Rent a Human: KI-Agenten bieten Arbeit für Menschen an

Website: https://rentahuman.ai/

Wir haben uns daran gewöhnt, dass Jobs auf verschiedenen Plattformen angeboten werden. In der Regel sind das Jobs von Unternehmen/Organisationen, für Projekte oder für die Mitarbeit in gemeinnützigen Einrichtungen.

Neu ist jetzt, dass auch KI-Agenten Jobs anbieten, wie z.B. auf der Plattform RentaHuman.ai. Da KI-Agenten in manchen Bereichen begrenzte Möglichkeiten haben, benötigen diese beispielsweise für analoge Tätigkeiten die menschlichen Kompetenzen.

„KI kann kein Gras anfassen“ (ebd.

Es haben sich schon in kurzer Zeit viele Menschen auf der Plattform angemeldet, und Informationen zu ihren Kompetenzen und Preisen angegeben. Wenn nach Personen in Deutschland sucht, wird man schnell fündig:

Es ist eine interessante, allerdings auch eine etwas zwiespältige Entwicklung, auf die Noëlle Bölling am 05.02.2026 in dem Beitrag Rent a Human: Bei dieser Jobbörse heuern KI-Agenten Menschen an hingewiesen hat:

„Mit der neuen Jobbörse treibt er die gegenwärtigen Entwicklungen auf die Spitze: Während immer mehr Mitarbeiter:innen ihre Arbeitsplätze an KI-Agenten verlieren, können sie sich jetzt von ihnen anheuern lassen – und das zu einem deutlich niedrigeren Lohn“ (ebd.).

Loyal Agents – it all starts with trust

Website: https://loyalagents.org/

KI-Agenten sind aktuell in aller Munde. Gerade in Software-Unternehmen wurde schon früh damit angefangen, Agenten zu nutzen: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

Im Außenverhältnis, z.B. mit Kunden , wird es schon schwieriger, KI-Agenten einzusetzen, da hier weitergehende Herausforderungen zu bewältigen sind. Es wundert daher nicht, dass es an dieser Stelle Forschungsbedarf gibt.

In dem Projekt Loyal Agents arbeiten dazu beispielsweise das Stanford Digital Economy Lab und Consumer Report zusammen. Worum es ihnen geht, haben sie auf der Website Loyal Agents so formuliert:

„Agentic AI is transforming commerce and services; agents are negotiating, transacting and making decisions with growing autonomy and impact. While agents can amplify consumer power, there is also risk of privacy breaches, misaligned incentives, and manipulative business practices. Trust and security are essential for consumers and businesses alike“ (ebd.).

Dass Vertrauen und Sicherheit eine besonders wichtige Bedeutung in den Prozessen mit der Beteiligung von KI-Agenten haben, wird hier noch einmal deutlich – It all starts with Trust. Ähnliche Argumente kommen von Bornet, der sich für Personalized AI Twins ausspricht:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins oder Loyal Agents ihre eigenen Ideen besser selbst entwickeln, oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Hybris versus Hype – eine interessante Gegenüberstellung

Eigene Darstellung, nach Dück (2013)

Wenn es um die zeitliche Entwicklung von neuen Technologien und deren Innovationen geht, wird oft der Gardner Hype Cycle herangezogen, der in der Abbildung gepunktet dargestellt ist.

Der Hype um neue Technologien bahnt sich zunächst an, erreicht einen Peak und anschließend die Phase der Ernüchterung, bis sich dann endlich durch die Nutzung die Spreu vom Weizen trennt: Change or Die!

Interessant ist, wenn man dem Gardner Hype Cycle die entsprechende Hybris gegenüberstellt – in der Abbildung rot hervorgehoben.

Die Hybris (altgriechisch für Übermut‘, ‚Anmaßung‘) bezeichnet Selbstüberschätzung oder Hochmut. Man verbindet mit Hybris häufig den Realitätsverlust einer Person und die Überschätzung der eigenen Fähigkeiten, Leistungen oder Kompetenzen, vor allem von Personen in Machtpositionen. (Quelle: vgl. Wikipedia).

In der Abbildung finden Sie die in den jeweiligen Phasen anzutreffenden Äußerungen, die die Hybris – den Übermut, die Selbstüberschätzung oder auch die Anmaßung und den Realitätsverlust – über die Zeit ausdrücken.

Es ist ein Irrtum anzunehmen, Intelligenz sei zwangsläufig bewusst und hänge nur mit Überlegung zusammen

Image by StockSnap from Pixabay

In verschiedenen Beiträgen hatte ich schon ausgeführt, dass es am Konstrukt der Messbarkeit der Intelligenz in Form eines Intelligenz-Quotienten (IQ) schon lange Kritik gibt.

