Deepfake Total: Audiofakes gratis erkennen – inkl. Trainingsspiel

Screenshot von der Website https://deepfake-total.com/

Durch die fast beliebige Verwendung von Künstlicher Intelligenz wird die Kreativität angeregt und Videos, Bilder und auch Audiodateien neu kombiniert. Dabei achten manche Einzelpersonen oder auch Unternehmen nicht immer so genau auf die Rechte anderer Menschen. Beispielsweise kursieren im Netz Audiodateien von Prominenten, die das gar nicht gesagt haben.

Auch als Privatperson kann es sein, dass die eigene Stimme als Audiodatei in KI-generierten Audiofiles/Podcasts benutzt wird – ohne dass ich es möchte. Die Frage ist nun: Wie kann ich solche Audiofakes erkennen? Das Fraunhofer Institut hat dazu eine Plattform entwickelt:

“Die Plattform Deepfake Total entwickelte Nicolas Müller mit seinem Team als öffentliches Erkennungstool für Audiofakes. Jeder kann dort verdächtige Audiospuren hochladen und von einer KI analysieren lassen. Im Gegensatz zu anderen kommerziellen Erkennungstools auf dem Markt ist die Fraunhofer-Plattform kostenlos – und in Deutschland gehostet. Ihr KI-Modell trainieren die Forschenden sowohl mit öffentlichen als auch selbst erstellten Datensätzen, die Beispiele originaler und gefälschter Audiospuren enthalten” (Fraunhofer-Magazin 2/2025).

Was mir besonders gefällt ist der Ansatz, dass dieses Angebot transparent, kostenlos und in Deutschland gehostet ist. Ein Trainingsspiel – für Audio und Video – führt in die Thematik ein und soll dafür sorgen, dass man selbst anfängt eigene Dateien hochzuladen. Probieren Sie es doch einfach einmal aus.

“Analyze suspicious audio files to detect deepfakes, and automatically share them with the security community” (Text auf der Startseite der Plattform).

LangFlow: Per Drag & Drop KI-Agenten auf dem eigenen Server entwickeln und testen

Screenshot von unserer LangFlow-Installation (Simple Agent)

In dem Beitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren wird erläutert, wie Modelle – abhängig von der Eingabe – so kombiniert werden können, dass ein qualitativ gutes Ergebnis herauskommt.

Der nächste Schritt wäre, beliebig viele KI-Modelle in einem Framework zu entwickeln und zu koordinieren. Die Plattform LangChain bietet so eine professionelle, und somit auch anspruchswolle Möglichkeit.

“LangChain is an incredibly valuable tool for linking up chains of models and defining steps for how an output from a model should be handled before being sent to a different model (or often, the same model with a different prompt) for a new step in a workflow” (Thomas et al. 2025).

Wenn es etwas einfacher sein soll, bietet sich LangFlow an, bei dem mit einfachen Mitteln per Drag & Drop KI-Agenten in Zusammenspiel mit verschiedenen Modellen konfiguriert werden können.

Wir haben LangFlow auf unserem Server installiert (Open Source) und können nun KI-Agenten für verschiedene Anwendungen entwickeln und testen. Die Abbildung zeigt einen Screenshot der Startseite, wenn man einen einfachen Agenten entwickeln möchte. Auf der linken Seite können sehr viele Optionen ausgewählt werden, in dem grau hinterlegten Bereich werden diese dann per Drag & Drop zusammengestellt. Die farbigen Verbindungslinien zeigen, welche Optionen miteinander kombiniert werden können. Abschließend kann im anwählbaren Playground das Ergebnis beurteilt werden.

Dabei bietet LangfFlow auch die Möglichkeit, eigene Daten, oder auch externe Datenquellen einzubinden – alles per Drag & Drop. Weiterhin haben wir den Vorteil, dass alle generierten Daten auf unserem Server bleiben.

Digitale Souveränität: Videokonferenzen mit Nextcloud Talk – Open Source, und die Daten bleiben auf dem eigenen Server

Eigener Screenshot: Videokonferenz mit Nextcloud Talk auf unserem Server

Heute hatte ich eine Videokonferenz mit Kollegen aus verschiedenen Ländern. Dabei haben wir statt Zoom oder MS Teams bewusst Nextcloud Talk genutzt, das Bestandteil der Nextcloud-Installation auf unseren Servern ist. Nextcloud ist Open Source und führt zu einer Digitalen Souveränität – auch bei Videokonferenzen. Die Daten bleiben dabei alle auf unseren Servern.

