Künstliche Intelligenz im Projektmanagement: Ethische Kompetenz für die Projektleitung?

In allen Projekten werden mehr oder weniger oft digitale Tools, bzw. komplette Kollaborationsplattformen eingesetzt. Hinzu kommen jetzt immer stärker die Möglichkeiten der Künstlicher Intelligenz im Projektmanagement (GenAI, KI-Agenten usw.).

Projektverantwortliche stehen dabei vor der Frage, ob sie den KI-Angeboten der großen Tech-Konzerne vertrauen wollen – viele machen das. Immerhin ist es bequem, geht schnell und es gibt auch gute Ergebnisse. Warum sollte man das hinterfragen? Möglicherweise gibt es Gründe.

Es ist schon erstaunlich zu sehen, wie aktuell Mitarbeiter ChatGPT, Gemini usw. mit personenbezogenen Daten (Personalwesen) oder auch unternehmensspezifische Daten (Expertise aus Datenbanken) füttern, um schnelle Ergebnisse zu erzielen – alles ohne zu fragen: Was passiert mit den Daten eigentlich? Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Je innovativer ein Unternehmen ist, desto einzigartiger sind seine Daten. Was mit diesen Daten dann passiert, ist relativ unklar. Es wundert daher nicht, dass nur ein kleiner Teil der Unternehmensdaten in den bekannten LLM (Large Language Models) zu finden ist. Siehe dazu Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden.

Es stellt sich zwangsläufig die Frage, wie man diesen Umgang mit den eigenen Daten und das dazugehörende Handeln bewertet. An dieser Stelle kommt der Begriff Ethik ins Spiel, denn Ethik befasst sich mit der “Bewertung menschlichen Handelns” (Quelle: Wikipedia). Dazu passt in Verbindung zu KI in Projekten folgende Textpassage:

“In vielen Projektorganisationen wird derzeit intensiv darüber diskutiert, welche Kompetenzen Führungskräfte in einer zunehmend digitalisierten und KI-gestützten Welt benötigen. Technisches Wissen bleibt wichtig – doch ebenso entscheidend wird die Fähigkeit, in komplexen, oft widersprüchlichen Entscheidungssituationen eine ethisch fundierte Haltung einzunehmen. Ethische Kompetenz zeigt sich nicht nur in der Einhaltung von Regeln, sondern vor allem in der Art, wie Projektleitende mit Unsicherheit, Zielkonflikten und Verantwortung umgehen” (Bühler, A. 2025, in Projektmanagement Aktuell 4/2025).

Unsere Idee ist daher, eine immer stärkere eigene Digitale Souveränität – auch bei KI-Modellen. Nextcloud, LocalAI, Ollama und Langflow auf unseren Servern ermöglichen es uns, geeigneter KI-Modelle zu nutzen, wobei alle generierten Daten auf unseren Servern bleiben. Die verschiedenen KI-Modelle können farbig im Sinne einer Ethical AI bewertet werden::

Quelle: https://nextcloud.com/de/blog/nextcloud-ethical-ai-rating/

Digitale Souveränität: Mit Langflow einen einfachen Flow mit Drag & Drop erstellen

Eigener Screenshot vom Langflow-Arbeitsbereich, inkl. der Navigation auf der linken Seite

Langflow haben wir als Open Source Anwendung auf unseren Servern installiert. Mit Langflow ist es möglich, Flows und Agenten zu erstellen – und zwar einfach mit Drag&Drop. Na ja, auch wenn es eine gute Dokumentation und viele Videos zu Langflow gibt, steckt der “Teufel wie immer im Detail”.

Wenn man mit Langflow startet ist es erst einmal gut, die Beispiele aus den Dokumentationen nachzuvollziehen. Ich habe also zunächst damit begonnen, einen Flow zu erstellen. Der Flow unterscheidet sich von Agenten, auf die ich in den nächsten Wochen ausführlicher eingehen werde.

Wie in der Abbildung zu sehen ist, gibt es einen Inputbereich, das Large Language Model (LLM) oder auch ein kleineres Modell, ein Small Language Model (SLM). Standardmäßig sind die Beispiele von Langflow darauf ausgerichtet, dass man OpenAI mit einem entsprechenden API-Key verwendet. Den haben wir zu Vergleichszwecken zwar, doch ist es unser Ziel, alles mit Open Source abzubilden – und OpenAI mit ChatGPT (und andere) sind eben kein Open Source AI.

Um das zu erreichen, haben wir Ollama auf unseren Servern installiert. In der Abbildung oben ist das entsprechende Feld im Arbeitsbereich zu sehe,n. Meine lokale Adresse für die in Ollama hinterlegten Modelle ist rot umrandet unkenntlich gemacht. Unter “Model Name” können wir verschiedene Modelle auswählen. In dem Beispiel ist es custom-llama.3.2:3B. Sobald Input, Modell und Output verbunden sind, kann im Playground (Botton oben rechts) geprüft werden, ob alles funktioniert. Das Ergebnis sieht so aus:

Screenshot vom Playground: Ergebnis eines einfachen Flows in Langflow

Es kam mir jetzt nicht darauf an, komplizierte oder komplexe Fragen zu klären, sondern überhaupt zu testen, ob der einfache Flow funktioniert. Siehe da: Es hat geklappt!

Alle Anwendungen (Ollama und Langflow) sind Open Source und auf unseren Servern installiert. Alle Daten bleiben auf unseren Servern. Wieder ein Schritt auf dem Weg zur Digitalen Souveränität.

Künstliche Intelligenz: Das menschliche Gehirn benötigt maximal 30 Watt für komplexe Problemlösungen

Weltweit werden KI-Giga-Factories gebaut, um den erforderlichen Rechenkapazitäten der großen Tech-Konzerne gerecht zu werden. Europa fällt auch hier immer weiter zurück, wodurch eine zusätzliche digitale Abhängigkeit entsteht.

Prof. Lippert vom Kernforschungszentrum hat das so ausgedrückt: “”Unser geistiges Eigentum geht in andere Länder” (MDR vom 05.09.2025). Teilweise wird prognostiziert, dass KI-Rechenzentren bis 2030 so viel Energie benötigen, wie ganz Japan.

Es stellt sich daher die Frage, ob das langfristig der richtige Weg ist. Eine Antwort liefert möglicherweise der Energieverbrauch eines menschlichen Gehirns:

“Das menschliche Gehirn leistet vieles, was Maschinen überfordert – und das mit minimalem Energieverbrauch. Im Durchschnitt verbraucht es nur etwa 20 Watt, so viel wie eine schwache Glühbirne” Knees (2025): Wie Forscher die Tech-Konzerne entmachten wollen, in Handelsblatt vom 11.10.2025.

“Unser Gehirn benötigt für hochkomplexe Informationsübertragungen und -verarbeitungen weniger Energie als eine 30-Watt-Glühbirne” (Prof. Dr. Amunts).

Mit so einer geringen Energiemenge leistet unser menschliches Gehirn erstaunliches. Es wundert daher nicht, dass die Entwicklung immer größerer Modelle (Large Language Models) infrage gestellt wird.

Forscher sind aktuell auf der Suche nach Modellen, die ganz anders aufgebaut sind und nur einen Bruchteil der aktuell benötigten Energie verbrauchen. Gerade in China gibt es dazu schon deutliche Entwicklungen. Auch in Deutschland befassen sich Forscher mit dem Thema neuroinspirierte Technologien.

Wir behandeln oftmals Menschen wie Roboter und Künstliche Intelligenz wie Kreative

In den letzten Jahren wird immer deutlicher, dass Künstliche Intelligenz unser wirtschaftliches und gesellschaftliches Leben stark durchdringen wird. Dabei scheint es so zu sein, dass die Künstliche Intelligenz der Menschlichen Intelligenz weit überlegen ist. Beispielsweise kann Künstliche Intelligenz (GenAI) äußerst kreativ sein, was in vielfältiger Weise in erstellten Bildern oder Videos zum Ausdruck kommt. In so einem Zusammenhang behandeln wir Künstliche Intelligenz (AI: Artificial Intelligence) wie Kreative und im Gegensatz dazu Menschen eher wie Roboter. Dazu habe ich folgenden Text gefunden:

“We are treating humans as robots and ai as creatives. it is time to flip the equation” (David de Cremer in Bornet et al. 2025).

