In einer heute komplexen Welt wird gesellschaftlich auf allen Ebenen versucht, den Gemeinsinn oder die Gemeinschaft zu beschwören, obwohl das der Realität nicht entspricht.
In den Unternehmen wird oft die Gemeinschaft oder der Gemeinsinn sogar noch mit weiteren Metaphern – wie z.B. „Familie“ – auf die Spitze getrieben. Der Soziologe Armin Nassehi sieht solche Entwicklungen kritisch:
„Wer auf die Gemeinschaft setzt, muss sagen, wer nicht dazugehört. Appelle ans Wir-Gefühl haben immer auch etwas Ausschließendes. Wenn man in einem Unternehmen von der Belegschaft einen starken Gemeinsinn einfordert, riskiert man, dass sich niemand mehr traut, zu widersprechen. Das ist tödlich für alle Kreativität, die man im Unternehmen dringend braucht. Der ausgerufene Gemeinsinn hat eine kompensatorische Funktion, damit soll ein Versagen zum Beispiel des Managements oder der Politik kaschiert werden“ (Nassehi in brand eins 12/2024).
Daraus leitet sich ab, dass Unternehmen bei der Verwendung der genannten Begriffe vorsichtiger sein sollten, wenn sie Kreativität und Innovation in ihrer Organisation benötigen. Siehe dazu auch
Manchmal kann ich es gar nicht glauben: Die MCP-CE – Konferenzreihe findet in 2026 zum 12. Mal statt. Seit 2004 gibt es alle 2 Jahre die Möglichkeit, sich zu den Themen Customization und Personalization auszutauschen.
Die Idee zu der Konferenzreihe hatte ich 2001 auf der ersten Weltkonferenz MCP2001 in Hong Kong, an der ich teilgenommen habe. Damals haben mir viele gesagt, dass das wohl kaum funktionieren würde. Doch gemeinsam mit vielen Kollegen aus verschiedenen Ländern ist es gelungen, die Konferenzreihe zu etablieren. An dieser Stelle: Herzlichen Dank an alle, die uns unterstützt haben.
In 2026 werden wir uns mit den verschiedenen internationalen Kollegen aus Forschung und Wirtschaft in Ungarn treffen. Vom 16.-19.09.2026 finden in Balatonfüred insgesamt drei Events statt:
Die Konferenz mit spannenden Beiträgen und Diskussionen.
Ein Workshop für Doktoranden, der schon zum 7. Mal durchgeführt wird.
Das 4. Ideen-Forum: Man weiß nie, was sich aus den vielen Ideen, die auf der Konferenz ausgetauscht werden, entsteht…
Sprechen Sie mich bitte an, wenn Sie weitere Informationen zur Konferenz benötigen.
Immer mehr Regionen und Länder stellen fest, dass die Entwicklung der Künstlichen Intelligenz – wie alle Innovationen – mindestens zwei Seiten hat. Es gibt einerseits den Nutzen für Menschen, Unternehmen und Gesellschaften und andererseits auch Schwierigkeiten.
Solche Entwicklungen geben immer Anlass, darüber nachzudenken, ob Künstliche Intelligenz so gesteuert werden kann, dass es nicht nur einzelnen Unternehmen zugute kommt, sondern einer ganzen Gesellschaft.
In der Zwischenzeit gibt es sehr viele nationale und regionale Initiativen, die versuchen, einerseits die Entwicklungen von Künstlicher Intelligenz zu fördern, andererseits aber auch Grenzen zu ziehen, deren Überschreitung zu möglichen gesellschaftlichen Schäden führen können.
Die United Nations (UN) ist für so eine Fragestellung prädestiniert, und hat mit der Veröffentlichung UN /2024): Governing AI For Humanity (PDF) eine gute Basis geschaffen, um ausgewogen über das Thema diskutieren zu können.
Aktuell habe ich den Eindruck, dass die Diskussionen über die Entwicklung und Nutzung Künstlicher Intelligenz von den amerikanischen Tech-Konzernen dominiert werden, die ihre wirtschaftlichen Vorteile sehen, die gesellschaftlich negativen Auswirkungen gerne den jeweiligen Ländern überlassen wollen.
