Projektorientiertes Lernen bedeutet auch Sozialkompetenzen entwickeln

Für eine erfolgreiche Projektarbeit sind verschiedene Kompetenz erforderlich. Neben der Methodenkompetenz sind das auch Sozial- und Persönlichkeitskompetenzen. Die ICB 4.0 (Individual Competence Baseline) weist dazu auf verschiedene Dimensionen hin. Auch in der Projektarbeit selbst, werden dabei Kompetenzen entwickelt. Beispiele für Sozialkompetenzen im Zusammenhang mit Projekten sind (Richter 2020, in projektmanagementaktuell 1/2020):

Aufgrund der Interdisziplinarität von Projektgruppen sind regelmäßig Abstimmungsprozesse erforderlich.

Der Umgang mit Krisensituationen z. B. im Fall drohender Fristüberschreitungen ist typisch für Projektsituationen.

Auch Konflikte mit der internen und externen Projektumwelt lassen sich in der Regel nicht vermeiden, so dass die Beherrschung von Konfliktmanagement eine zentrale Kompetenz für die Projektarbeit darstellt.

Projekte leben von der Teamarbeit innerhalb des Projektteams.

Ein Großteil der Tätigkeiten in Projekten ist mit Kommunikation verbunden.

Die Fähigkeiten zur Gesprächsführung und zu Verhandlungen sind für die Gestaltung von Projektsituationen erforderlich.

Projektstrukturen trennen zwischen dispositiven und ausführenden Tätigkeiten, so dass Führungsverhalten ein relevantes Thema darstellt.

Verbindlichkeit in Bezug auf Absprachen und Termine sollte die Regel der Projektarbeit sein.

Siehe dazu auch

Hybridisierung von Kompetenzen: Kompetenzmanagement in Zeiten von Künstlicher Intelligenz

Kompetenzprofile eines Fachmanns, einer Führungskraft und eines Projektmanagers im Vergleich

Eine Projektwirtschaft benötigt auch ein projektbasiertes Lernen (PBL)

John Dewey: Projektmethode und lebenslanges Lernen

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Daten als Ressource: Um welche Kategorien von Daten geht es?

Wir sind uns alle einig, dass Daten eine bedeutende Ressource für einzelne Personen, Unternehmen, Organisationen und ganze Gesellschaften darstellen. Einerseits müssen Daten offen verfügbar sein, andererseits allerdings auch geschützt werden. Insofern macht es Sinn, verschiedene Kategorien für Daten zu unterscheiden:

Open data: data that is freely accessible, usable and shareable without restrictions, typically under an open license or in the Public Domain36 (for example, OpenStreetMap data);
Public data: data that is accessible to anyone without authentication or special permissions
(for example, Common Crawl data). Note that this data can degrade as web content
becomes unavailable;
Obtainable data: data that can be obtained or acquired through specific actions, such as
licensing deals, subscriptions or permissions (for example, ImageNet data);
Unshareable non-public data: data that is confidential or protected by privacy laws,
agreements or proprietary rights and cannot be legally shared or publicly distributed”
(Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).

Es zeigt sich, dass es viele frei verfügbare Daten gibt, doch auch Daten, die geschützt werden sollten.

Die amerikanischen Tech-Konzerne möchten alle Daten für ihre Trainingsdatenbanken (LLM: Large Language Models) kostenlos nutzen können. Das Ziel ist hier, die maximale wirtschaftliche Nutzung im Sinne einiger weniger Großkonzerne. Dabei sind die Trainingsdaten der bekannten KI-Modelle wie ChatGPT etc. nicht bekannt/transparent. Die Strategie von Big-Tech scheint also zu sein,: Alle Daten “abgreifen” und seine eigenen Daten und Algorithmen zurückhalten. Ein interessantes Geschäftsmodell, dass sehr einseitig zu sein scheint.

Bei der chinesische Perspektive auf Daten liegt der Schwerpunkt darauf, mit Hilfe aller Daten politische Ziele der Einheitspartei zu erfüllen. Daran müssen sich alle Bürger und die Unternehmen – auch die KI-Unternehmen – halten.