David de Cremer ist der Meinung, dass wir die erwähnte “Gleichung” umstellen sollten. Dem kann ich nur zustimmen, denn das aktuell von den Tech-Giganten vertretene Primat der Technik über einzelne Personen und sogar ganzen Gesellschaften sollte wieder auf ein für alle Beteiligten gesundes Maß reduziert werden. Damit meine ich, dass die neuen technologischen Möglichkeiten einer Künstlichen Intelligenz mit den Zielen von Menschen/Gesellschaften und den möglichen organisatorischen und sozialen Auswirkungen ausbalanciert sein sollten.

Der japanische Ansatz einer Society 5.0 ist hier ein sehr interessanter Ansatz. Auch in Europa gibt es Entwicklungen, die in diese Richtung gehen: Beispielsweise mit den Möglichkeiten von EuroLLM, einem Europäischen Large Language Model (LLM) auf Open Source Basis. Siehe dazu auch Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI.

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Screenshot AI2 Playground

AI2 ist eine Non-Profit Organisation, die Künstliche Intelligenz für die vielfältigen gesellschaftlichen Herausforderungen entwickelt. Das 2014 in Seattle gegründete Institut stellt dabei auch verschiedene Open Source KI-Modelle zur Verfügung – u.a. auch OLMo2.

“OLMo 2 is a family of fully-open language models, developed start-to-finish with open and accessible training data, open-source training code, reproducible training recipes, transparent evaluations, intermediate checkpoints, and more” (Quelle).

Wenn man die von AI2 veröffentlichten KI-Modelle einmal testen möchte, kann man das nun in einem dafür eingerichteten Playground machen. Wie in der Abbildung zu erkennen, können Sie einzelne Modelle auswählen, und mit einem Prompt testen. Der direkte Vergleich der Ergebnisse zeigt Ihnen, wie sich die Modelle voneinander unterscheiden.

Siehe dazu auch Künstliche Intelligenz: Mit der OLMo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben.

Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century

Image by NoName_13 from Pixabay

Es ist schon manchmal zum Volkssport geworden, Europa für alles verantwortlich zu machen, was nicht so gut läuft. Dabei wird oft übersehen, dass wir gerade in Deutschland von unseren europäischen Partnern abhängig sind, und nur mit ihnen gemeinsam die großen Herausforderungen bewältigen können. Dabei steht Europa zwischen den USA und China,

Gerade wenn es um die technologischen Entwicklungen geht, werden wir in Europa oft mit den USA und China verglichen. Dabei kommt heraus, dass wir “weit hinter” den beiden Großmächten liegen. Es ist immer leicht, sich einen Teil des gesellschaftlichen Lebens herauszufiltern und diesen dann zu bewerten, ohne die Zusammenhänge zu betrachten. Neben den technologischen Entwicklungen geht es auch die sozialen Zusammenhänge in Gesellschaften. Alles ist eben mit allem vernetzt.

In den Buch Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century stellt der Autor Professor Arturo Bris eine für viele überraschende These auf: Europa als Vorbild für das 21. Jahrhundert. In der Beschreibung zum Buch findet man beispielsweise folgende Erläuterungen:

“While the world often focuses on the rivalry between the U.S. and China, Europe has steadily built a different path: one defined by high living standards, strong public institutions, universal healthcare, and a commitment to sustainability and human rights. Its cities lead in quality of life, its democracies remain among the most robust, and its cultural and regulatory influence—exemplified by GDPR, climate policy, and social protections—extends globally.

In contrast, the United States, though still dominant in innovation, faces mounting internal challenges: political dysfunction, social fragmentation, inequality, and mistrust in institutions. The dynamism of Silicon Valley and Wall Street has come at the cost of social cohesion and civic faith” (Bris 2025).

Ist es wirklich so erstrebenswert den Elons Musks, Sam Altmans, Donald Trumps, Peter Thiels, usw. usw. hinterherzurennen? Manche, die das relativ blind machen, sollten kurz innehalten und nachdenken.

Digitale Souveränität: Nextcloud Version 32 (Hub 25) – no data leaks to third parties

Landingpage zur Version 32 (Hub 25) auf Nextcloud

Zur Digitalen Souveränität und zu Nextcloud habe ich in unserem Blog schon mehrfach, auch in Verbindung mit Künstlicher Intelligenz und KI-Agenten, geschrieben. Siehe meine verschiedenen Blogbeiträge dazu.

