Mit Cloudfare unbefugtes Scraping und Verwenden von Originalinhalten stoppen

Image by Werner Moser from Pixabay

In den letzten Jahren haben die bekannten KI-Tech-Unternehmen viel Geld damit verdient, Daten aus dem Internet zu sammeln und als Trainingsdaten für Large Language Models (LLMs) zu nutzen. Dabei sind diese Unternehmen nicht gerade zimperlich mit Datenschutz oder auch mit Urheberrechten umgegangen.

Es war abzusehen, dass es gegen dieses Vorgehen Widerstände geben wird. Neben den verschiedenen Klagen von Content-Erstellern wie Verlagen, Filmindustrie usw. gibt es nun immer mehr technische Möglichkeiten, das unberechtigte Scraping und Verwenden von Originalinhalten zu stoppen. Ein kommerzielles Beispiel dafür ist Cloudfare. In einer Pressemitteilung vom 01.07.2025 heißt es:

San Francisco (Kalifornien), 1. Juli 2025 – Cloudflare, Inc. (NYSE: NET), das führende Unternehmen im Bereich Connectivity Cloud, gibt heute bekannt, dass es nun als erster Anbieter von Internetinfrastruktur standardmäßig KI-Crawler blockiert, die ohne Erlaubnis oder finanziellen Ausgleich auf Inhalte zugreifen. Ab sofort können Eigentümerinnen und Eigentümer von Websites bestimmen, ob KI-Crawler überhaupt auf ihre Inhalte zugreifen können, und wie dieses Material von KI-Unternehmen verwertet werden darf” (Source: Cloudfare).

Siehe dazu auch Cloudflare blockiert KI-Crawler automatisch (golem vom 01.07.2025). Ich kann mir gut vorstellen, dass es in Zukunft viele weitere kommerzielle technische Möglichkeiten geben wird, Content freizugeben, oder auch zu schützen.

Das ist zunächst einmal gut, doch sollte es auch Lösungen für einzelne Personen geben, die sich teure kommerzielle Technologie nicht leisten können oder wollen. Beispielsweise möchten wir auch nicht, dass unsere Blogbeiträge einfach so für Trainingsdaten genutzt werden. Obwohl wir ein Copyright bei jedem Beitrag vermerkt haben, wissen wir nicht, ob diese Daten als Trainingsdaten der LLMs genutzt werden, da die KI-Tech-Konzerne hier keine Transparenz zulassen. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Dazu gibt es eine weitere interessante Entwicklung, die ich in dem Beitrag Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht erläutert habe.

Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht

Screenshot: https://creativecommons.org/ai-and-the-commons/cc-signals/

In dem Blogbeitrag Was unterscheidet Künstliche Intelligenz von Suchmaschinen? hatte ich dargestellt, wie sich Suchmaschinen von Künstlicher Intelligenz unterscheiden. Content-Anbieter können dabei nur bedingt auf Datenschutz, Urheberrecht, EU AI Act usw. vertrauen. In der folgenden Veröffentlichung sind die verschiedenen Punkte noch einmal strukturiert zusammengefasst, inkl. einer möglichen Lösung für die skizzierten Probleme:

Creative Commons (2025): From Human Content to Machine Data. Introducing CC Signals | PDF

Creative Commons (CC) kennen dabei viele von uns als eine Möglichkeit, anderen unter bestimmten Bedingungen das Recht zur Nutzung des eigenen Contents einzuräumen. Creative Commons erläutert, dass KI-Modelle die üblichen gesellschaftlichen Vereinbarungen mehr oder weniger ignoriert, und somit den “social contract” aufkündigt. Diesen Hinweis finde ich bemerkenswert, da hier das Vorgehen der KI-Tech-Unternehmen mit den möglichen gesellschaftlichen Auswirkungen verknüpft wird.

Mit CC Signals hat Creative Commons ein erstes Framework veröffentlich, das es ermöglichen soll, Content mit Berechtigungsstufen für KI-Systeme zu versehen.

“CC signals are a proposed framework to help content stewards express how they want their works used in AI training—emphasizing reciprocity, recognition, and sustainability in machine reuse. They aim to preserve open knowledge by encouraging responsible AI behavior without limiting innovation” (ebd.)

Machen Sie bei der Weiterentwicklung dieses Ansatzes mit:

“Head over to the CC signals GitHub repository to provide feedback and respond to our discussion questions: https://github.com/creativecommons/cc-signals.”

Digitale Abhängigkeit in den Verwaltungen von Bund und Ländern: Warum eigentlich?

Image by Robin Higgins from Pixabay

Es ist unstrittig, dass die Verwaltungen in Bund und Ländern modernisiert, und damit auch digitalisiert werden müssen. Dabei haben deutsche Verwaltungen in der Vergangenheit gerne Software amerikanischer Tech-Konzerne genutzt.

“Die deutsche Verwaltung ist in hohem Maße abhängig von proprietären, US amerikanischen IT-Lösungen. 96% der Verwaltungsangestellten arbeiten täglich mit Microsoft-Produkten. 80% der Verwaltungsdaten werden in Datenbanken des US-Anbieters Oracle gespeichert und 75% der Virtualisierungslösungen kommen von VMWare” (ZenDis 02/2025: Digitale Souveränität als Staatsaufgabe).

Die Abhängigkeiten sind für den deutschen Steuerzahlen teuer: “Laufende Rahmenverträge mit großen IT-Firmen wie Microsoft und Oracle belaufen sich auf 13,6 Milliarden Euro” (Netzpolitik.org vom 04.12.2024). Je abhängiger die Verwaltungen hier sind, um so rigoroser können (und werden) Preissteigerungen durchgesetzt – zur Gewinnsteigerung bei den Tech-Konzernen und zum Nachteil der Gesellschaft.

Weiterhin wird deutlich, dass die Trump-Administration einen starken Einfluss auf die amerikanischen Tech-Konzerne hat – ganz im Sinne von “America first”. Was mit den europäischen oder deutschen Befindlichkeiten und Interessen ist, ist nicht wirklich relevant. Das ist aus der Sicht amerikanischer Konzerne und amerikanischer Administrationen verständlich, sollte uns in Europa allerdings nachdenklich stimmen -gerade auch wenn es um den nächsten Schritt geht: Dem Einsatz von Künstlicher Intelligenz.

Da es seit vielen Jahren schon verstärkt Hinweise dazu gibt, dass ohne Open Source keine moderne und souveräne Digitalisierung in Deutschland erreichbar ist, muss man sich als Bürger wundern, dass sich die Politik von den amerikanischen Tech-Konzernen immer weiter abhängig macht. Das ganze Ausmaß dieser Fehlentwicklung wird in dem folgenden Artikel zusammengefasst:

Mischler, G. (2025): Open Source hat im Bund keine Lobby, golem vom 04.07.2025.

Auch Unternehmen, NGOs und Privatpersonen sollten sich die Frage stellen, ob sie nicht die verfügbaren Open-Source-Alternativen für ihre eigene digitale Souveränität nutzen sollten.

Wir haben schon vor mehreren Jahren mit diesen Schritten angefangen. Wir nutzen NEXCLOUD statt Microsoft Cloud, OpenProject statt MS Project, NEXCLOUD TALK statt Teams, Nextcloud Office statt Microsoft Office, etc. Darüber hinaus verwenden wir auch Open Source AI (LocalAI). Damit bleiben alle Daten auf unseren Servern.

Sprechen Sie mich bei Fragen gerne an.

Wolpers, S. (2020): The Remote Agile Guide

Zielgruppe für Wolpers, S. (2020): The Remote Agile Guide sind Scrum Master, Product Owner und Agile Coaches, die mit einem oder mehreren verteilten Team(s) zusammenarbeiten. Dabei wird der Download als “free” bezeichnet, obwohl man sich einschreiben muss – “Subscribe Now”.- und somit mit seinen Daten bezahlt. Ich weiß durchaus, dass diese Vorgehensweise üblich ist, dennoch mag ich es nicht.

Insgesamt bietet der Guide eine gute Basis, sich über die verteilte digitale Zusammenarbeit Gedanken zu machen, und konkrete Möglichkeit für die eigene Vorgehensweise abzuleiten. Der Guide, auf den ich mich beziehe, stammt aus dem Jahr 2020. Dazu möchte ich noch einige Anmerkungen machen:

Zunächst wird mir der technische Aspekt der Zusammenarbeit zu stark betont (MS Teams, Zoom, Trello, Jira, etc.). Die Neurowissenschaften haben dazu beispielsweise bei der Nutzung von Zoom in der Zwischenzeit wichtige Hinweise gegeben: „Zoom scheint im Vergleich zu persönlichen Gesprächen ein dürftiges soziales Kommunikationssystem zu sein.“ Sieh Persönliche Gespräche und Zoom im Vergleich: Das sagt die Neurowissenschaft dazu. Weiterhin erwähnt auch schon das Agile Manifest aus dem Jahr 2001, dass der persönliche Austausch bei komplexen Problemlösungsprozesse wichtig ist, da es dabei um die wichtige implizite Dimension des Wissens geht. Diese ist mit Technologie nur bedingt zu erschließen.

Weiterhin werden in dem Guide zu wenige Open Source Alternativen genannt, die die remote Arbeit in verteilten Teams unterstützen können. Gerade wenn es um die heute wichtige Digitale Souveränität geht, ist das wichtig. Siehe dazu beispielhaft Souveränitätsscore: Zoom und BigBlueButton im Vergleich.

Nicht zuletzt geht es heute auch darum, in verteilten Teams im agilen Prozess der Zusammenarbeit Künstliche Intelligenz zu nutzen. Aus meiner Sicht ist auch hier die Nutzung von Open Source AI zeitgemäß.

Diese Anmerkungen sind als Ergänzungen zu verstehen. Möglicherweise ergibt sich daraus ja noch ein weiterer, aktualisierter Guide.

Digitale Souveränität: Die Initiative AI for Citizens

Website: https://mistral.ai/news/ai-for-citizens

Immer mehr Privatpersonen, Organisationen, Verwaltungen usw. überlegen, wie sie die Möglichkeiten der Künstlichen Intelligenz nutzen können. Dabei gibt es weltweit drei grundsätzlich unterschiedliche Richtungen: Der US-amerikanische Ansatz (Profit für wenige Unternehmen), der chinesische Ansatz (KI für die politische Partei) und den europäischen Ansatz, der auf etwas Regulierung setzt, ohne Innovationen zu verhindern. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Es freut mich daher sehr, dass es in Europa immer mehr Initiativen gibt, die Künstliche Intelligenz zum Wohle von Bürgern und der gesamte Gesellschaft anbieten möchten – alles Open Source. Das in 2023 gegründete Unternehmen Mistral AI hat so einen Ansatz, der jetzt in der Initiative AI for Citizens eine weitere Dynamik bekommt, und einen Gegenentwurf zu den Angeboten der bekannten Tech-Giganten darstellt:

“Empowering countries to use AI to transform public action and catalyze innovation for the benefit of their citizens” (Quelle).

Dabei listet die Website noch einmal ausführlich die Nachteile der “One size fits all AI” auf, die vielen immer noch nicht bewusst sind.

Informieren Sie sich über die vielen Chancen, Künstliche Intelligenz offen und transparent zu nutzen und minimieren Sie die Risiken von KI-Anwendungen, indem Sie offene und transparente Trainingsmodelle (Large Language Models; Small Language Models) und KI-Agenten nutzen. Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Was unterscheidet Künstliche Intelligenz von Suchmaschinen?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Man könnte meinen, dass Künstliche Intelligenz (GenAI) doch nur eine Weiterentwicklung bekannter Suchmaschinen ist, doch dem ist nicht so. In einem Paper wird alles noch ausführlicher beschrieben. Hier nur ein Auszug:

“The intermediation role played by AI systems is altogether new: where the role of search engines has traditionally been to surface the most relevant links to answers of the user’s query, AI systems typically expose directly an answer… For the large number of content producers whose sustainability relies on direct exposure to (or interactions with) the final end user, this lack of reliable exposure makes it unappealing to leave their content crawlable for AI-training purposes.” (Hazaël-Massieux, D. (2024): Managing exposure of Web content to AI systems | PDF.

Für viele Content-Anbieter ist die Vorgehensweise der GenAI-Modelle von großem Nachteil, da diese direkte Ergebnisse liefern, und die Interaktionen mit dem User (wie bei den bisher üblichen Suchmaschinen-Ergebnissen) entfallen können. Die bekannten GenAI-Modelle (Closed Source) nutzen einerseits die vorab antrainierten Daten und andererseits live content (summarize this page), und machen daraus ein Milliarden-Geschäft.

Demgegenüber stehen erste allgemeine Entwicklungen wie EU AI Act, Urheberrecht, Datenschutz usw., die allerdings nicht ausreichend sind, sich als Content-Anbieter (Person, Unternehmen, Organisation, Verwaltung usw.) vor der Vorgehensweise der Tech-Giganten zu schützen.

Es müssen neue, innovative Lösungen gefunden werden.

Dabei wäre es gut, wenn jeder Content-Anbieter mit Hilfe eines einfachen Verfahrens (Framework) entscheiden könnte, ob und wie sein Content für die Allgemeinheit, für Suchmaschinen, für KI-Modelle verwendet werden darf.

… und genau so etwas gibt es in ersten Versionen.

Über diese Entwicklungen schreibe ich in einem der nächsten Blog-Beiträge noch etwas ausführlicher.

Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden

Wenn es um allgemein verfügbare Daten aus dem Internet geht, können die bekannten Closed Source KI-Modelle erstaunliche Ergebnisse liefern. Dabei bestehen die genutzten Trainingsdaten der LLMs (Large Language Models) oft aus den im Internet verfügbaren Daten – immer öfter allerdings auch aus Daten, die eigentlich dem Urheberrecht unterliegen, und somit nicht genutzt werden dürften.

Wenn es um die speziellen Daten einer Branche oder eines Unternehmens geht, sind deren Daten nicht in diesen Trainingsdaten enthalten und können somit bei den Ergebnissen auch nicht berücksichtigt werden. Nun könnte man meinen, dass das kein Problem darstellen sollte, immerhin ist es ja möglich ist, die eigenen Daten für die KI-Nutzung zur Verfügung zu stellen – einfach hochladen. Doch was passiert dann mit diesen Daten?

Immer mehr Unternehmen, Organisationen und Verwaltungen sind bei diesem Punkt vorsichtig, da sie nicht wissen, was mit ihren Daten bei der KI-Nutzung durch Closed Source oder auch Closed Weighted Modellen passiert. Diese Modelle sind immer noch intransparent und daher wie eine Black Box zu bewerten. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI oder Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Wollen Sie wirklich IHRE Daten solchen Modellen zur Verfügung stellen, um DEREN Wettbewerbsfähigkeit zu verbessern?

“So here’s the deal: you’ve got data. That data you have access to isn’t part of these LLMs at all. Why? Because it’s your corporate data. We can assure you that many LLM providers want it. In fact, the reason 99% of corporate data isn’t scraped and sucked into an LLM is because you didn’t post it on the internet. (…) Are you planning to give it away and let others create disproportionate amounts of value from your data, essentially making your data THEIR competitive advantage OR are you going to make your data YOUR competitive advantage?” (Thomas et al. 2025).

Doch was ist die Alternative? Nutzen Sie IHRE Daten zusammen mit Open Source AI auf ihren eigenen Servern. Der Vorteil liegt klar auf der Hand: Alle Daten bleiben bei Ihnen.

Siehe dazu auch

LocalAI: KI-Modelle und eigene Daten kombinieren

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Digitale Souveränität: Wo befinden sich deine Daten?

Test Criteria Catalogue for AI Systems in Finance

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Der Finanzbereich mit seinen unglaublichen Mengen an Daten (historische Daten und Echtzeitdaten) ist prädestiniert für den Einsatz Künstlicher Intelligenz (KI, oder englisch AI: Artificial Intelligence). Die Nutzung von LLM (Large Language Models) ,oder in Zukunft Small Language Models (SLM) und KI-Agenten, kann für eine Gesellschaft positiv, oder eher negativ genutzt werden. Dabei können Open Source AI Models, Open Weights Models und Closed AI Models unterschieden werden.

Es ist aus meiner Sicht gut, dass die Europäische Union mit dem EUAI-Act weltweit erste Rahmenbedingungen für die Nutzung Künstlicher Intelligenz festgelegt hat. Im Vergleich zu dem US-amerikanischen vorgehen (KI-Unternehmen können alles machen, um Profite zu generieren) und dem chinesischen Vorgehen (KI für die Unterstützung der Partei), ist der Europäische Weg eine gute Mischung. Natürlich muss dabei immer abgewogen werden, welcher Freiraum für Innovationen bleiben sollte.

Um nun herauszufinden, wie KI-Ssteme z.B. für den Finanzbereich bewertet und letztendlich ausgewählt werden sollten, hat das Federal Office for Information Security (Deutsch: BSI) einen entsprechenden Kriterienkatalog veröffentlicht:

Publication Notes
Given the international relevance of trustworthy AI in the financial sector and the widespread applicability ofthe EUAIAct across memberstates and beyond,this publication was prepared in English to ensure broader accessibility and facilitate collaboration with international stakeholders. English serves as the standard language in technical, regulatory, and academic discourse on AI, making it the most appropriate choice for addressing a diverse audience, including researchers, industry professionals, and policymakers across Europe and globally” (Federal Office for Information Security 2025).

Es stellt sich dabei auch die Frage, ob diese Kriterien nur für den Finanzbereich geeignet sind, oder ob alle – oder einige – der Kriterien auch für andere gesellschaftlichen Bereiche wichtig sein könnten.

Siehe dazu auch Sou.veränitätsscore für KI-Systeme.

Künstliche Intelligenz: Vorteile von Small Language Models (SLMs)

Aktuell bekannte KI-Anwendungen rühmen sich seit Jahren, sehr große Mengen an Trainingsdaten (Large Language Models) zu verarbeiten. Der Tenor war und ist oft noch: Je größer die Trainingsdatenbank, um so besser.

In der Zwischenzeit weiß man allerdings, dass das so nicht stimmt und Large Language Models (LLMs) durchaus auch Nachteile haben. Beispielsweise ist die Genauigkeit der Daten ein Problem – immerhin sind die Daten oft ausschließlich aus dem Internet. Daten von Unternehmen und private Daten sind fast gar nicht verfügbar. Weiterhin ist das Halluzinieren ein Problem. Dabei sind die Antworten scheinbar plausibel, stimmen aber nicht.

Muddu Sudhaker hat diese Punkte in seinem Artikel noch einmal aufgeführt. Dabei kommt er zu dem Schluss, dass es in Zukunft immer mehr darauf ankommen wird, kleinere, speziellere Trainingsdatenbanken zu nutzen – eben Small Language Models (SLMs).

Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, Forbes, LINK

Große Vorteile der SLMs sieht der Autor natürlich einmal in der Genauigkeit der Daten und damit in den besseren Ergebnissen. Weiterhin sind SLMs natürlich auch kostensparender. Einerseits sind die Entwicklungskosten geringer, andererseits benötigt man keine aufwendige Hardware, um SLMs zu betreiben. Teilweise können solche Modelle auf dem eigenen PC, oder auf dem Smartphone betrieben werden.

Solche Argumente sind natürlich gerade für Kleine und Mittlere Unternehmen (KMU) interessant, die mit den geeigneten SLMs und ihren eigen, unternehmensinternen Daten ein interessantes und kostengünstiges KI-System aufbauen können.

Voraussetzung dafür ist für mich, dass alle Daten auf den eigenen Servern bleiben, was aktuell nur mit Open Source AI möglich ist. OpenAI mit ChatGPT ist KEIN Open Source AI.

Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Image by AIAC Interactive Agency from Pixabay

Das Bild zeigt ein Glas mit einer Flüssigkeit. Es ist allerdings nicht genau zu erkennen, um welchen Inhalt es sich handelt. Es könnte also sein, dass die Flüssigkeit gut für Ihre Gesundheit ist, oder auch nicht. Vertrauen Sie dieser Situation? Vertrauen Sie demjenigen, der das Glas so hingestellt hat?

Würden Sie aus diesem Glas trinken?

So ähnlich ist die Situation bei Künstlicher Intelligenz. Die Tech-Unternehmen veröffentlichen eine KI-Anwendung nach der anderen. Privatpersonen, Unternehmen, ja ganze Verwaltungen nutzen diese KI-Apps als Black Box, ohne z.B. zu wissen, wie die Daten in den Large Language Models (LLM) zusammengetragen wurden – um nur einen Punkt zu nennen.

Der Vergleich von dem Glas mit Künstlicher Intelligenz hinkt zwar etwas, doch erscheint mir die Analogie durchaus bemerkenswert, da der erste Schritt zur Anwendung von Künstlicher Intelligenz Vertrauen sein sollte.

Step 1: It All Starts with Trust
“Think about it: the glass is opaque, you can’t even see inside it! The water inside that glass could pure spring water, but it could also be cloudy and murky puddle water, or even contaminated water! If you couldn’t see inside that glass, would you still drink what’s inside it after adding tons of high-quality sugar and lemon to it? Probably not, so why would you do this with one of your company’s most previous assets—your data?” (Thomas et al. 2025).

Vertrauen Sie der Art von Künstlicher Intelligenz, wie sie von den etablierten Tech-Giganten angeboten wird? Solche Closed Source Modelle sind nicht wirklich transparent, und wollen es auch weiterhin nicht sein. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

Vertrauen Sie besser wirklichen Open Source AI – Anwendungen: Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.