In Zeiten von Künstlicher Intelligenz führt der Ansatz eines IQ in der Zwischenzeit zu verschiedenen „Stilblüten“: Beispielsweise hat das OpenAI Model „o1“ einen IQ von 120 – ein Kategorienfehler?

Das Intelligenz-Konstrukt sollte sich in einer immer komplexeren Umwelt weiterentwickeln, um wieder eine bessere Passung zur gesellschaftlichen Entwicklung zu haben. Siehe dazu Intelligenz-Quotient (IQ) aus Sicht der Komplexitätsforschung. Gigerenzer (2007) hat in seinem Buch Bauchentscheidung noch folgenden Aspekt in die Diskussion um die Messbarkeit von Intelligenz eingebracht:

Es ist ein Irrtum anzunehmen, Intelligenz sei zwangsläufig bewusst und hänge nur mit Überlegung zusammen. (…) Doch diese Auffassung ist nicht totzukriegen. Sogar wenn es um emotionale Intelligenz geht, herrscht noch die Ansicht vor, man könne sie messen, indem man Fragen stellt, die das deklarative Wissen betreffen. Beispielsweise forderte man die Befragten auf, sich in Bezug auf die Aussage »Ich weiß, warum meine Gefühle sich verändern« selbst einzustufen (siehe Matthews et al. 2004). Dem liegt die Überzeugung zugrunde, dass Menschen in der Lage und bereit sind mitzuteilen, wie ihre Intelligenz funktioniert. Im Gegensatz dazu zeigten die einflussreichen Untersuchungen von Nisbett und Wilson (1977), dass wir häufig keinen introspektiven Zugriff auf die Gründe unserer Urteile und Gefühle haben. Die Forschung zum impliziten Lernen beschäftigt sich mit Lernvorgängen, die unabsichtlich und unbewusst stattfinden (Lieberman 2000; Shanks 2005)“ (Gigerenzer 2007).

Wenn etwas nicht messbar ist, wird es eben messbar gemacht. Getreu dem bekannten Management-Spruch: „If you can not measure it, you can not manage it“. Die Frage stellt sich heute natürlich: Stimmt das Mantra denn noch ? Denn es wird in vielen Bereichen immer deutlicher, dass Kennzahlen eine risikoreiche Reduzierung der Komplexität darstellen können. Siehe dazu auch

Die Messbarmachung der Intelligenz: Ein Phänomen der Industrialisierung?

Künstliche Intelligenz und Menschliche Intelligenz

Künstliche Intelligenz – ein Kategorienfehler?

Sind wir nicht intelligent genug, um zu wissen, was Intelligenz ist?

Image by Gerd Altmann from Pixabay

Der Intelligenz-Begriff wird schon fast inflationär verwendet. Es geht um „intelligente Produkte“, „Künstliche Intelligenz“, und im Zusammenhang mit Menschen um einen scheinbar messbaren Intelligenz-Quotienten (IQ).

Dass die Messbarmachung der Intelligenz in Zeiten von Künstlicher Intelligenz tückisch sein kann, habe ich in dem Beitrag OpenAI Model „o1“ hat einen IQ von 120 – ein Kategorienfehler? erläutert. Hans Markus Enzensberger hat sich auch mit der IQ-Messung intensiv befasst, und ist zu folgendem Schluss gekommen:

Enzensberger: (…) Das ist genauso ein heikles Wort, kernprägnant und randunscharf, wie „Intelligenz“. Ich habe mich mit Fragen der IQ-Messung beschäftigt. Die Quantifizierung des IQ ist schwierig. Wir sind einfach nicht intelligent genug, um zu wissen, was Intelligenz ist. Als weitere Falle kommt die Subjektivität hinzu. Intelligenztests messen das, was der Tester darunter versteht. Ein Indio aus dem Amazonas wird dabei ebenso schlecht abschneiden wie umgekehrt ein Psychologe, wenn er sich im Regenwald einer Prüfung seiner Fähigkeiten unterzieht“ (Pöppel/Wagner 2012:91).

Es kommt somit darauf an, was wir unter „Intelligenz“ verstehen (wollen). Es ist eine Annahme, ein Konstrukt, das zu der Lebenswirklichkeit dann eine Passung hat – oder eben nicht.

Es scheint so, dass die Bestimmung (Messung) eines Intelligenz-Quotienten in dem Umfeld einer Industriegesellschaft geeignet war. In den letzten Jahrzehnten hat sich das Umfeld allerdings sehr dynamisch verändert, sodass sich möglicherweise auch das Intelligenz-Verständnis erweitern sollte, damit es wieder eine bessere Passung zum komplexen Umfeld mit seiner Lebenswirklichkeit hat.

