloud Assistant.

Screenshot: Auswahl des Modells für den Nextcloud Assistenten in unserer Nextcloud – auf unserem Server

Abschließend wollen wir natürlich auch zeigen, wie die Nutzung des hinterlegten KI-Modells in dem schon angesprochenen Nextcloud Assistant aussieht. Die folgende Abbildung zeigt den Nextcloud Assistant in unserer Nextcloud mit seinen verschiedenen Möglichkeiten – eine davon ist Chat mit KI. Hier haben wir den gleichen Prompt eingegeben, den wir schon beim Test auf LocalAI verwendet hatten (Siehe oben).

Screenshot von dem Nextcloud Assistant mit der Funktion Chat mit KI und der Antwort auf den eigegebenen Prompt

Der Prompt ist auf der linken Seite zu erkennen, die Antwort des KI-Modells (llama-3.2-3B-instruct:q4_k_m) ist rechts daneben wieder auszugsweise zu sehen. Weitere “Unterhaltungen” können erstellt und bearbeitet werden.

Das Zusammenspiel der einzelnen Komponenten funktioniert gut. Obwohl wir noch keine speziellen KI-Server hinterlegt haben, sind die Antwortzeiten akzeptabel. Unser Ziel ist es, mit wenig Aufwand KI-Leistungen in Nextcloud zu integrieren. Dabei spielen auch kleine, spezielle KI-Modelle eine Rolle, die wenig Rechenkapazität benötigen.

Alles natürlich Open Source, wobei alle Daten auf unseren Servern bleiben.

Wir werden nun immer mehr kleine, mittlere und große KI-Modelle und Funktionen im Nextcloud Assistant testen. Es wird spanned sein zu sehen, wie dynamisch diese Entwicklungen von der Open Source Community weiterentwickelt werden.

Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Wir behandeln oftmals Menschen wie Roboter und Künstliche Intelligenz wie Kreative

In den letzten Jahren wird immer deutlicher, dass Künstliche Intelligenz unser wirtschaftliches und gesellschaftliches Leben stark durchdringen wird. Dabei scheint es so zu sein, dass die Künstliche Intelligenz der Menschlichen Intelligenz weit überlegen ist. Beispielsweise kann Künstliche Intelligenz (GenAI) äußerst kreativ sein, was in vielfältiger Weise in erstellten Bildern oder Videos zum Ausdruck kommt. In so einem Zusammenhang behandeln wir Künstliche Intelligenz (AI: Artificial Intelligence) wie Kreative und im Gegensatz dazu Menschen eher wie Roboter. Dazu habe ich folgenden Text gefunden:

“We are treating humans as robots and ai as creatives. it is time to flip the equation” (David de Cremer in Bornet et al. 2025).

David de Cremer ist der Meinung, dass wir die erwähnte “Gleichung” umstellen sollten. Dem kann ich nur zustimmen, denn das aktuell von den Tech-Giganten vertretene Primat der Technik über einzelne Personen und sogar ganzen Gesellschaften sollte wieder auf ein für alle Beteiligten gesundes Maß reduziert werden. Damit meine ich, dass die neuen technologischen Möglichkeiten einer Künstlichen Intelligenz mit den Zielen von Menschen/Gesellschaften und den möglichen organisatorischen und sozialen Auswirkungen ausbalanciert sein sollten.

Der japanische Ansatz einer Society 5.0 ist hier ein sehr interessanter Ansatz. Auch in Europa gibt es Entwicklungen, die in diese Richtung gehen: Beispielsweise mit den Möglichkeiten von EuroLLM, einem Europäischen Large Language Model (LLM) auf Open Source Basis. Siehe dazu auch Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI.

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Screenshot AI2 Playground

AI2 ist eine Non-Profit Organisation, die Künstliche Intelligenz für die vielfältigen gesellschaftlichen Herausforderungen entwickelt. Das 2014 in Seattle gegründete Institut stellt dabei auch verschiedene Open Source KI-Modelle zur Verfügung – u.a. auch OLMo2.

“OLMo 2 is a family of fully-open language models, developed start-to-finish with open and accessible training data, open-source training code, reproducible training recipes, transparent evaluations, intermediate checkpoints, and more” (Quelle).

Wenn man die von AI2 veröffentlichten KI-Modelle einmal testen möchte, kann man das nun in einem dafür eingerichteten Playground machen. Wie in der Abbildung zu erkennen, können Sie einzelne Modelle auswählen, und mit einem Prompt testen. Der direkte Vergleich der Ergebnisse zeigt Ihnen, wie sich die Modelle voneinander unterscheiden.

Siehe dazu auch Künstliche Intelligenz: Mit der OLMo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben.