Sensor Community: Umweltdaten – Open Data

Screenshot Sensor Community Website

Wir haben uns in der Vergangenheit daran gewöhnt, dass es vereinzelt Messstationen gab, an denen Umweltdaten generiert und oft von Behörden genutzt wurden. In der Zwischenzeit gibt es eine Sensor Community, bei der jeder mitmachen, und Umweltdaten frei zur Verfügung stellen kann – als Open Data.

Wie in der Abbildung zu erkennen ist, gibt es in Europa schon sehr viele, die diesen Ansatz unterstützen, und Messpunkte und Messdaten zur Verfügung stellen. Weltweit gibt es aktuell 12.101 Sensoren in 76 Ländern mit 30.703.440.715 Datenpunkten.

Da die Daten frei zur Verfügung gestellt werden (Open Data) können daraus auch eigene/neue Dienstleistungen oder auch Produkte entwickelt werden. Dieser Innovationsansatz wird von Eric von Hippel als Democratizing Innovation beschrieben. So eine Perspektive auf Innovation ist ganz anders als die übliche, die von Innovationen ausgeht, die Organisationen/Unternehmen generieren.

Siehe dazu auch Von Democratizing Innovation to Free Innovation.

Innovationsprojekte: Überwindung von Barrieren durch Promotoren und Gatekeeper

Innovationen zeichnen sich dadurch aus, dass es sich dabei um etwas Neues handelt. Auf dem Weg zu einer Innovation hat ein entsprechendes Projekt (Innovationsprojekt) Widerstände und Barrieren zu überwinden. In diesem Prozess hat es sich bewährt, Promotoren auszumachen, die helfen, diese Barrieren zu überwinden. Das Promotorenmodell von Witte ist hier eine oft erwähnte Hilfestellung. Zusammen mit der Rolle eines Gatekeepers ergeben sich somit die folgenden Schlüsselrollen mit den jeweils typischen Leistungsbeiträgen.

SchlüsselpersonenTypische Leistungsbeiträge
MachtpromotorÜberwinden von „Barriere des Nicht-Wollens“
– Zieldefinition,
– Ressourcenbereitstellung,
– Schutz vor Opponenten,
– Prozesssteuerung
FachpromotorÜberwinden von „Barriere des Nicht-Könnens“, „Barriere des Nicht-Wissens“
– Ideengenerierung,
– Alternativenentwicklung,
– Konzeptevaluierung,
– Implementierung
ProzesspromotorÜberwinden von „Barriere des Nicht-Dürfens“
– Zusammenführung,
– Vermittlung,
– Konfliktmanagement,
– Prozesssteuerung,
– Koordination
BeziehungspromotorÜberwinden von „Barriere des Nicht-Miteinander-Könnens und Nicht-Miteinander-Wollens“
– Informationsaustausch,
– Finden und Zusammenbringen von Interaktionspartnern,
– Koordination,
– Planung und Steuerung von Austauschprozessen,
– Konfliktmanagement
Gatekeeper– Suchen nach und Sammeln von Informationen,
– Filtern von Informationen zur Aufnahme und Ausgabe,
– Informationsaufnahme und -ausgabe,
– Schutz der Organisation vor Informationsüberfluss und externem Druck
Typische Schlüsselpersonen in Innovationsprojekten (Hochbrügge et al 2017, in projektmanagementaktuell 4/2017, verändert nach Gemünden/Hölzle/Lettl (2006)

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban?

In unsicheren, turbulenten Zeiten kommen plangetriebene Projekte an ihre Grenzen, da sich Anforderungen und Vorgehensweisen (Methoden/Techniken) oft ändern. Das bisher übliche eher langfristige planen über über mehrere Monate, Quartale und Jahre kommt an seine Grenzen.

Ein eher iteratives Vorgehen in eher kürzeren Zyklen bietet sich gerade bei Entwicklungsprojekten und hier besonders bei der Softwareentwicklung an. Das Agile Manifest und das Scrum-Framework sind entsprechende Antworten auf diese Entwicklungen. Im Vergleich zum plangetrieben Vorgehen, schlägt der Scrum-Guide vor, Produkte (Increments) maximal in einem Monat zu entwickeln. Die Praxis zeigt, dass Organisationen sogar zu 14-tägigen Zyklen tendieren.

In Zeiten von Künstlicher Intelligenz (KI) können allerdings gerade Software-Produkte immer schneller entwickelt und als Produkt (Increment) vorgestellt werden. das kann schon in wenigen Tagen, ja in wenigen Minuten erfolgen.