Meines Erachtens kann es daher Sinn machen, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern – auch in Bezug zur Künstlichen Intelligenz. Siehe dazu auch 

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Über den Unsinn von Intelligenztests

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Mass Customization und Quantenmechanik

In verschiedenen Blogbeiträgen habe ich immer wieder darauf hingewiesen, dass wir uns von den in vielen Bereichen diskutierten Dichotomien (Entweder-oder) verabschieden sollten. Im Wissensmanagement beispielsweise haben wir es mit den beiden Polen implizites Wissen oder explizites Wissen zu tun. Zwischen beiden Polen gibt es allerdings ein Kontinuum des „sowohl-als-auch“. Ähnlich sieht es in anderen Bereichen aus.

Im Innovationsmanagement kennen wir die Extreme Closed Innovation oder Open Innovation. Beim Projektmanagement gibt es nicht nur das klassische Projektmanagement oder das agile Projektmanagement, sondern zwischen beiden Polen ein Kontinuum. Ähnlich sieht es bei der Künstlichen Intelligenz aus, wo es von Closed AI Models über Open Weight AI Models bis zu Open Source AI Models auch ein Kontinuum der Möglichkeiten gibt.

Diese Entwicklung deutet schon darauf hin, dass es in vielen Bereichen nicht mehr um ein „entweder-oder“, sondern um ein angemessenes „sowohl-als-auch“ geht. Vor über 30 Jahren hat B. Joseph Pine II schon darauf hingewiesen, und dabei eine Verbindung von der Quantenmechanik zu Mass Customization als hybride Wettbewerbsstrategie hergestellt:

„Today management has much the same problem: We still build most of our models around false dichotomies. To name but a few, we speak of strategy versus operations, cost versus quality, and centralized versus decentralized. The way out of this dilemma for scientist, finally, was to abandon the perspective of irreconcilable opposites, and to embrace interpretations that accept contradictions without trying to resolve them. Quantum mechanics does that in physics, mass customization does that in business“ (Pine 1993).

Die hybriden Möglichkeiten zur Schaffung von Werten für Kunden (User) sind heute (nach mehr als 30 Jahre nach der Veröffentlichung) in vielen Organisationen immer noch nicht bekannt.

Auf der nächsten MCP 2026 – Konferenz, im September in Balatonfüred (Ungarn), haben Sie die Chance, mit führenden Forschern und Praktikern über die Themen Mass Customization, Mass Personalization und Open Innovation zu sprechen.

Als Initiator der Konferenzreihe stehe ich Ihnen gerne für weitere Fragen zur Verfügung.

Von KI-Agenten zu Personalized AI Twins

Die aktuelle Diskussion zu Künstlicher Intelligenz befasst sich u.a. mit den Möglichkeiten generativer Künstlicher Intelligenz (GenAI) und den Entwicklungen bei KI-Agenten (AI Agents). KI-Agenten können in Zukunft viele Tätigkeiten/Jobs in Organisationen übernehmen, und so deren Effektivität und Effizienz steigern.

Solche Entwicklungen sind allerdings nicht alleine auf Organisationen begrenzt. Auf der individuellen, persönlichen Ebene entwickeln sich KI-Agenten immer mehr zu persönlichen Agenten, oder sogar zu Personal AI Twins:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Die hier angesprochene Entwicklung von generischen KI-Agenten zu personalisierten KI-Agenten (personal ai twins) ist bemerkenswert. Es stellt sich natürlich gleich die Frage, ob eine Person solche Personal AI Twins nur für ihre Arbeit, oder auch für alle ihre Aktivitäten nutzen möchte. Dabei kommt es immer wieder zu Überschneidungen zwischen der beruflichen Domäne und den privaten Kontexten.

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins ihre eigenen Ideen besser selbst entwickeln oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Die negativen und positiven Seiten von Routine

Image by Foundry Co from Pixabay

Der Trend in der Arbeitswelt geht dahin, Routinetätigkeiten zu reduzieren, um z.B. mehr Projekte durchführen zu können. Dabei werden Routinetätigkeiten oftmals durch Technologien ersetzt – ganz im Sinne der Wirtschaftlichkeit. Es ist verständlich, dass wir keine stupiden Handgriffe in der Produktion oder in der Verwaltung durchführen wollen.

Andererseits gibt es ja auch die liebgewonnenen Routinen, wie der morgendliche Kaffee, das gemeinsame Abendessen mit der Familie, der regelmäßige Sport mit anderen am Wochenende, usw. Solche Routinen sind eher positiv besetzt, da wir uns dabei wohl fühlen.