Inhaltlich ging es bei der Videokonferenz um die nächste MCP-Konferenz, die im September 2026 stattfinden soll – die Vorfreude ist bei mir schon jetzt vorhanden. Siehe dazu auch die Konferenz-Website oder unsere Übersichtsseite zu Konferenzen.

Die Abbildung zeigt einen Screenshot zu dem Zeitpunkt, an dem ich eine Videokonferenz (Anruf) in Nextcloud Talk gestartet habe. Den Link zu dem Raum habe ich dann an die Teilnehmer gesandt, die keine weitere Installationen benötigen, um teilzunehmen. Natürlich können auch Videokonferenzen terminiert, und dazu eingeladen werden. Wie dem Screenshot zu entnehmen ist, sind die aus anderen Videokonferenz-Tools bekannten Aktivitäten integriert – ich möchte diese daher hier nicht mehr ausführlich erläutern.

Nextcloud Talk ist dabei in eine komplette Kollaborationsplattform (inkl. Open Project, Deck als Board, Cloud als Datenspeicher, kollaboratives Arbeiten an Dateien, Whiteboard usw. usw.) integriert, die einen souveränen Arbeitsplatz unterstützt – alles Open Source, und die Daten bleiben auf dem eigenen Server.

Darüber hinaus haben wir auch LocalAI integriert, und die Möglichkeit geschaffen, KI-Agenten zu entwickeln und zu nutzen – alles Open Source, alle Daten bleiben auf unseren Servern.

(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit?

Wenn es um Menschliche Intelligenz geht, sprechen wir auch oft über die scheinbare Menschliche Dummheit. In meinen Blogbeiträgen Reden wir über Dummheit und Steckt hinter der Künstlichen Intelligenz keine echte Intelligenz? Wie ist das zu verstehen? bin ich auf das Thema eingegangen. Weiterhin finden sich in der Rezension Ina Rösing: Intelligenz und Dummheit weitere interessante Anmerkungen.

Im Zusammenhang mit Künstlicher Intelligenz könnte man natürlich auch über eine Art Künstliche Dummheit nachdenken. Wie schon länger bekannt, stellen beispielsweise Halluzinationen und falsche Antworten ein nicht zu vernachlässigendes Phänomen dar. Darüber hinaus gibt es allerdings auch noch eine Art Bullshit-Faktor. Es geht dabei um die Missachtung der Wahrheit in großen Sprachmodellen. Genau diesen Aspekt haben sich verschiedene Forscher der Princeton University einmal genauer angesehen und ein interessantes Paper dazu veröffentlicht:

Liang et al. (2025): Machine Bullshit: Characterizing the Emergent Disregard for Truth in Large Language Models | PDF

Es stellt sich hier natürlich die Frage, wie sich Halluzination und der genannte Bullshit-Faktor unterscheiden. Dazu habe ich folgendes gefunden:

“Daher gebe es auch einen entscheidenden Unterschied zwischen Halluzinationen und dem, was er als „Bullshit“ bezeichnet – und der liegt in der internen Überzeugung des Systems. Wenn ein Sprachmodell halluziniert, ist es nicht mehr in der Lage, korrekte Antworten zu erzeugen. „Beim Bullshit hingegen ist das Problem nicht Verwirrung über die Wahrheit, sondern eine fehlende Verpflichtung, die Wahrheit zu berichten” (t3n vom 21.08.2025).

Interessant finde ich, dass die Forscher wohl auch eine erste Möglichkeit gefunden haben, um diesen Bullshit-Faktor zu überprüfen. Gut wäre es natürlich, wenn die Ergebnisse dann allen zur Verfügung stehen würden. Gespannt bin ich besonders darauf, wie Open Source AI Modelle abschneiden.

KI-Agenten im Projektmanagement

Künstliche Intelligenz kann ganz generell in vielen Bereichen einer Organisation eingesetzt werden – natürlich auch im Projektmanagement. Zu KI im Projektmanagement gibt es in der Zwischenzeit viele Beiträge. Siehe dazu beispielsweise auch Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit.

