Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:

(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?

Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:

“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler (Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).

Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.

(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?

Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.

Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner  2002:46-47).

Insofern wäre dann der Vergliche zwischen Künstlicher Intelligenz und Multiplen Intelligenzen ein Kategorienfehler. Siehe dazu auch Künstliche Intelligenz – ein Kategorienfehler? Darin wird auch auf die sozialen und emotionalen Dimensionen bei Menschen hingewiesen.

(3) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlichen Kompetenzen ein Kategorienfehler?

Wenn wir Künstliche Intelligenz mit Menschlichen Kompetenzen vergleichen, vergleichen wir auch indirekt die beiden Konstrukte “Intelligenz” und “Kompetenz. In dem Beitrag Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen? finden Sie dazu ausführlichere Anmerkungen.

Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?

Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.

“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).

Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Digitale Souveränität: Souveränitätsscore für KI Systeme

Souveränitätsscore für KI-Systeme – Ausschnitt (Quelle: https://digital-sovereignty.net/score/score-ai)

In der Zwischenzeit sind sehr viele KI-Modelle (AI Model) verfügbar, sodass es manchmal zu etwas unscharfen Beschreibungen kommt. Eine erste Unterscheidung ist, Closed Source AI, Open Weights AI und Open Source AI nicht zu verwechseln. In dem Beitrag AI Kontinuum wird das erläutert.

“OpenAI” wurde beispielsweise als Muttergesellschaft von ChatGPT 2015 als gemeinnützige Organisation gegründet, seit 2019 ist “OpenAI” gewinnorientiert und wird von Microsoft dominiert. Durch geschicktes Marketing wird oftmals suggeriert, dass von kommerziellen Anbietern bereitgestellte Modelle “Open Source AI” sind.

Dabei stellt sich natürlich gleich die Frage, nach einer entsprechenden Definition, die es auch seit 2024 gibt: Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht.

Wenn Sie sich also für AI Modelle interessieren, können Sie dieses Modell gegenüber den in der Definition genannten Kriterien prüfen.

Weiterhin können Sie den Souveränitätsscore für KI Systeme von Prof. Wehner nutzen (Abbildung). Schauen Sie sich auf der Website auch noch weiter um – es lohnt sich.

Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung

High-level software development life cycle (McKinsey (2024): The gen AI skills revolution: Rethinking your talent strategy)

Wie in dem Beitrag von McKinsey (2024) ausführlich erläutert wird, beeinflusst Künstliche Intelligenz (GenAI) alle Schritte/Phasen der Softwareentwicklung. Drüber hinaus werden in Zukunft immer mehr KI-Agenten einzelne Tasks eigenständig übernehmen, oder sogar über Multi-Agenten-Systeme ganze Entwicklungsschritte.

Die Softwareentwicklung hat dazu beigetragen, dass Anwendungen der Künstlichen Intelligenz heute überhaupt möglich sind. Es kann allerdings sein, dass Künstliche Intelligenz viele Softwareentwickler und deren Unternehmen überflüssig macht.

Möglicherweise ist in Zukunft auch jeder Einzelne Mensch in der Lage, sich mit Künstlicher Intelligenz kleine erste Programme schreiben zu lassen – ohne dass Programmierkenntnisse erforderlich sind. Ganz im Sinne von Low Code, No Code und Open Source.

So eine Entwicklung kann als Reflexive Innovation bezeichnet werden: “Die Revolution frisst ihre eigenen Kinder” (Quelle). Siehe dazu ausführlicher Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe.

Künstliche Intelligenz und Kompetenz

Wenn ein neues Thema aufkommt, geht es dabei oft auch darum, entsprechende Kompetenzen zu entwickeln. Als beispielsweise immer klarer wurde, dass die Digitalisierung alle Bereiche unseres Lebens beeinflussen wird, wurde schnell von Digitalen Kompetenzen gesprochen und geschrieben, die alle und jeder entwickeln sollte/müsste. In dem Beitrag “Digitale Kompetenzen” oder besser “Kompetenzen in digitalen Kontexten”? habe ich erläutert, warum es in diesem Fall besser ist, von Kompetenzen in digitalen Kontexten zu sprechen. Solche Bindestrich-Kompetenzen gibt es in sehr vielen Facetten – nun auch bei dem Thema Künstliche Intelligenz.