An dieser Stelle möchte ich daher nur auf die am 27.09.2025 veröffentlichte neue Nextcloud Version 32 (Hub 25) hinweisen. Es ist erstaunlich, welche dynamische Entwicklung diese Open Source Kollaborations-Plattform in den letzten Jahren verzeichnen kann. Immerhin bietet Nextcloud neben Alternativen zu den üblichen Office-Anwendungen, auch Nextcloud Talk (MS Teams Ersatz), ein Whiteboard, Nextcloud Flow (Abläufe optimieren), auch eine Integration mit Open Project an.

Mit dem Upgrade auf Nextcloud 32 wird auch der Nextcloud Assistent verbessert. Mit Hilfe verschiedener Features wie Chat mit KI usw. wird der Assistent zu einem persönlichen Agenten, der unterschiedliche Abläufe übernehmen kann.

Über die Verbindung zu LocalAI können die verschiedenen Möglichkeiten mt einem KI-Modell – oder mit verschiedenen KI-Modellen – verknüpft werden, sodass alle generierten Daten auf unserem Server bleiben. Ein in der heutigen Zeit unschätzbarer Vorteil, wodurch der Nextcloud Assistent in diesem Sinne ein Alleinstellungsmerkmal aufweist – ganz im Sinne einer Digitalen Souveränität.

Wir werden in Kürze auf die Version 32 (Hub 25) upgraden, und die neuen Features testen. In diesem Blog werde ich in den kommenden Woche darüber schreiben.

Global Innovation Index 2025: Deutschland nicht mehr in den TOP 10

Quelle: Global Innovation Index 2025

Der aktuelle Global Innovation Index 2025 zeigt, dass Deutschland im Ranking nicht mehr zu den TOP 10 zählt (Abbildung). Im internationalen Vergleich rutscht Deutschland etwas ab. Im Global Innovation Index 2017 war Deutschland im Vergleich zu 2016 einen Platz nach oben gerutscht, und belegte immerhin Platz 9.

Schon 2010 hatte ich in einem Blogbeitrag etwas zynisch angemerkt, dass wir in Deutschland mehr Innovationspreise als wirkliche Innovationen haben.

Vergleichen wir uns in Deutschland mit anderen Ländern in der EU, oder mit den eigenen Innovations-Kennzahlen der vergangenen Jahre, sieht es dagegen immer noch recht gut aus. Es ist halt immer die Frage, welche Zahlen ich heranziehe, um die Innovationskraft eines Landes zu bewerten. Es ist eben – frei nach Einstein – alles relativ.

Ein wichtiges Kriterium in unseren Regionen ist das Europäische Paradox. Gemeint ist, dass wir in Europa recht viel Geld in die Forschung stecken, doch im Verhältnis dazu recht wenige Innovationen generieren. Siehe dazu Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

Doch was können wir tun, um diese Entwicklung zu korrigieren?

In Zeiten von Künstlicher Intelligenz beispielsweise sollte es darum gehen, die bisher nicht erfüllten Bedürfnisse von Menschen endlich in den Mittelpunkt zu stellen, und geeignete Produkte und Dienstleistungen auf den Markt zu bringen.

“There is still an invisible hand behind supply-side reform. Adam Smith argued that the invisible hand that drives markets is capital, while the invisible hand of supply that drives innovation is demand. Generally speaking, the “inconvenience” in the daily life of the people can be used as the traction of technological development. In the AI technology market, enterprises that see fundamental needs can have a large number of applications for their products” (Wu 2025).

KI-Modelle: Von “One Size Fits All” über Variantenvielfalt in die Komplexitätsfalle?

In letzter Zeit gibt es immer mehr Meldungen, dass der Einsatz von Künstlicher Intelligenz in allen gesellschaftlichen Bereichen steigt. Doch nicht immer sind KI-Projekte erfolgreich und werden daher eingestellt – was bei neuen Technologien ja nicht ungewöhnlich ist. Siehe dazu beispielsweise Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner).

Dennoch ist deutlich zu erkennen, dass es immer mehr Anbieter in allen möglichen Segmenten von Künstlicher Intelligenz – auch bei den Language Models – gibt. Wenn man sich alleine die Vielzahl der Modelle bei Hugging Face ansieht: Heute, am17.09.2025, stehen dort 2,092,823 Modelle zur Auswahl, und es werden jede Minute mehr. Das erinnert mich an die Diskussionen auf den verschiedenen (Welt-) Konferenzen zu Mass Customization and Personalization. Warum?

Large Language Models (LLM): One Size Fits All
Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Diese Einschätzung wird natürlich von den Tech-Unternehmen vertreten, die aktuell mit ihren Closed Source Models das große Geschäft machen, und auch für die Zukunft wittern. Die Argumentation ist, dass es nur eine Frage der Zeit ist, bis das jeweilige Large Language Model die noch fehlenden Features bereitstellt – bis hin zur großen Vision AGI: Artificial General Intelligence. Storytelling eben…

Small Language Models (SLM): Variantenvielfalt
In der Zwischenzeit wird immer klarer, dass kleine Modelle (SLM) viel ressourcenschonender, in speziellen Bereichen genauer, und auch wirtschaftlicher sein können. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs) und Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, ForbesLINK.

Komplexitätsfalle
Es wird deutlich, dass es nicht darum geht, noch mehr Möglichkeiten zu schaffen, sondern ein KI-System für eine Organisation passgenau zu etablieren und weiterzuentwickeln. Dabei sind erste Schritte schon zu erkennen: Beispielsweise werden AI-Router vorgeschlagen, die verschiedene Modelle kombinieren – ganz im Sinne eines sehr einfachen Konfigurators. Siehe dazu Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Mit Hilfe eines KI-Konfigurators könnte man sich der Komplexitätsfalle entziehen. Ein Konfigurator in einem definierten Lösungsraum (Fixed Solution Space) ist eben das zentrale Element von Mass Customization and Personalization.

Die Lösung könnte also sein, massenhaft individualisierte KI-Modelle und KI-Agents dezentralisiert für die Allgemeinheit zu schaffen. Am besten natürlich alles auf Open Source Basis – Open Source AI – und für alle in Repositories frei verfügbar. Auch dazu gibt es schon erste Ansätze, die sehr interessant sind. Siehe dazu beispielsweise (Mass) Personalized AI Agents für dezentralisierte KI-Modelle.

Genau diese Überlegungen erinnern – wie oben schon angedeutet – an die Hybride Wettbewerbsstrategie Mass Customization and Personalization. Die Entgrenzung des definierten Lösungsraum (Fixed Solution Space) hat dann weiter zu Open Innovation (Chesbrough und Eric von Hippel) geführt.

Deepfake Total: Audiofakes gratis erkennen – inkl. Trainingsspiel

Screenshot von der Website https://deepfake-total.com/

Durch die fast beliebige Verwendung von Künstlicher Intelligenz wird die Kreativität angeregt und Videos, Bilder und auch Audiodateien neu kombiniert. Dabei achten manche Einzelpersonen oder auch Unternehmen nicht immer so genau auf die Rechte anderer Menschen. Beispielsweise kursieren im Netz Audiodateien von Prominenten, die das gar nicht gesagt haben.

Auch als Privatperson kann es sein, dass die eigene Stimme als Audiodatei in KI-generierten Audiofiles/Podcasts benutzt wird – ohne dass ich es möchte. Die Frage ist nun: Wie kann ich solche Audiofakes erkennen? Das Fraunhofer Institut hat dazu eine Plattform entwickelt:

“Die Plattform Deepfake Total entwickelte Nicolas Müller mit seinem Team als öffentliches Erkennungstool für Audiofakes. Jeder kann dort verdächtige Audiospuren hochladen und von einer KI analysieren lassen. Im Gegensatz zu anderen kommerziellen Erkennungstools auf dem Markt ist die Fraunhofer-Plattform kostenlos – und in Deutschland gehostet. Ihr KI-Modell trainieren die Forschenden sowohl mit öffentlichen als auch selbst erstellten Datensätzen, die Beispiele originaler und gefälschter Audiospuren enthalten” (Fraunhofer-Magazin 2/2025).

Was mir besonders gefällt ist der Ansatz, dass dieses Angebot transparent, kostenlos und in Deutschland gehostet ist. Ein Trainingsspiel – für Audio und Video – führt in die Thematik ein und soll dafür sorgen, dass man selbst anfängt eigene Dateien hochzuladen. Probieren Sie es doch einfach einmal aus.

“Analyze suspicious audio files to detect deepfakes, and automatically share them with the security community” (Text auf der Startseite der Plattform).