In der Zwischenzeit geht es in der Diskussion zu KI auch immer stärker um die Frage, wie KI Agenten im Projektmanagement genutzt werden können. Dazu gibt es den Beitrag KI-Agenten im Projektmanagement: So unterstützen digitale Rollen den Projektalltag von Jörg Meier, vom 15.07.2025 im GPM Blog. Darin werden erste gute Hinweise gegeben. Dennoch:

Ich hätte mir hier gewünscht, dass der Author auch auf die Problematik der Nutzung von Closed Sourced Modellen wie ChatGPT oder Gemini hinweist. Ausgewählte KI Modelle sollten möglichst “wirklich” Open Source AI (Definition aus 2024) sein. Es wäre m.E. auch die Aufgabe der GPM die Digitale Souveränität insgesamt stärker bewusst zu machen. Siehe dazu beispielsweise auch Digitale Souveränität: Souveränitätsscore für KI Systeme.

Dass KI Agenten gerade in der Software-Entwicklung erhebliche Potenziale erschließen können, wird in diesem Beitrag deutlich: The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

NANDA – die Idee eines Open Agentic Web

Nanda Roadmap (Quelle: https://nanda.media.mit.edu/)

Mit KI Agenten (AI Agents) ist es möglich, in der Geschäftswelt vielfältige Prozesse zu optimieren, oder innovative Prozesse, Produkte und Dienstleistungen zu generieren, die bisher aus den verschiedensten Gründen nicht möglich waren. Dazu zählen oftmals nicht verfügbare Daten und die dazugehörenden Kosten.

Auf Basis dieser Entwicklungen können wir in Zukunft immer stärker von einer Agentenbasierten Wirtschaft sprechen – Agentic Economy (Siehe Abbildung). Dabei geht es um die Nutzung von KI-Agenten in Unternehmen oder in ganzen Branchen. Siehe dazu The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen oder auch Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen.

Denken wir etwas weiter, so müssen in Zukunft auch immer stärker KI-Agenten miteinander kommunizieren, also von Agent zu Agent – A2A. Passiert das zwischen sehr vielen Agenten eines Wirtschaftssystems, bzw. einer ganzen Gesellschaft, entsteht so etwas wie eine Agentic Society.

Das Projekt NANDA hat sich in dem Zusammenhang das Ziel gesetzt, diese Entwicklung mit einem Open Agentic Web zu unterstützen:

“Imagine billions of specialized AI agents collaborating across a decentralized architecture. Each performs discrete functions while communicating seamlessly, navigating autonomously, socializing, learning, earning and transacting on our behalf” (Source).

Das vom MIT initiierte Projekt NANDA arbeitet in Europa u.a. mit der TU München und der ETH Zürich zusammen. Das Ziel ist, alles Open Source basiert zur Verfügung zu stellen..

Ich bin an dieser Stelle immer etwas vorsichtig, da beispielsweise OpenAI auch beim Start das Ziel hatte, KI als Open Source zur Verfügung zu stellen. In der Zwischenzeit wissen wir, dass OpenAI ein Closed Source Model, bzw. ein Open Weights Model ist, und kein Open Source Model. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

KI-Modelle: Monitoring einer Entwicklungsumgebung

Using watsonx.governance to build a dashboard and track a multimodel
deployment environment (Thomas et al. 2025)

In verschiedenen Beiträgen hatte ich beschrieben, was eine Organisation machen kann, um KI-Modelle sinnvoll einzusetzen. An dieser Stelle möchte ich nur einige wenige Punkte beispielhaft dazu aufzählen.

Zunächst können LLM (Large Language Models) oder SLM (Small Language Models) eingesetzt werden – Closed Sourced , Open Weighted oder Open Source. Weiterhin können KI-Modelle mit Hilfe eines AI-Routers sinnvoll kombiniert, bzw. mit Hilfe von InstructLab mit eigenen Daten trainiert werden. Hinzu kommen noch die KI-Agenten – aus meiner Sicht natürlich auch Open Source AI.

Das sind nur einige Beispiele dafür, dass eine Organisation aufpassen muss, dass die vielen Aktivitäten sinnvoll und wirtschaftlich bleiben. Doch: Wie können Sie das ganze KI-System verfolgen und verbessern? In der Abbildung sehen Sie ein Dashboard, dass den Stand eines KI-Frameworks abbildet. Die Autoren haben dafür IBM watsonx Governance genutzt.

“Our dashboard gives us a quick view of our environment. There are LLMs from OpenAI, IBM, Meta, and other models that are in a review state. In our example, we have five noncompliant models that need our attention. Other widgets define use cases, risk tiers, hosting locations (on premises or at a hyper scaler), departmental use (great idea for chargebacks), position in the approval lifecycle, and more” (Thomas et al. 2025).