In Europa versuchen wir einen hybriden Ansatz zu verfolgen. Einerseits möchten wir in Europa Daten frei zugänglich machen, um Innovationen zu fördern. Andererseits wollen wir allerdings auch, dass bestimmte Daten von Personen, Unternehmen, Organisationen und Öffentlichen Verwaltungen geschützt werden.

An dieser Stelle versucht die aktuelle amerikanische Regierung, Druck auf Europa auszuüben, damit Big-Tech problemlos an alle europäischen Daten kommen kann. Ob das noch eine amerikanische Regierung ist, oder nicht schon eine kommerziell ausgerichtete Administration wird sich noch zeigen. Das letzte Wort werden wohl die Gerichte in den USA haben.

Ich hoffe, dass wir in Europa unseren eigenen Weg finden, um offene Daten in großem Umfang verfügbar zu machen, und um gleichzeitig den Schutz sensibler Daten zu gewährleisten.

Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Kompetenzprofile eines Fachmanns, einer Führungskraft und eines Projektmanagers im Vergleich

Eigene Darstellung

Warum ist ein Fachmann (oder auch eine Fachfrau) oftmals nicht in der Lage, Führungsaufgaben zu übernehmen, bzw. als Projektmanager erfolgreich zu sein? Die Antwort auf die Frage finden wir in den jeweiligen Kompetenzprofilen.

In der Abbildung ist das Kompetenzprofil eines Fachmanns aus dem Automobilbereich zu erkennen (rot gestrichelte Linie). Es ist verständlich, dass die Fachkompetenz am stärksten ausgeprägt ist, die Methodenkompetenz etwas weniger und die Sozial- und Persönlichkeitskompetenzen noch etwas weniger. Der Fokus liegt ganz klar auf der fachlichen Dimension.

Eine Führungskraft hat demgegenüber ein ganz anderes Profil (blaue gestrichelte Linie). Hier sind die Sozial- und Persönlichkeitskompetenzen stärker als die Fach- oder Methodenkompetenz ausgeprägt.

Das Kompetenzprofil eines Projektmanagers (grüner Bereich) zeigt, das hier alle Kompetenzdimensionen recht stark ausgeprägt sein sollen. Die Rolle eines Projektmanagers ist somit in vielfältigen Dimensionen anspruchsvoll. Dabei können in manchen Bereichen Tools – bis zu KI-Agenten – eine sinnvolle Ergänzung sein. Siehe dazu auch Persönliche und soziale Kompetenzen von Projektmanagern und KI-Systeme.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

AI: Was ist der Unterschied zwischen Open Source und Open Weights Models?

In verschiedenen Beiträgen habe ich schon erläutert, dass sich Open Source AI und Closed Source AI unterscheiden. Die bekannten Closed Source AI Modelle wie z.B. ChatGPT von (OpenAI) sind beispielsweise nicht wirklich Open Source sind, da dsolche Modelle intransparent sind und den eigentlichen Zweck haben, wirtschaftliche Gewinne zu generieren – koste es was es wolle. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Zwischen diesen beiden Polen Open Source AI und Closed Source AI gibt es allerdings – wie immer – ein Kontinuum von weiteren Möglichkeiten. Beispielsweise sind LLama, Mistral und Gemma nicht so ohne weiteres den beiden Extremen zuzuordnen, da diese Modelle teilweise offen sind. Solche Modelle werden Open Weights Models genannt:

“As a result, the term “Open Source” has been used to describe models with various levels of openness, many of which should more precisely be described as “open weight” models. Among the Big AI companies, attitudes towards openness vary. Some, like OpenAI or Anthropic, do not release any of their models openly. Others, like Meta, Mistral or Google, release some of their models. These models — for example, Llama, Mistral or Gemma — are typically shared as open weights models” (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).