Bei Innovationen sollten wir uns zunächst einmal klar machen, was im Unternehmenskontext darunter zu verstehen ist. Das Oslo Manual schlägt vor, Innovation wie folgt zu interpretieren:
„(…) a new or improved product or process (or combination thereof) that differs significantly from the unit’s previous products or processes and that has been made available to potential users (product) or brought into use by the unit (process)” (Oslo Manual 2018).
Dass Innovation u.a. eine Art Neu-Kombination von Existierendem bedeutet, ist vielen oft nicht so klar (combination thereof). Neue Ideen – und später Innovationen – entstehen oft aus vorhandenen Konzepten. oder Daten.
An dieser Stelle kommen nun die Möglichkeiten der Künstlichen Intelligenz (GenAI oder auch AI Agenten) ins Spiel. Mit KI ist es möglich, fast unendlich viele Neu-Kombinationen zu entwickeln, zu prüfen und umzusetzen. Das können Unternehmen nutzen, um ihre Innovationsprozesse neu zu gestalten, oder auch jeder Einzelne für seine eigenen Neu-Kombinationen im Sinne von Open User Innovation nutzen. Siehe dazu Von Democratizing Innovation zu Free Innovation.
Entscheidend ist für mich, welche KI-Modelle dabei genutzt werden. Sind es die nicht-transparenten Modelle der Tech-Unternehmen, die manchmal sogar die Rechte von einzelnen Personen, Unternehmen oder ganzer Gesellschaften ignorieren, oder nutzen wir KI-Modelle, die frei verfügbar, transparent und für alle nutzbar sind (Open Source AI)?
Innovation ist ein wesentliches Element für den Wohlstand einer Gesellschaft – nicht nur für einzelne Unternehmen. Diese orientieren sich in ihren Strategien oft auf Technik (technikorientiere Innovationsstrategie) und auf Kunden (kundenorientierte Innovationsstrategie). Beide Perspektiven sollten durch ein Denken in Kontexten ergänzt werden.
„Eine kontextorientierte Innovationsstrategie versucht daher, nutzerorientierte Lösungsansätze für die Bewältigung und Entlastung von Alltagskomplexität in innovative Produkte und Dienstleistungen zu übersetzen. (…) Eine kontextorientierte Strategie ist von der Perspektive her langfristig orientiert, verbindet technologisches Wissen mit den jeweiligen soziokulturellen Anwendungskontexten und trägt insofern der rekursiven Beziehung von Innovation und Bedürfnis Rechnung. Dabei zielt eine kontextorientierte Innovationsstrategie letztlich auf Differenzierung am Markt, denn »the essence of strategy is […] choosing to perform activities differently or to perform different activities than rivals« – und damit auf langfristiges Überleben am Markt (Porter 1996, 64)“ Quelle: Burmeister et al. (2006): Innovation im Kontext: Ansätze zu einer offenen Innovationsstrategie, in Drossou (2006).
Gerade in Zeiten von Künstlichen Intelligenz werden oftmals nur die Dimensionen „Technik“ und „Kunde“ thematisiert und zu wenig der gesellschaftliche Kontext von Innovationen mit bedacht. Die ersten beiden Dimensionen sind eher kurzfristig, die kontextorientierte Innovationsstrategie eher langfristig ausgerichtet. Gerade dieser Punkt ist für eine gesellschaftliche Entwicklung wichtig, die alle Menschen mit einbezieht.
Diese Gedanken passen gut zu dem in Japan vorgestellten Ansatz einer Society 5.0.
Der aktuelle Global Innovation Index 2025 zeigt, dass Deutschland im Ranking nicht mehr zu den TOP 10 zählt (Abbildung). Im internationalen Vergleich rutscht Deutschland etwas ab. Im Global Innovation Index 2017 war Deutschland im Vergleich zu 2016 einen Platz nach oben gerutscht, und belegte immerhin Platz 9.
Schon 2010 hatte ich in einem Blogbeitrag etwas zynisch angemerkt, dass wir in Deutschland mehr Innovationspreise als wirkliche Innovationen haben.