Was bedeutet das für das Scrum-Framework?

Gehen wir von dem Gedanken aus, dass Künstliche Intelligenz in immer schnelleren und kürzeren Zyklen Produkte generieren kann, wird der Scrum-Zyklus eher zu einem permanenten Fluss an Produkten – und somit eher zu einem Vorgehen, das wir aus Kanban kennen.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Projektmanagement: Risikobewertung bei klassischen und agilen Vorgehensmodellen

Vergleich der Projektrisikobewertung klassischer und agiler Methoden (Müller/Hüsselmann (2017), in projektmanagementaktuell 2/2017, in Anlehnung an Komus 2016)

In der Abbildung sehen Sie auf der Y-Achse das Projektrisiko abgebildet, das zu Beginn eines klassischen Projekts relativ hoch ist, und sich dann bei den verschiedenen Zeitpunkten der Risikobewertung reduzieren sollte. Es wird bei der Darstellung deutlich, dass das Projektrisiko zunächst langsam sinkt und dann rapide abnimmt, je mehr alle Projektbeteiligten über das Projekt Wissen. Siehe dazu auch Cone of Uncertainty.

Bei agilen Vorgehen haben wir über die Zeit eine stufenweise Abnahme des Projektrisikos von Beginn an. Durch die iterative Arbeitsweise, z.B. in Sprints, reduziert sich das Projektrisiko in “kleinen Häppchen”, an den verschiedenen Zeitpunkten – beispielsweise durch das Review am Ende eines jeden Sprints. Es wird auch hier deutlich, dass agile Vorgehensweisen Vorteile haben, wenn es um innovative Projekte geht, bei denen oft das Wissen über das Produkt und die Methoden unklar sind.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

GPM: Projektportfolio Sustainability Monitor 2024

Als GPM-Mitglied liegt mir die Studie Projektportfolio Sustainability Monitor 2024 vor. Dabei wurde untersucht, inwieweit die UN Sustainability Development Goals im Projektportfolio deutscher Unternehmen beachtet werden.

Auf der Informationsseite der GPM dazu finden Sie weitere Hinweise zum Aufbau und zur Durchführung der Studie Die wichtigsten Ergebnisse zum Schwerpunkt Nachhaltigkeit im Projektportfolio werden auf der Seiten 51-52 wie folgt zusammengefasst: (ebd.)

(1) Nachhaltigkeitsziele werden zwar im Projektportfolio integriert, jedoch legen nur sehr wenige Unternehmen einen Schwerpunkt auf Projekte mit expliziten Nachhaltigkeitszielen.

(2) Nachhaltigkeit als Kriterium zur Genehmigung und Priorisierung von Projekten zeigt sich heterogen: ein Viertel bis ein Drittel sieht Nachhaltigkeit als entscheidend an, genauso viele jedoch nicht.

(3) Insbesondere bei F&E-/Neuproduktentwicklungsprojekten, Infrastrukturprojekten und Kunden/Auftragsprojekten sind Nachhaltigkeitsziele häufiger explizite Projektziele.

(4) Derzeit scheint besonders in den frühen Phasen der Projektentwicklung Nachhaltigkeit stärker berücksichtigt zu werden, während inaktive Projekte tendenziell weniger Fokus auf Nachhaltigkeit aufweisen. Möglicherweise sind Projekte mit Nachhaltigkeitsbezug vor allem in der jüngeren Vergangenheit initiiert worden. Allerdings wäre auch eine andere Interpretation möglich: Nachhaltigkeit kann aus dem Fokus geraten, wenn im Laufe der Projektumsetzung die klassischen Erfolgsmaßstäbe Zeit, Kosten und Leistungsumfang stärker ins Augenmerk der Projektleitung rücken. Gerade dann wäre jedoch ein Projektportfoliomanagement zielführend, wenn es die kontinuierliche Berücksichtigung aller definierten Kriterien – inklusive Nachhaltigkeit – einfordert.

(5) Die allgemeine Öffentlichkeit sowie die Kunden werden als die zentralen externen Stakeholdergruppen gesehen, die Nachhaltigkeit als Kriterium zur positiven Beurteilung von Projekten heranziehen. Unternehmensintern ist es vor allem die Unternehmensleitung, die das Kriterium Nachhaltigkeit heranzieht.