Betrachten wir also die Routine etwas umfassender, so können wir erkennen, dass Routine negative und positive Seiten hat. In der Geschichte sind daher auch zwei unterschiedliche Perspektiven zu erkennen:

„Die positive Seite der Routine wurde in Diderots großer Encyclopédie (1751-1772) dargestellt, die negative Seite der geregelten Arbeitszeit zeigte sich äußerst dramatisch in Adam Smiths Der Wohlstand der Nationen (1776). Diderot war der Meinung, die Arbeitsroutine könne wie jede andere Form des Auswendiglernens zu einem Lehrmeister der Menschen werden. Smith glaubte, Routine stumpfe den Geist ab. Heute steht die Gesellschaft auf der Seite von Smith. (…) Das Geheimnis der industriellen Ordnung lag im Prinzip in der Routine“ (Sennett 2002)

Routine ist also per se nicht geistlos, sie kann erniedrigen, sie kann aber auch beschützen. Routine kann die Arbeit zersetzen, aber auch ein Leben zusammenhalten (vgl. dazu Sennett 2002).

Diese Gedanken führen zwangläufig zu der aktuellen Diskussion um KI-.Agenten, die im einfachsten Fall darauf ausgerichtet sind, Abläufe zu automatisieren. Siehe dazu beispielsweise Mit Langflow einen einfachen Flow mit Drag & Drop erstellen.

Berücksichtigen wir die weiter oben von Sennett zusammengefassten Hinweise zur Routine, so sollten wir genau überlegen, welche Routinetätigkeiten durch Künstliche Intelligenz ersetzt werden, und welche Routinetätigkeiten eher nicht. Routine kann eben auch in einem turbulenten gesellschaftlichen Umfeld (emotional) stabilisieren, ja sogar schützen.

IPMA Leitfaden zum ethischen Einsatz Künstlicher Intelligenz im Projektmanagement

Quelle: Link (PDF)

Es liegt natürlich auf der Hand die für die bestehenden projektmanagement-Standards und Vorgehensmodelle Künstliche Intelligenz einzusetzen. Interessant dabei ist, dass das weltweit führende Institut empfiehlt, ethisch vorzugehen und dazu noch einen Leitfaden herausgebracht hat.

IPMA (2025): IPMA Guidelines on Applying AI in Project Management. Moving the profession forward by acting ethically! | PDF

Auf knapp 30 Seiten wird der Bezug zum professionellen Projektmanagement hergestellt und hervorgehoben, anhand welcher Kriterien Künstliche Intelligenz beurteilt werden sollten (ebd.):

„Selecting the right AI tools is a critical step for project managers. Commercially available AI tools vary in functionality, quality, and ethical considerations. When selecting and using these tools, project managers should evaluate them based on the following criteria:
» Alignment with Project Goals
» Vendor Transparency:
» Ethical and Social Impact:
» Adaptability and Scalability

Wenn Projektmanager weltweit diese Hinweise beachten, so kommen aus meiner Sicht die häufig genutzten, kommerziellen KI-Apps wie ChatGPT, Grok, Gemini etc. nicht infrage, da sie die Punkte „Vendor Transparency“ (Transparent der Anbieter) und „Ethical and Social Impact“ (Ethische und Soziale Auswirkungen) nicht, oder nur wenig berücksichtigen.

Aus meiner Sicht kommen daher hauptsächlich KI-Apps infrage, die der Open Source AI – Definition entsprechen. – ganz im Sinne einer Digitalen Souveränität. Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Herausforderungen bei der Nutzung von KI-Agenten

Eigener Screenshot von einem einfachen Agenten, erstellt in Langflow – alle Daten bleiben dabei auf unseren Servern, ganz im Sinne einer Digitale Souveränität

Wenn es um KI-Agenten geht, wird oft darüber diskutiert, wie das entsprechende Design aussehen sollte, damit der oder die KI-Agenten die wirtschaftlichen Ziele erreichen können. In dem Zusammenhang gibt es immer wieder Hinweise darauf, dass solche gut gemeinten KI-Agenten oftmals unbeabsichtigte Folgen nach sich ziehen können. Die folgende Quelle aus 2025 stellt das unmissverständlich dar:

„When it comes to AI agents, even well-intentioned design can lead to unintended consequences. The challenge isn’t just about making agents work correctly – it’s is about making them work safely and ethically within a complex ecosystem of human and artificial actors“ (Bornet, P. et al. 2025).

Wie vom Autor hervorgehoben, ist es eine der wichtigsten Herausforderungen, dass KI-Agenten sicher und ethisch in einem komplexen Ökosystem von Menschen und „künstlichen Akteuren“ arbeiten.

Ethisch bedeutet hier, innerhalb eines gesellschaftlich akzeptierten Wertesystems – beispielsweise des Wertesystems der Europäischen Union.