Vergleichen wir uns in Deutschland mit anderen Ländern in der EU, oder mit den eigenen Innovations-Kennzahlen der vergangenen Jahre, sieht es dagegen immer noch recht gut aus. Es ist halt immer die Frage, welche Zahlen ich heranziehe, um die Innovationskraft eines Landes zu bewerten. Es ist eben – frei nach Einstein – alles relativ.
Doch was können wir tun, um diese Entwicklung zu korrigieren?
In Zeiten von Künstlicher Intelligenz beispielsweise sollte es darum gehen, die bisher nicht erfüllten Bedürfnisse von Menschen endlich in den Mittelpunkt zu stellen, und geeignete Produkte und Dienstleistungen auf den Markt zu bringen.
“There is still an invisible hand behind supply-side reform. Adam Smith argued that the invisible hand that drives markets is capital, while the invisible hand of supply that drives innovation is demand. Generally speaking, the “inconvenience” in the daily life of the people can be used as the traction of technological development. In the AI technology market, enterprises that see fundamental needs can have a large number of applications for their products” (Wu 2025).
Dennoch ist deutlich zu erkennen, dass es immer mehr Anbieter in allen möglichen Segmenten von Künstlicher Intelligenz – auch bei den Language Models – gibt. Wenn man sich alleine die Vielzahl der Modelle bei Hugging Face ansieht: Heute, am17.09.2025, stehen dort 2,092,823 Modelle zur Auswahl, und es werden jede Minute mehr. Das erinnert mich an die Diskussionen auf den verschiedenen (Welt-) Konferenzen zu Mass Customization and Personalization. Warum?
Large Language Models (LLM):One Size Fits All Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Diese Einschätzung wird natürlich von den Tech-Unternehmen vertreten, die aktuell mit ihren Closed Source Models das große Geschäft machen, und auch für die Zukunft wittern. Die Argumentation ist, dass es nur eine Frage der Zeit ist, bis das jeweilige Large Language Model die noch fehlenden Features bereitstellt – bis hin zur großen Vision AGI: Artificial General Intelligence. Storytelling eben…
Small Language Models (SLM): Variantenvielfalt In der Zwischenzeit wird immer klarer, dass kleine Modelle (SLM) viel ressourcenschonender, in speziellen Bereichen genauer, und auch wirtschaftlicher sein können. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs) und Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, Forbes, LINK.
Komplexitätsfalle Es wird deutlich, dass es nicht darum geht, noch mehr Möglichkeiten zu schaffen, sondern ein KI-System für eine Organisation passgenau zu etablieren und weiterzuentwickeln. Dabei sind erste Schritte schon zu erkennen: Beispielsweise werden AI-Router vorgeschlagen, die verschiedene Modelle kombinieren – ganz im Sinne eines sehr einfachen Konfigurators. Siehe dazu Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.
Mit Hilfe eines KI-Konfigurators könnte man sich der Komplexitätsfalle entziehen. Ein Konfigurator in einem definierten Lösungsraum (Fixed Solution Space) ist eben das zentrale Element von Mass Customization and Personalization.
Die Lösung könnte also sein, massenhaft individualisierte KI-Modelle und KI-Agents dezentralisiert für die Allgemeinheit zu schaffen. Am besten natürlich alles auf Open Source Basis – Open Source AI – und für alle in Repositories frei verfügbar. Auch dazu gibt es schon erste Ansätze, die sehr interessant sind. Siehe dazu beispielsweise (Mass) Personalized AI Agents für dezentralisierte KI-Modelle.
Genau diese Überlegungen erinnern – wie oben schon angedeutet – an die Hybride Wettbewerbsstrategie Mass Customization and Personalization. Die Entgrenzung des definierten Lösungsraum (Fixed Solution Space) hat dann weiter zu Open Innovation (Chesbrough und Eric von Hippel) geführt.
In Organisationen kommt es immer wieder zu der Frage, ob Routineprozesse (Exploration) oder eher Innovationen (Exploitation) in den Fokus organisationaler Entwicklung stehen sollten. In der Zwischenzeit wird deutlich, dass beides in einer Organisation wechselseitig bewältig und entwickelt werden sollten. Diese Ambidextriehatte ich schon einmal in dem Blogbeitrag Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation erläutert.