Es wird deutlich, dass das Thema Nachhaltigkeit in Zukunft noch stärker im Projektportfolio bei der Projektauswahl, der Projektdurchführung und dem Projektabschluss beachtet werden sollte. Siehe dazu auch

Einfache Logik für die Ermittlung einer Projektrangfolge durch Priorisierung.

Mit OktoPus zu mehr Nachhaltigkeit im Projektmanagement.

Was ist eigentlich unter Nachhaltigkeit zu verstehen?

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

    “Innovation” und “Innovationsmanagementsystem” nach ISO-Norm

    Image by Gerd Altmann from Pixabay

    Innovationen sind den Standort Deutschland wichtig – für die gesamte Gesellschaft und für Organisationen. Im Jahr 2019 wurde dazu in der ISO 56002 ein Rahmen für das Innovationsmanagement in Organisationen veröffentlicht. Zusammen mit der übergeordneten ISO 56000 wird auch eine einheitliche Definition von “Innovation” und “Innovationsmanagement” festgelegt:

    Eine Innovation beschreibt hier eine “neue oder veränderte Einheit, die Wert schafft oder neu verteilt” (ISO 56000).

    “Ein Innovationsmanagementsystem ist ein Satz zusammenhängender oder sich gegenseitig beeinflussender Elemente die auf der Schaffung von Wert abzielen. Es bietet einen gemeinsamen Rahmen zum Entwickeln und Bereitstellen von Innovationsfähigkeiten, Beurteilen von Leistung und Erreichen von beabsichtigten Ergebnissen” (ISO 56002:2019), gefunden in Flore/Würdemann (2024), projektmagementaktuell 05/2024).

    In der nationalen und internationalen Zusammenarbeit ist es immer gut, Begriffe zu standardisieren, um die Kommunikation zu vereinfachen. Ich frage mich allerdings, ob die in den letzten Jahrzehnten veröffentlichten Normen zum Innovationsmanagement in Organisationen wirklich dazu beigetragen haben, dass Organisationen innovativer geworden sind. Die Realität sieht m. E. in Deutschland nicht danach aus…. Siehe dazu auch:

    “Innovation”: Definition aus 2018 (Oslo Manual)

    Künstliche Intelligenz im Innovationsprozess von Organisationen.

    Künstliche Intelligenz und Open Innovation.

    Inflation der Innovationspreise?

    Künstliche Intelligenz und Open Innovation

    AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

    Zunächst sollten Sie sich noch einmal klar machen, wie sich Closed Innovation und Open Innovation unterscheiden. Wie so oft, gibt es nicht nur die beiden Pole, sondern ein Innovations-Kontinuum (Roth 2008). Weiterhin finden Sie in dem Beitrag Künstliche Intelligenz im Innovationsprozess von Organisationen Hinweise dazu, welche Vorteile, bzw. Nachteile es geben kann, wenn für jeden Schritt im Innovationsprozess eines der bekannten KI-Modelle wie ChatGPT, Gemeni etc. genutzt wird.

    In diesem Beitrag geht es mir darum aufzuzeigen, wie Künstliche Intelligenz bei Open Innovation genutzt werden kann. Wie der folgenden Tabelle zu entnehmen ist, kann zwischen der Verbesserung von Open Innovation durch KI (OI-Enhancing AI), einer Ermöglichung von Open Innovation durch KI (OI-Enabling AI) und der Ersetzung von Open Innovation durch KI (OI-Peplacing AI) unterschiedenen werden. Die jeweils genannten Beispiele zeigen konkrete Einsatzfelder.

    DescriptionExamples
    OI-Enhancing AIAI that enhances established forms of open innovation by utilizing the advantages of AI complemented with human involvementInnovation search
    Partner search
    Idea evaluation
    Resource utilization
    OI-Enabling AIAI that enables new forms of open innovation, based upon AI’s potential to coordinate and/or generate innovationAI-enabled markets
    AI-enabled open business models
    Federated learning
    OI-Replacing AIAI that replaces or significantly reshapes established forms of open innovationAI ideation
    Synthetic data
    Multi-agent systems
    Quelle: Holgersson  et al. (2024)

    Alle drei Möglichkeiten – mit den jeweils genannten Beispielen – können von einem KI-Modell (z.B. ChatGPT oder Gemeni etc.) der eher kommerziell orientierten Anbieter abgedeckt werden. Dieses Vorgehen kann als One Sizes Fits All bezeichnet werden.