Warum nur werden solche Modelle angeboten? Der Grund kann sein, dass man mit dieser Strategie versucht, dem Regulierungsbestreben z.B. der Europäischen Union entgegenzuwirken. Ich hoffe, dass das nicht funktioniert und Big Tech gezwungen wird, sich an die Spielregeln in der Europäischen Union zu halten. Aktuell sieht es so aus, dass die neue Regierung der USA die Europäische Union auch bei diesem Thema vor sich hertreiben möchte.

Open LLMs for Transparent AI in Europe

Screenshot Open Euro LLM

Wie schon in dem Beitrag Digitale Souveränität: Europa, USA und China im Vergleich dargestellt, haben China, die USA und Europa unterschiedliche Herangehensweisen, mit Künstlicher Intelligenz umzugehen.

Es wundert daher nicht, dass sich die neue Regierung in den USA darüber beschwert, dass Europa die Entwicklung und Nutzung Künstlicher Intelligenz in Schranken regulieren will. Ich hoffe, Europa ist selbstbewusst genug, sich diesem rein marktwirtschaftlich ausgerichteten Vorgehen der USA zu widersetzen, ohne die Möglichkeiten einer Nutzung und Entwicklung von Künstlicher Intelligenz zu stark einzuschränken. Der Einsatz Künstlicher Intelligenz wird gravierende gesellschaftliche Veränderungen nach sich ziehen, sodass es auch erforderlich, gesellschaftlich auf diese Entwicklung zu antworten.

Neben China und den USA kann es Europa durchaus gelingen, beide Schwerpunkte (USA: Kapital getrieben, China: Politik getrieben) zur Nutzung von Künstliche Intelligenz in einem Hybriden Europäischen KI-Ansatz zu verbinden. Das wäre gesellschaftlich eine Innovation, die durchaus für andere Länder weltweit interessant sein könnte.

Open Euro LLM ist beispielsweise so eine Initiative, die durchaus vielversprechend ist. Wie in dem Screenshot zur Website zu erkennen ist, setzt man bei Open Euro LLM auf Offenheit und Transparenz, und auch auf europäische Sprachen in den Trainingsdatenbanken der Large Language Models (LLM). Beispielhaft soll hier der Hinweis auf Truly Open noch einmal herausgestellt werden:

Truly Open
including data, documentation, training and testing code, and evaluation metrics; including community involvement

In Zukunft wird es meines Erachtens sehr viele kleine, spezialisierte Trainingsdatenbanken (SLM: Small Language Models) geben, die kontextbezogen in AI-Agenten genutzt werden können. Wenn es um Kontext geht, muss auch die kulturelle Vielfalt Europas mit abgebildet werden. Dabei bieten sich europäische Trainingsdatenbanken an. Siehe dazu auch

CAIRNE: Non-Profit Organisation mit einer europäischen Perspektive auf Künstliche Intelligenz

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

AI Agents: Langflow (Open Source) auf unserem Server installiert

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Künstliche Intelligenz (KI oder AI: Artificial Intelligence) einzusetzen ist heute in vielen Organisationen schon Standard. Dabei nutzen immer noch viele die von den kommerziellen Anbietern angebotenen KI-Systeme. Dass das kritisch sein kann, habe ich schon in vielen Blogbeiträgen erläutert.

Wir wollen einen anderen Weg, aufzeigen, der die Digitale Souveränität für Organisationen und Privatpersonen ermöglicht: Open Source AI und eine Open Source Kollaborationsplattform. Siehe dazu Von der digitalen Abhängigkeit zur digitalen Souveränität.

Im ersten Schritt haben wir unsere NEXTCLOUD über einen ASSISTENTEN mit Künstlicher Intelligenz verknüpft, wobei alle Daten auf unserem Server bleiben. Siehe LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten.

Im zweiten Schritt haben wir für die Entwicklung von AI-Agenten Langflow (Open Source) auf unserem Server installiert. Dabei ist es möglich, ChatGPT von OpenAI, oder über Ollama sehr viele unterschiedliche Open Source Modelle zu nutzen. Wir wollen natürlich den zweiten Weg gehen und haben daher Ollama auf unserem Server installiert.