Es stellt sich natürlich gleich die Frage, wie eine geeignete Strategie gerade für Digitale Innovationen aussehen kann. Forscher vom Fraunhofer Institut Stuttgart und der Universität Stuttgart sind der Frage anhand von Literaturrecherchen und Interviews nachgegangen und haben ihre Erkenntnisse veröffentlicht:
Schrader et al. (2025): Organizing digital innovations. Journal of Open Innovation: Technology, Market, and Complexity 11 (2025) | Link
Ein Ergebnis war, dass organisationale Ambidextrie eine wichtige Voraussetzung für Digitale Innovationen darstellt. Weiterhin haben die Forscher in ihrem Paper ein Framework dargestellt, das einer Organisation hilft, die geeignete Strategie auszuwählen und umzusetzen.
Ergänzend sollte noch erwähnt sein, dass organisationale Ambidextrie auch sehr viel von den Menschen einfordert. Es ist nicht leicht, permanent zwischen den „beiden Welten“ zu pendeln.
In Blogbeiträgen hatte ich schon des Öfteren darüber geschrieben, dass die vielen Innovationsprogramme der Politik (EU, Deutschland, Bundesländer, Landkreise, Städte und Gemeinden) oftmals wenig Innovationen zustande bringen. Wenig bedeutet hier, Innovationen im Vergleich nicht nur zu sich selbst (Beispielsweise: Deutschland 2024 zu 2023), sondern im weltweiten Vergleich.
Was wäre, wenn wir Innovationen stärker Bottom-Up denken und fördern würden? Ich erspare es mir, hier auf die vielen Beispiele hinzuweisen, die Eric von Hippel und Kollegen in der Zwischenzeit zusammengetragen, wissenschaftlich analysiert, und veröffentlicht haben.
Darüber hinaus gibt es auch Initiativen, die als eine art Hybrid verstanden werden können. Gemeint ist, dass eine Organisation (möglichst Non Profit) die Rahmenbedingungen schafft, dass Innovationen Bottom Up entstehen können. Am Beispiel des UNDP, des United Nations Development Program, wird das deutlich. Unter dem Dach der UN (United Nations) hat sich das UNDP Accelerator Lab gegründet, dass weltweit lokale und regionale Innovationen Bottom Up fördert:
„The UNDP Accelerator Labs is the world’s largest and fastest learning network on wicked sustainable development challenges. Co-built as a joint venture with the Federal Ministry for Economic Cooperation and Development of Germany and the Qatar Fund for Development, the Network is composed of 90 Lab teams covering 115 countries and taps into local innovations to create actionable insights and reimagine sustainable development for the 21st century“ (UNDP Website, 22.08.2025).
Anmerkung: An anderer Stelle steht, dass es aktuell 89 Labs sind in 113 Ländern. Sicher kommt es bei den Zahlen immer wieder zu Veränderungen.
Aus den regionalen Aktivitäten können Muster erkannt werden, die zu einer nachhaltigen, und auf Problemlösungen für Menschen ausgerichteten Entwicklung von Innovationen führen können.
Lean Innovation nach Schuh (2011); eigene Darstellung
Der Lean-Gedanke, also Verschwendung zu vermeiden und den Wertstrom zu optimieren, kann in allen Prozessen thematisiert und integriert werden. Dazu hatte ich in 2013 schon einmal einen Blogbeitrag geschrieben: Lean Innovation – Wie passt das zusammen?
Auf unserer Asienreise waren wir u.a. vom 15.04.-25.04.2025 in Tokyo, Kyoto und Osaka (mit Expo 2025). Dabei ist mir der Lean-Gedanke in allen Bereichen des gesellschaftlichen Lebens begegnet. Eben nicht nur theoretisch, sondern sehr praktisch – inkl. der Ausrichtung am Kundennutzen – sehr beeindruckend.
Es wundert daher nicht, dass der Lean-Gedanke auch im Projektmanagement, oder auch im Innovationsmanagement berücksichtigt werden kann. Prof. Schuh hat für Lean Innovationauf dieser Website 12 Schritte (Abbildung) ausführlich beschrieben.
Es ist wichtig, da alle wirtschaftlichen Bereiche stärker auf die Produktivität achten müssen – gerade in Zeiten vieler neuer technischen Möglichkeiten.
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.