    Eine andere Vorgehensweise wäre, verschiedene spezialisierte Trainingsmodelle (Large Language Models) für die einzelnen Prozessschritte einzusetzen. Ein wesentlicher Vorteil wäre, dass solche LLM viel kleiner und weniger aufwendig wären. Das ist gerade für Kleine und Mittlere Unternehmen (KMU) von Bedeutung.

    Nicht zuletzt kann auch immer mehr leistungsfähige Open Source AI eingesetzt werden. Dabei beziehe ich mich auf die zuletzt veröffentlichte Definition zu Open Source AI. Eine Erkenntnis daraus ist: OpenAI ist kein Open Source AI. Die zuletzt veröffentlichten Modelle wie TEUKEN 7B oder auch Comon Corpus können hier beispielhaft für “wirkliche” Open source AI genannt werden.

    Weiterhin speilen in Zukunft AI Agenten – auch Open Source – eine immer wichtigere Rolle.

    Künstliche Intelligenz im Innovationsprozess von Organisationen

    Quelle: AdobeStock_650993865

    Innovationen sind für eine Gesellschaft, und hier speziell für marktorientierte Organisationen wichtig, um sich an ein verändertes Umfeld anzupassen (inkrementelle Innovationen), bzw. etwas ganz Neues auf den Markt zu bringen (disruptive Innovationen).

    Organisationen können solche Innovationen in einem eher geschlossenen Innovationsprozess (Closed Innovation) oder in einem eher offenen Innovationsprozess (Open Innovation) entwickeln.

    Darüber hinaus können die Innovationen von Menschen (People Driven) oder/und von Technologie (Data Driven) getrieben sein. Aktuell geht es in vielen Diskussionen darum, wie Künstliche Intelligenz (AI: Artificial Intelligence) und die damit verbundenen Trainingsdaten (LLM: Large Language Models) im Innovationsprozess genutzt werden können.

    Im einfachsten Fall würde sich eine Organisation den Innovationsprozess ansehen, und in jedem Prozessschritt ein Standard-KI-Modell wie ChatGpt, Gemini, Bart usw. nutzen. Die folgende Tabelle stellt das grob für einen einfachen Innovationsprozess nach Rogers (2003) dar:

    Opportunity identification and idea generationIdea evaluation and selectionConcept and solution developmentCommercialization launch phase
    e.g. identifying user needs, scouting promising technologies, generating ideas;e.g. idea assessment, evaluatione.g. prototyping, concept testinge.g. marketing, sales, pricing
    ChatGPT, Gemeni, etc.ChatGPT, Gemini, etc.ChatGPT, Gemini, etc.ChatGPT, Gemini, etc.
    Eigene Darstellung

    Dieser Ansatz könnte als One Size fits all interpretiert werden: Eine Standard-KI für alle Prozessschritte.

    Dafür sprechen verschiedene Vorteile:
    – Viele Mitarbeiter haben sich schon privat oder auch beruflich mit solchen Standard-KI-Modelle beschäftigt, wodurch eine relativ einfache Kompetenzentwicklung möglich ist.
    – Die kommerziellen Anbieter treiben AI-Innovationen schnell voran, wodurch es fast “täglich” zu neuen Anwendungsmöglichkeiten kommt.
    – Kommerzielle Anbieter vernetzen KI-Apps mit ihren anderen Systemen, wodurch es zu verbesserten integrierten Lösungen kommt.

    Es gibt allerdings auch erhebliche Nachteile:
    – Möglicherweise werden auch andere Organisationen/Wettbewerber so einen Ansatz wählen, sodass kaum ein grundlegendes Alleinstellungsmerkmal erzielt werden kann.
    – Kritisch ist auch heute noch, ob es sich bei den verwendeten Trainingsdaten (Large Language Models) nicht um Urheberrechtsverletzungen handelt. Etliche Klagen sind anhängig.
    – Weiterhin können die für Innovationen formulierte Prompts und Dateien durchaus auch als Trainingsdaten verwendet werden.
    – Die LLM sind nicht transparent und für alle zugänglich, also sie sind keine Open Source AI, auch wenn das von den kommerziell betriebenen KI-Modellen immer wieder suggeriert wird.
    – Organisationen sind anhängig von den Innovationsschritten der kommerziellen Anbieter.
    – Die Trainingsdatenbanken (Large Language Models) werden immer größer und damit natürlich auch teurer.
    – Nicht zuletzt ist unklar, wie sich die Kosten für die kommerzielle Nutzung der KI-Apps in Zukunft entwickeln werden – eine gerade für kleine und mittlere Unternehmen (KMU) nicht zu unterschätzende Komponente.