Ollama Startseite auf unserem Server: Eigener Screenshot

In der Abbildung ist zu sehen, dass wir für den ersten Test zunächst vier Modelle installiert haben, inkl. DeepSeek-R1 und LLama 3.2. Demnächst werden wir noch weitere Modelle installieren, die wir dann in Langflow integrieren, um AI-Agenten zu entwickeln. In den kommenden Wochen werden wir über die Erfahrungen berichten.

AI Agents: Langflow (Open Source) auf unserem Server installiert

Das nächste große Ding in der KI-Entwicklung ist der Einsatz von KI-Agenten (AI Agents). Wie schon in vielen Blogbeiträgen erwähnt, gehen wir auch hier den Weg dafür Open Source zu verwenden. Bei der Suche nach entsprechenden Möglichkeiten bin ich recht schnell auf Langflow gestoßen. Die Vorteile lagen aus meiner Sicht auf der Hand:

(1) Komponenten können per Drag&Drop zusammengestellt werden.
(2) Langflow ist Open Source und kann auf unserem eigenen Server installiert werden. Alle Daten bleiben somit auf unserem Server.

Die Abbildung zeigt einen Screenshot von Langflow – installiert auf unserem Server.

Auf der linken Seite der Abbildung sind viele verschiedene Komponenten zu sehen, die in den grau hinterlegten Bereich hineingezogen werden können. Per Drag&Drop können INPUT-Komponenten und OUTPUT-Format für ein KI-Modell zusammengestellt – konfiguriert – werden. Wie weiterhin zu erkennen, ist standardmäßig OpenAI als KI-Modell hinterlegt. Für die Nutzung wird der entsprechende API-Schlüssel eingegeben.

Mein Anspruch an KI-Agenten ist allerdings, dass ich nicht OpenAI mit ChatGPT nutzen kann, sondern auf unserem Server verfügbare Trainingsdaten von Large Language Models (LLM) oder Small Language Models (SML), die selbst auch Open Source AI sind. Genau diesen Knackpunkt haben wir auch gelöst. Weitere Informationen dazu gibt es in einem der nächsten Blogbeiträge. Siehe in der Zwischenzeit auch

Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Digitale Souveränität: Europa, USA und China im Vergleich

CAIRNE: Non-Profit Organisation mit einer europäischen Perspektive auf Künstliche Intelligenz

Screenshot von der Website https://cairne.eu/

Die viele Informationen zu Künstlicher Intelligenz (KI, AI: Artificial Intelligence) sollen in den meisten Fällen eine bestimmte Blickrichtung auf das Thema herausstellen. In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich werden beispielsweise die drei großen Perspektiven auf die digitale Souveränität dargestellt.

In Europa scheint es einen – im Vergleich zu den USA und China – etwas anderen Ansatz zu geben, der einerseits die Rechte einzelner Bürger und auch von Organisationen berücksichtigt, und nicht so sehr technologiezentriert, sondern human-centred ist. Die europäische Non-Profit Organisationen CAIRNE (Confederation of Laboratories for Artificial Intelligence Research in Europe) möchte mit ihrer Arbeit folgende Punkte erreichen:

> “bring widespread and significant benefits to citizens, industry and society, in the form of alignment with shared values and of the global competitiveness of our economies;
> make major contributions to solving the grand challenges of our time, notably climate change, health and inequality;
> bring into existence AI systems that satisfy the seven trustworthiness criteria defined by the European Union;
> bring critical technology and infrastructure under European democratic control”
CAIRNE and euROBOTICS (2023): Moonshot in Artificial Intelligence: Trustworthy, Multicultural Generative AI Systems for Safe Physical Interaction with the Real World | PDF.

Den oben erwähnten Human-Centered-Ansatz wird nicht nur in Europa immer stärker favorisiert. Auch Japan hat in seiner Vision Society 5.0 auf diesen Schwerpunkt bei der Entwicklung von KI-Systemen hingewiesen:

“By comparison, Society 5.0 is A human-centered society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Ist die Verwendung von Persona das Gegenteil von Mass Customization?

Gerade im Agilen Projektmanagement werden Anforderungen häufig für Persona formuliert. Diese sind nach dem IREB (International Requirements Engineering Board) fiktive Charaktere, mit deren Hilfe Werte für die User geschaffen werden sollen. Dieses Vorgehen erinnert an eine Art Segmentierung aus dem traditionellen Marketing.

Mass Customization auf der anderen Seite ist eine hybride Wettbewerbsstrategie, die individuelle Produkte und Dienstleistungen für jeden Abnehmer – also massenhaft – anbietet, bei Preisen, die denen der massenhaft produzierten Standardprodukten ähneln. Dabei ist der Konfigurator ein wichtiges Element, das passende Produkt in einem Fixed Solution Space (Definierter Lösungsraum) zu erstellen. Die dahinterliegende Idee eines “Market of One” passt nicht so recht mit der Persona-Idee zusammen. Dazu habe ich folgendes gefunden:

“In many ways, a persona is the opposite of mass customization. It’s more traditional marketing thinking about how to deal with a larger number of segments. A “persona of one” is turning the persona idea to its opposite” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

In Zeiten von Künstlicher Intelligenz wird es immer mehr Möglichkeiten geben, Produkte und Dienstleistungen massenhaft zu individualisieren und zu personalisieren. Ob die Verwendung von Persona in solchen eher agil durchzuführenden Projekten dann noch angemessen ist, scheint fraglich zu sein. Siehe dazu auch 

Society 5.0 und Mass Customization

Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

Wir sind dabei: 20 Jahre MCP-CE vom 24.-27.09.2024

LocalAI: KI-Modelle und eigene Daten kombinieren

NEXTCLOUD ASSISTENT – Eigener Screenshot

Wenn Sie die bekannten Trainingsmodelle (LLM: Large Language Modells) bei ChatGPT (OpenAI), Gemini (Google) usw. nutzen, werden Sie sich irgendwann als Privatperson, oder auch als Organisation Fragen, was mit ihren eingegebenen Texten (Prompts) oder auch Dateien, Datenbanken usw. bei der Verarbeitung Ihrer Anfragen und Aufgaben passiert.

Antwort: Das weiß keiner so genau, da die KI-Modelle nicht offen und transparent sind.

Ein wirklich offenes und transparentes KI-Modell orientiert sich an den Vorgaben für solche Modelle, die in der Zwischenzeit veröffentlicht wurden. Siehe dazu beispielsweise Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Um die eigene Souveränität über unsere Daten zu erlangen, haben wir seit einiger Zeit angefangen, uns Stück für Stück von kommerziellen Anwendungen zu lösen. Angefangen haben wir mit NEXTCLOUD, das auf unserem eigenen Server läuft. NEXTCLOUD Hub 9 bietet die Möglichkeiten, die wir alle von Microsoft kennen.

Dazu kommt in der Zwischenzeit auch ein NEXTCLOUD-Assistent, mit dem wir auch KI-Modelle nutzen können, die auf unserem Serverlaufen. Dieses Konzept einer LOCALAI – also einer lokal angewendeten KI – ist deshalb sehr interessant, da wir nicht nur große LLM hinterlegen, sondern auch fast beliebig viele spezialisierte kleinere Trainingsmodelle (SML: Small Language Models) nutzen können. Siehe dazu Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet.

In dem Blogbeitrag LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten haben wir dargestellt, wie im NEXTCLOUD Assistenten mit einer lokalen KI gearbeitet werden kann.

Wie in der Abbildung zu sehen, können wir mit dem NEXTCLOUD Assistenten auch Funktionen nutzen, und auch eigene Dateien hochladen. Dabei werden die Dateien auch mit Hilfe von dem jeweils lokal verknüpften lokalen KI-Modell bearbeitet. Alle Daten bleiben dabei auf unserem Server – ein unschätzbarer Vorteil.

Die Kombination von LOCALAI mit eigenen Daten auf dem eigenen Server macht dieses Konzept gerade für Kleine und Mittlere Unternehmen (KMU) interessant.