Wie geht Indien mit Künstlicher Intelligenz um?

Quelle: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2025/nov/doc2025115685601.pdf

In dem Beitrag Digitale Souveränität: Europa, USA und China im Vergleich wird deutlich, wie unterschiedlich die Herangehensweisen in den USA, in China und in Europa sind, wenn es um Künstliche Intelligenz geht. Darüber hinaus hat auch Japan mit dem Ansatz einer Society 5.0 beschrieben, dass Künstliche Intelligenz dazu dienen soll, die Herausforderungen einer modernen Gesellschaft zu lösen.

Auch das aufstrebende Indien hat nun seine Richtlinien für die gesellschaftliche Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) veröffentlicht. Dabei werden gleich zu Beginn folgende 7 Prinzipien genannt:

01 Trust is the Foundation
Without trust, innovation and adoption will stagnate.
02 People First
Human-centric design, human oversight, and human empowerment.
03 Innovation over Restraint
All other things being equal, responsible innovation should be prioritised over cautionary restraint.
04 Fairness & Equity
Promote inclusive development and avoid discrimination.
05 Accountability
Clear allocation of responsibility and enforcement of regulations.
06 Understandable by Design
Provide disclosures and explanations that can be understood by the intended user and regulators.
07 Safety, Resilience & Sustainability
Safe, secure, and robust systems that are able to withstand systemic shocks and are environmentally sustainable.

Source: Ministry of Electronics and Information Technology (2025): India AI Governance Guidelines. Enabling Safe and Trusted AI Innovation (PDF)

Bemerkenswert finde ich, dass an erster Stelle steht, dass Vertrauen die Grundlage für Innovationen bildet. Vertrauen in die Möglichkeiten der Künstlichen Intelligenz kann man meines Erachtens nur durch Transparenz erreichen. Proprietäre KI-Systeme, bei denen unklar ist, wo die Daten herkommen und wie mit (auch eigenen) Daten umgegangen wird, sind unter der genannten Bedingung (Trust) mit Vorsicht zu genießen.

Siehe dazu auch Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft.

Proprietäre Software im Vergleich zu Open Source Software

Quelle: SFLC vom 11.11.2025

Digitale Souveränität fängt damit an, sich von propritärer Software unabhängiger zu machen. Proprietäre Software ist Software, deren Quellcode nicht öffentlich ist, und die Unternehmen gehört (Closed Software). Dazu zählen einerseits die verschiedenen Anwendungen von Microsoft, aber auch die von Google oder ZOHO usw.

Demgegenüber gibt es in der Zwischenzeit leistungsfähige Open Source Software. Die indische Organisation SFLC hat am 11. November eine Übersicht veröffentlicht, die Google Workplace, ZOHO Workplace und Nextcloud Office/ProtonMail/BigBlueButton gegenüberstellt – die Abbildung zeigt einen Ausschnitt aus der Tabelle, die in diesem Beitrag zu finden ist.

„The purpose of this comparison is to assess the different approaches, features, and trade-offs each solution presents and to help organizations make informed decisions based on their operational requirements, technical capabilities, and priorities around privacy, flexibility, and cost“ (ebd.).

Wir nutzen seit einiger Zeit Nextcloud mit seinen verschiedenen Möglichkeiten, inkl. Nextcloud Talk (Videokonferenzen), sodass BigBlueButton nicht separat erforderlich ist.

Darüber hinaus nutzen wir LocalAI über den Nextcloud Assistenten, haben OpenProject integriert und erweitern diese Möglichkeiten mit Langflow und Ollama, um KI-Agenten zu entwickeln.

Alles basiert auf Open Source Software, die auf unseren Servern laufen, sodass auch alle Daten auf unseren Servern bleiben – ganz im Sinne einer stärkeren Digitalen Souveränität.

Digitale Souveränität: Mistral 3 KI-Modell-Familie veröffentlicht

Quelle: https://mistral.ai/news/mistral-3

Digitale Souveränität in Europa lebt auch davon, dass leistungsfähige KI-Modelle verfügbar sind. Es wundert daher nicht, dass die Veröffentlichung von Mistral 3 sehr viel Aufmerksamkeit erhalten hat. Mistral ist die französische Antwort auf die dominierenden KI-Modelle amerikanischer Tech-Konzerne, die nicht offen sind, und enorme Ressourcen benötigen. Wenn es um kleine, offene und ressourcenschonende Modelle geht, so kann die Mistral-Modell-Familie durchaus interessant sein. Alle Modelle sind auf Huggingface verfügbar:

Mistral 3 Large
A state-of-the-art, open-weight, general-purpose multimodal model with a granular Mixture-of-Experts architecture.

Mistral 3
A collection of edge models, with Base, Instruct and Reasoning variants, in 3 different sizes: 3B, 8B and 14B.

Mich interessieren gerade die kleinen, leistungsfähigen Modelle, die eine einfachere technische Infrastruktur benötigen und ressourcenschonend sind. Die offenen Modelle können damit in lokale KI-Anwendungen eingebunden werden. Wir werden Mistral 3 in LocalAI, Ollama und Langflow einbinden und zu testen. Dabei bleiben alle generierten Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Künstliche Intelligenz: Die neue Olmo3 Modell-Familie

https://allenai.org/

Auf die Olmo Modell Familie hatte ich diesen Blogbeitrag schon einmal hingewiesen: Mit der Olmo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben. Es handelt sich dabei um Modelle, die vom Ai2 Institut entwickelt und veröffentlicht werden. Ziel des Instituts ist es, neben der Offenheit der Modelle auch einen Beitrag zur Lösung der gesellschaftlichen Herausforderungen zu leisten. Im November 2025 ist die Olmo3 Modell-Familie veröffentlicht worden:

Olmo 3-Think (7B, 32B)–our flagship open reasoning models for advanced experiments, surfacing intermediate thinking steps.

Olmo 3-Instruct (7B)–tuned for multi-turn chat, tool use, and function/API calling.

Olmo 3-Base (7B, 32B)–strong at code, reading comprehension, and math; our best fully open base models and a versatile foundation for fine-tuning.

Die Modelle sind bei Huggingface frei verfügbar und können in einem Playground getestet werden.

Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.

Mit Künstlicher Intelligenz zu Innovationen – aber wie?

Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.

Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.

„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).

Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.

Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.

Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.

Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:

LocalAI: Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI

Ollama und Langflow: Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.

Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Künstliche Intelligenz: Hohe Investitionen und keine Rendite?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es ist schon erstaunlich: Tag für Tag lesen wir von Milliardeninvestitionen der Unternehmen in GenAI. Es gibt in der Zwischenzeit auch genügend Beispiele aus allen Branchen die zeigen, wie mit Künstlicher Intelligenz (GenAI) produktiver als vorher gearbeitet werden kann. Somit sollten diese Effekte auch betriebswirtschaftlich nachgewiesen werden können.

Die Frage st also: Gibt es auch eine gewisse Rendite auf die Investitionen, die in solche Projekte gesteckt werden?

Eine MIT-Studie vom Juli 2025 zeigt ein überraschendes Ergebnis: Der Erfolg, in Form einer messbaren Rendite (Return on Investment). kann bei 95% der Organisationen nicht nachgewiesen werden. Hier der Originalabsatz aus der Studie:

Despite $30–40 billion in enterprise investment into GenAI, this report uncovers a surprising result in that 95% of organizations are getting zero return. The outcomes are so starkly divided across both buyers (enterprises, mid-market, SMBs) and builders (startups, vendors, consultancies) that we call it the GenAI Divide. Just 5% of integrated AI pilots are extracting millions in value, while the vast majority remain stuck with no measurable P&L impact. This divide does not seem to be driven by model quality or regulation, but seems to be determined by approach“ (MIT NANDA 2025).

Interessant ist, dass der jeweils gewählte Ansatz (determined by approach) wohl das Grundübel ist. Möglicherweise ist es gar nicht so gut, sich nur auf die sehr großen, proprietären KI-Anbieter zu konzentrieren – ja, sich von diesen abhängig zu machen. Siehe dazu beispielsweise auch KI-Modelle: Monitoring einer Entwicklungsumgebung.

Künstliche Intelligenz für die Menschen

UN (2024): Governing AI For Humanity

Immer mehr Regionen und Länder stellen fest, dass die Entwicklung der Künstlichen Intelligenz – wie alle Innovationen – mindestens zwei Seiten hat. Es gibt einerseits den Nutzen für Menschen, Unternehmen und Gesellschaften und andererseits auch Schwierigkeiten.

Solche Entwicklungen geben immer Anlass, darüber nachzudenken, ob Künstliche Intelligenz so gesteuert werden kann, dass es nicht nur einzelnen Unternehmen zugute kommt, sondern einer ganzen Gesellschaft.

In der Zwischenzeit gibt es sehr viele nationale und regionale Initiativen, die versuchen, einerseits die Entwicklungen von Künstlicher Intelligenz zu fördern, andererseits aber auch Grenzen zu ziehen, deren Überschreitung zu möglichen gesellschaftlichen Schäden führen können.

Die United Nations (UN) ist für so eine Fragestellung prädestiniert, und hat mit der Veröffentlichung UN /2024): Governing AI For Humanity (PDF) eine gute Basis geschaffen, um ausgewogen über das Thema diskutieren zu können.

Aktuell habe ich den Eindruck, dass die Diskussionen über die Entwicklung und Nutzung Künstlicher Intelligenz von den amerikanischen Tech-Konzernen dominiert werden, die ihre wirtschaftlichen Vorteile sehen, die gesellschaftlich negativen Auswirkungen gerne den jeweiligen Ländern überlassen wollen.

Siehe dazu auch Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century und die Erläuterungen zu einer Society 5.0.

Open Source AI: Kimi K2 Thinking vorgestellt

Mit DeepSeek ist chinesischen Entwicklern ein Coup gelungen, denn sie konnten zeigen, dass ein KI-Modell nicht teuer sein muss. Die amerikanischen Tech-Giganten standen damals mit ihren Milliarden-Investitionen ziemlich schlecht dar.

Nun gibt es mit Kimi K2 Thinking ein weiteres Modell, mit dem chinesische Entwickler zeigen, wie mit relativ wenigen Ressourcen – und damit Kosten – ein leistungsfähiges Modell angeboten werden kann. Der Schwerpunkt des Modells liegt dabei auf „Coding“.

Es ist Open Source basiert und wurde unter der MIT-Lizenz veröffentlicht. Diese enthält eine interessante Klausel: Da amerikanische Konzerne chinesische Open Source Modelle gerne für ihre Entwicklungen nutzen – ohne das transparent zu machen – ist die freie kommerzielle Nutzung bis zu einem monatlichen Umsatz von 20 Millionen Dollar möglich.

Kimi K2 Thinking ist ein MoE-Modell, (for Coding) dessen Entwicklung nur 4,6 Millionen Dollar gekostet haben soll – wieder eine beeindruckende Kennzahl. Darüber hinaus zeigen Benchmarks, die enorme Leistungsfähigkeit des Modells. Weitere Informationen sind in dem folgenden Beitrag zusammengefasst:

Moonshot AI stellt Kimi K2 Thinking als „bestes Open-Source-Thinking-Modell“ vor (Krempler, J. 2025, in the decoder vom 07.11.2025).

Mal sehen, ob wir das Modell auch in LocalAI, bzw. in Ollama auf unseren Servern einbinden können. Bis dahin kann auf der Landingpage Kimi K2 Thinking getestet werden.