    Gerade kleine und mittlere Unternehmen (KMU) sollten die genannten Vorteile und Nachteile abwägen und überlegen, wie sie Künstliche Intelligenz in ihrem Innovationsprozess nutzen wollen.

    In unserem Blog werde ich in der nächsten Zeit weitere Möglichkeiten aufzeigen.

    Henry Chesbrough über die Zukunft von Open Innovation

    Wenn es um Open Innovation geht, wird meistens die Veröffentlichung von Henry Chesbrough aus dem Jahr 2003 genannt: Open Innovation: The New Imperative for Creating and Profiting from Technology.

    Dabei stellt Chesbrough dar, wie sich der bisher geschlossene Innovationsprozess (Closed Innovation) immer mehr öffnet. indem Organisationen für den dazugehörenden Wissensfluss (neue) technologische Möglichkeiten einsetzen (Abbildung). Darüber hinaus hatte Chesbrough bei seiner Veröffentlichung seinen Fokus auf Großunternehmen gelegt, und entsprechende Beispiele beschrieben. Nach mehr als 20 Jahren hat Henry Chesbrough nun einen sehr lesenswerten Artikel veröffentlicht:

    Chesbrogh, H. (2024): Open Innovation: Accomplishments and Prospects for the Next 20 Years, in: California Management Review, Volume 67, Issue 1, November 2024, Pages 164-180 | Link

    Der Beitrag zeichnet die Entwicklungslinien von Open Innovation für Organisationen noch einmal nach, und ordnet diese ein. Ich habe hier absichtlich “für Organisationen” ergänzt, da das Verständnis von Open Innovation nach Chesbrough auf ein offeneres Business Model von Organisationen abzielt.

    Dieser Hinweis ist deshalb wichtig, da es auch eine andere Perspektive auf Open Innovation gibt, und zwar die von Eric von Hippel. Siehe dazu von Hippel, E. (2005): Democratizing Innovation und von Hippel, E. (2017): Free Innovation. Dieser Blick ist eher Bottom-Up gerichtet, da er davon ausgeht, dass jeder Mensch in seinem täglichen Umfeld Möglichkeiten sieht, innovativ zu sein. Mit Hilfe neuer Technologien wird es fast jedem möglich sein, Innovationen zu entwickeln und anzubieten – entweder kommerziell oder frei nutzbar für andere Menschen.

    Abschließend möchte ich Open Innovation auch noch mit den größeren gesellschaftlichen Entwicklungen der Modernisierung in Verbindung bringen. ein Ergebnis von Entgrenzungstendenzen, die sich aus der Reflexiven Modernisierung ergeben haben. Dabei handelt es sich um einen Strukturbruch zwischen einfacher und reflexiver Modernisierung.

    Siehe dazu auch meine verschiedenen Veröffentlichungen zu Open Innovation, beispielsweise

    Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

    Worin unterscheiden sich “Trends” und “Treiber”?

    Image by Buffik from Pixabay

    Wenn es um die Beschreibung des Umfeldes von Organisationen oder Branchen geht, fallen oft die Begriffe “Trends” und/oder “Treiber“. Dabei ist oft nicht ganz klar, worin sich beide Begriffe unterscheiden. Eine gute Erklärung, natürlich mit verschiedenen Quellenangaben, habe ich hier gefunden:

    “Im Vergleich zu Trends sind Treiber lokaler, weniger langlebig und wirken sich direkter auf Geschäftsmodelle, Arbeitsprozesse, Technologien, Beschäftigung sowie auf Beschäftigte und deren Kompetenzen aus (vgl. Proff 2021; Hünniger et al. 2022, S. 4). In der Regel resultieren Treiber aus Trends und können von einzelnen Akteuren und Akteurinnen oder Organisationen bis zu einem gewissen Grad beeinflusst werden. Automatisierung, Elektromobilität, Elektrifizierung, Vernetzung, Industrie 4.0-Anwendungen und Kreislaufwirtschaft werden als wesentliche Treiber der Transformation im Automobilsektor beschrieben (vgl. Kaul et al. 2019; Kempermann et al. 2021; Lichtblau et al. 2021; Herrmann et al. 2023)” (Berger et al. (2024), in Jennewein et al. (Hrsg.) (2024)).

    Natürlich sollte eine Organisation die langfristigen Trends beobachten. Mehr oder weniger beeinflussbar sind allerdings eher Treiber, die direkter in der Organisationsstruktur berücksichtigt werden können.

    Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.