Auch hier wird schnell von KI-Kompetenzen gesprochen, ohne zu reflektieren, dass es grundsätzlich Kompetenzen sind, die im Kontext der Künstlichen Intelligenz entwickelt (nicht vermittelt!) werden sollen. In diesem Zusammenhang verweise ich gerne darauf, Kompetenzen als Selbstorganisationsdispositionen zu sehen. Diese Perspektive geht auf Erpenbeck und Heyse zurück:

“Die Handlungskompetenztheorie von Erpenbeck und Heyse (Erpenbeck 2012, Erpenbeck & Sauter 2015, Heyse & Erpenbeck 2007) wiederum betont die Bedeutung von selbstorganisiertem und werteorientiertem Handeln in komplexen Situationen, was sich auch auf den Bereich der KI übertragen lässt. Personen mit hoher Handlungskompetenz
sind dann in der Lage, Handlungen zu entwickeln, um erfolgreich handlungsfähig zu sein und zu bleiben” (Ehler et al. 2025).

Siehe dazu auch

Hybridisierung von Kompetenzen: Kompetenzmanagement in Zeiten von Künstlicher Intelligenz

Persönlichkeitseigenschaften, -fähigkeiten und Kompetenzen

Projektmanagement: KI-Unterstützung der ICB 4.0 Kompetenzen

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Quelle: https://alia.gob.es/

Es ist schon erstaunlich, wie unreflektiert viele Privatpersonen, Organisationen oder auch Öffentliche Verwaltungen Künstliche Intelligenz (AI / GenAI) von den bekannten Tech-Unternehmen nutzen. Natürlich sind diese Closed Source AI Models, oder auch Open Weights Models, sehr innovativ und treiben durch immer mehr neue Funktionen die Anwender vor sich her. Viele kommen dabei gar nicht richtig zum Nachdenken. Möglicherweise ist das ja auch so gewollt….

Die Notwendigkeit, Open Source AI zu nutzen wird gerade im Hinblick auf die europäischen Rahmenbedingungen immer wichtiger. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Hinzu kommt noch, dass es immer mehr länderspezifische KI-Modelle gibt, die den sprachlichen Kontext, und damit die sprachlichen Besonderheiten besser abbilden. Die wichtigsten LLM (Closed Source AI) sind mit englischsprachigen Daten trainiert und übersetzen dann in die jeweilige Sprache. Das klappt zwar recht gut, doch fehlt es gerade bei Innovationen, oder kulturellen regionalen Besonderheiten, an der genauen Passung.

Die spanische Verwaltung hat nun die Initiative ALIA gestartet, die 100% öffentlich finanziert ist, und eine KI-Ressource für alle Spanisch sprechenden Menschen sein soll. Dazu gehören auch frei verfügbare AI Modelle (LLM) (…)

“(…) to generate ethical and trustworthy AI standards, with open-source and transparent models, guaranteeing the protection of fundamental rights, the protection of intellectual property rights and the protection of personal data, and developing a  framework of best practices in this field (Vasquez in OSOR 2025).

“ALIA es una iniciativa pionera en la Unión Europea que busca proporcionar una infraestructura pública de recursos de IA, como modelos de lenguaje abiertos y transparentes, para fomentar el impulso del castellano y lenguas cooficiales -catalán y valenciano, euskera y gallego- en el desarrollo y despliegue de la IA en el mundo” (ALIA Website)

Es freut mich zu sehen, wie die einzelnen europäischen Regionen oder Länder Initiativen starten, die die europäischen, oder auch regionalen Besonderheiten berücksichtigen – und das alles auf Open Source Basis. Siehe dazu auch

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data.

Das Kontinuum zwischen Closed Source AI und Open Source AI

In dem Beitrag AI: Was ist der Unterschied zwischen Open Source und Open Weights Models? hatte ich schon einmal darauf hingewiesen, dass es zwischen den Polen Closed Source AI und Open Source AI ein Kontinuum weiterer Möglichkeiten gibt.

Die Grafik illustriert den Zusammenhang noch einmal anhand der zwei Dimensionen Degree of Openness und Completeness. Man sieht hier deutlich, dass der Firmenname OpenAI dazu führen kann, z.B. ChatGPT von OpenAI als Open Source AI zu sehen, obwohl es komplett intransparent ist und somit in die Kategorie Closed Source AI gehört. Die Open Weights Models liegen irgendwo zwischen den beiden Polen und machen es nicht einfacher, wirkliche Open Source AI zu bestimmen.

Eine erste Entscheidungshilfe kann die Definition zu Open Source AI sein, die seit 2024 vorliegt. Anhand der (recht wenigen) Kriterien kann man schon eine erste Bewertung der Modelle vornehmen.

In der Zwischenzeit hat sich auch die Wissenschaft dem Problem angenommen und erste Frameworks veröffentlicht. Ein erstes Beispiel dafür ist hier zu finden:

White et al. (2024): The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence | Quelle).

Open Source KI-Agenten: Update auf Langflow 1.4

Eigener Screenshot

Die Abhängigkeit von amerikanischen oder chinesichen KI-Anbietern ist zu einem großen Problem in Europa geworden, da wir in Europa einen anderen Ansatz im Umgang mit Künstlicher Intelligenz haben. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Um die eigene Digitale Souveränität wiederzuerlangen, setzen immer mehr Organisationen auf Open Source Anwendungen. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Wir haben beispielsweise im ersten Schritt Nextcloud als Alternative zu den bekannten Microsoft-Produkten auf einem eigenen Server installiert, und weitere Bausteine wie Open Project, Moodle usw. integriert. In Nextcloud ist ein Assistent integriert, über den wir auch KI-Modelle lokal (LocalAI) auf unserem Server nutzen können. Siehe dazu auch LocalAI: Aktuell können wir aus 713 Modellen auswählen.

Eine professionelle Möglichkeit, KI-Agenten zu nutzen – also Prozesse mit internen/externen Daten und KI-Modellen zu kombinieren – haben wir mit Langflow (Open Source) auf unserem Server installiert. Siehe dazu AI Agents: Langflow (Open Source) auf unserem Server installiert. Mit der neuen Version 1.4 stehen uns nun stark erweiterte Funktionen zur Verfügung. In dem Beitrag Langflow 1.4: Organize Workflows + Connect with MCP werden diese ausführlich erläutert:

This release introduces Projects, a new way to organize, modularize, and expose your AI workflows.

Beyond organization, Projects are now also MCP servers! MCP (Model Context Protocol) is an open standard from Anthropic designed to establish seamless interoperability between LLM applications and external tools, APIs, or data sources.

In der nächsten Zeit werden wir verschiedene Anwendungen für KI-Agenten testen und unsere Erafhrungen hier mitteilen.

Von der Smart City zur AI City

Image by xegxef from Pixabay

Das Konzept einer Smart City wird in vielen Regionen der Welt schon umgesetzt: “In einer Smart City wird intelligente Informations- und Kommunikationstechnologie (IKT) verwendet, um Teilhabe und Lebensqualität zu erhöhen und eine ökonomisch, ökologisch und sozial nachhaltige Kommune oder Region zu schaffen” (BSI). Der Schwerpunkt liegt somit auf der Verwendung von IKT.

Nun gibt es mit Hilfe der Künstlichen Intelligenz (AI: Artificial Intelligence) ganz neue Möglichkeiten, die über das Konzept einer Smart City hinausgehen. Der folgende Text stammt aus einem Buch des führenden Wissenschaftlers, der sich mit dem Konzept einer “AI City” befasst:

“The essence of an AI city is empowerment. In the definition of “AI city,” the city obtains strong empowerment in urban organization and civilization development with the help of AI. The past process of urban intelligence emphasized information networking and promoted the comprehensive construction of smart cities. But the AI city is different: the city begins to learn and, after learning, better empowers life, production, and ecology through the learning process in order to continuously improve the energy level. The data of the daily operation of the city has become the different raw materials of AI technology, once data integration is fully achieved— spanning macro-level aspects such as society, economy, environment, and transportation, down to micro-level aspects such as individual and group activities—the overall functioning of the city will significantly improve. It is not the simple general smart city, but the intelligence that can learn. In the AI 2.0 era, with the break-through of the five key technologies of big data intelligence, swarm intelligence, autonomous unmanned systems, cross-media intelligence, and hybrid enhanced intelligence, the ability of AI city learning, problem solving, and empowerment has been greatly improved, moreover, numerous patterns and insights can be discovered within massive datasets. Therefore, the city began to iterate, and the urban agglomeration began to interact deeply. After learning, AI can formulate city rules according to a reasonable ideal vision. And when this formulation becomes the goal of deduction, the city can constantly predict, evolve, and revise itself” (Wu 2025: The AI City).

Die neuen Chancen der Künstlichen Intelligenz in Städten oder Ballungszentren, für die Menschen und deren Probleme zu nutzen, sollte dabei auf Transparenz bei den verwendeten KI-Anwendungen basieren. Diese Bedingung erfüllen die meisten Closed Source Modelle der Tech-Giganten aktuell nicht. Wenn es wirklich um die Menschen geht, und nicht primär im wirtschaftliche Interessen (USA) oder parteipolitische Interessen (China), so kommen für mich hier nur Open Source KI-Modelle und – Anwendungen infrage.

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Aktuell überschlagen sich die Meldungen darüber, wie die Zukunft von Künstlicher Intelligenz (AI: Artificial Intelligence) wohl aussehen wird. Die Dynamik ist in diesem Feld allerdings so groß, dass es unmöglich ist, genauere Voraussagen zu machen.

Dennoch glauben einige, dass ein Modell, wie z.B. ChatGPT, Gemini usw. mit ihren vielfältigen Möglichkeiten, die Lösung für alles sein wird. Grundannahme ist hier also One Size fits all.

Demgegenüber steht der Gedanke, dass es viele unabhängig und vernetzt nutzbare KI-Anwendungen geben wird, die eher den Anforderungen der Menschen und Organisationen entsprechen. Weiterhin sollten diese KI-Apps Open Source sein, also offen und transparent. Dazu habe ich den folgenden aktuellen Text gefunden:

“The future of AI is not one amazing model to do everything for everyone (you will hear us tell you time and time again in this book: one model will not rule them all). AI’s future will not just be multimodal (seeing, hearing, writing, and so on); it will also most certainly be multimodel (in the same way cloud became hybrid). AI needs to be democratized—and that can only happen if we collectively leverage the energy and the transparency of open source and open science—this will give everyone a voice in what AI is, what it does, how it’s used, and how it impacts society. It will ensure that the advancements in AI are not driven by the privileged few, but empowered by the many” (Thomas, R.; Zikopoulos, P.; Soule, K. 2025).

Es wird hier noch einmal deutlich herausgestellt, dass Künstliche Intelligenz demokratisiert werden muss. Das wiederum kann durch Open Source und Open Science ermöglicht werden. Siehe dazu auch

Digitale Souveränität: Europa, USA und China im Vergleich

Open Source AI: Nun gibt es endlich eine Definition – und damit interessante Erkenntnisse zu OpenAI und Co.

RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Von Democratizing Innovation zu Free Innovation

In Europa gibt es immer mehr länderspezifische LLM (Large Language Models) – wie z.B. AI Sweden

Screenshot von der Website AI Sweden

In dem Blogbeitrag Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data hatte ich schon erläutert, wie wichtig es ist, dass sich Organisationen und auch Privatpersonen nicht nur an den bekannten AI-Modellen der Tech-Giganten orientieren. Ein wichtiges Kriterien sind die dort oftmals hinterlegten Daten, die natürlich zum überwiegenden Teil in Englisch (oder Chinesisch) vorliegen.

In Europa haben wir gegenüber China und den USA in der Zwischenzeit ein eigenes Verständnis von der gesellschaftlichen Nutzung der Künstlichen Intelligenz entwickelt (Blogbeitrag). Dabei spielen die technologische Unabhängigkeit (Digitale Souveränität) und die europäische Kultur wichtige Rollen.

Die jeweiligen europäischen Kulturen drücken sich in den verschiedenen Sprachen aus, die dann auch möglichst Bestandteil der in den KI-Modellen genutzten Trainingsdatenbanken (LLM) sein sollten – damit meine ich nicht die Übersetzung von englischsprachigen Texten in die jeweilige Landessprache.

Ein Beispiel für so eine Entwicklung ist AI SWEDEN mit dem veröffentlichten GPT-SW3 (siehe Abbildung). Das LLM ist im Sinne der Open Source Philosophie (FOSS: Free Open Source Software) transparent und von jedem nutzbar – ohne Einschränkungen.

“GPT-SW3 is the first truly large-scale generative language model for the Swedish language. Based on the same technical principles as the much-discussed GPT-4, GPT-SW3 will help Swedish organizations build language applications never before possible” (Source).

Für schwedisch sprechende Organisationen – oder auch Privatpersonen – bieten sich hier Möglichkeiten, aus den hinterlegten schwedischen Trainingsdaten den kulturellen Kontext entsprechend Anwendungen zu entwickeln. Verfügbar ist das Modell bei Huggingface.