Die Entwicklungen im Bereich der Künstlichen Intelligenz sind vielversprechend und in ihrer Dynamik teilweise auch etwas unübersichtlich. Das geeignete KI-Framework zu finden, es zu entwickeln, zu tracken und zu verbessern wird in Zukunft eine wichtige Aufgabe sein.

AI 2027 Scenario: Wie wird sich Künstliche Intelligenz bis Ende 2027 entwickeln?

Quelle: https://ai-2027.com/summary

Der Mensch war schon immer daran interessiert heute schon zu wissen, was in der Zukunft auf ihn zukommen wird, oder zukommen soll. Es ist daher ganz selbstverständlich, dass verschiedene Interessengruppen wie Unternehmen, Berater, Soziologen oder auch einzelne Personen versuchenden, die Entwicklungen bei der Künstlichen Intelligenz vorherzusagen, zu prognostizieren.

Um ein relativ ausgewogenes Bild zu bekommen ist es gut, wenn sich unabhängige Wissenschaftler damit befassen. In dem AI Futures Project haben sich solche Personen zusammengetan. Es handelt sich hier um eine Nonprofit Research Organization, die im April 2025 eine erste Veröffentlichung zum Thema herausgebracht hat:

Kokotajlo et al. (2025): AI 2027 | Website

Es macht durchaus Sinn sich mit den dargestellten Schritten auseinanderzusetzen. denn die zusammengestellten Erkenntnisse sind ausführlich mit Forschungsergebnissen hinterlegt – was mir durchaus gefällt.

Dennoch: Mir sind die Perspektiven immer noch zu einseitig technologiegetrieben, denn Künstliche Intelligenz schafft auch gesellschaftliche, soziale Veränderungen.

Digital Sovereignty Index Score

Quelle: https://dsi.nextcloud.com/

In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich hatte ich schon einmal darauf hingewiesen, wie unterschiedlich die Ansätze zur Digitalen Souveränität in verschiedenen Regionen der Welt sind. Die verschiedenen Dimensionen waren hier “Right-based”, “Market-based”, “State-based” und “Centralization”, aus denen sich die gegensätzlichen Extreme “Hard Regulation” und “Soft Regulation” ergeben haben.

Der Digital Sovereignty Index Score (Abbildung) unterscheidet sich von dieser Betrachtungsweise. Im Unterschied zu der zu Beginn erwähnten Analyse, die eher die politische oder marktwirtschaftliche Perspektive hervorhebet, entsteht der Digital Sovereignty Index anders.

Hier wird analysiert, ob die wichtigsten 50 relevanten, selbst gehosteten Tools für digitale Kollaboration und Kommunikation verfügbar sind.

“We selected 50 of the most relevant self-hosted tools for digital collaboration and communication. These include platforms for file sharing, video conferencing, mail, notes, project management, and more.

We then measured their real-world usage by counting the number of identifiable server instances per country.

The result is an index score per country, (…)”

Source: https://dsi.nextcloud.com/

Die Digitale Souveränität wird in einem Score berechnet und für verschiedene Länder in einer anschaulichen Grafik dargestellt (Abbildung). Die Farben zeigen an, wie gut (grün) oder schlecht (rot) es in dem beschriebenen Sinn mit der Digitalen Souveränität in dem jeweiligen Land bestellt ist. Es ist gut zu erkennen, das die beiden Länder Finnland und Deutschland grün hervorgehoben sind.

Wie der Grafik weiterhin zu entnehmen ist, sind viele Länder, u.a. China noch weiß dargestellt. Die Limitierung der Analyse ist den Initiatoren des DSI Score durchaus bewusst, dennoch sehen sie diese Grafik als Startpunkt für eine bessere Übersicht zu dem Thema, zum dem jeder aufgefordert ist, mitzumachen.

Mich hat natürlich interessiert, wer hinter der Website steckt… – siehe da, es ist die Nextcloud GmbH mit dem Büro Stuttgart. Das wundert mich jetzt nicht wirklich, da Nextcloud schon immer auf die Digitale Souveränität bei Einzelpersonen, Organisationen und Öffentlichen Verwaltungen hingewiesen hat. Auch wir stellen nach und nach auf die Möglichkeiten von Nextcloud um, inkl. LocalAI und Open Source KI-Agenten. Siehe dazu auch

Von der digitalen Abhängigkeit zur digitalen Souveränität

Digitale Souveränität: Welche Open Source Alternativen gibt es?

Digitale Souveränität: Souveränitätsscore für KI Systeme

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud