KI-Beiträge zur Fachkräftesicherung (Schmidt, C. M., ; Stich, A.; Suchy, O. et al. (2024))
Der Einsatz von Künstlicher Intelligenz (KI) ist – wie bei neuen Technologien immer – ambivalent. Es kommt darauf an, Künstliche Intelligenz (KI) zum Wohle von Gesellschaften zu nutzen und nicht nur für die Geschäftsmodelle einiger großer Unternehmen.
Automatisierung und KI-basierte Assistenz: Die KI-basierte Automatisierung von Tätigkeiten kann den künftigen Bedarf an Fachkräften zum Teil mindern.
Integration in den Arbeitsmarkt: Das Reservoir an potenziellen Beschäftigten muss noch besser genutzt werden, um den konkreten Bedarf an Fachkräften zu erfüllen, und mit passenden Rahmenbedingungen in die Lage versetzt werden, am Arbeitsmarkt zu partizipieren.
Wissenstransfer in die Zukunft: KI kann beim Up-Skilling von Beschäftigten unterstützen. Wichtige Elemente können individualisierte Weiterbildungspläne, KI-basierter Wissenstransfer sowie lern- und erfahrungsförderliche Arbeitsumgebungen (mit und durch KI) sein.
Den Autoren ist selbstverständlich klar, dass Künstliche Intelligenz (KI) nicht alleine dafür sorgen kann, die anstehenden Veränderungen bei den Fachkräften abzufangen, dennoch kann Künstliche Intelligenz (KI) ein wichtiger Baustein sein.
Der Umgang mit Wissen wird heutzutage stark mit den neuen technologischen Möglichkeiten, wie der Künstlichen Intelligenz in Verbindung gebracht. Dabei spielen wissensbasierte Systeme als Teilgebiet der Künstlichen Intelligenz eine zentrale Rolle. Doch was macht so ein wissensbasiertes System aus? Dazu habe ich in einem aktuellen Glossar folgendes gefunden:
“Der Wesenskern wissensbasierter Systeme ist, dass sie eine explizite Repräsentation von Wissen besitzen, und dieses Wissen maßgeblich für das Verhalten des Systems ist. Dies wurde etwa im Jahr 1982 als sogenannte KR Hypothese (engl. knowlegde representation hypothesis) von Brian Smith formuliert (Smith 1982). Demnach beinhaltet ein (intelligentes) wissensbasiertes System eine Komponente, die das Wissen des Systems repräsentiert und Komponenten, in denen dieses Wissen das Verhalten des Systems maßgeblich beeinflusst. Wissensbasierte Systeme stellen ein Teilgebiet der Künstlichen Intelligenz dar. Eine frühe, aber gute Darstellung von wissensbasierten Systemen findet sich in (Davis 1986). Eine aktuelle Übersicht über Methoden und Systeme geben (Beierle und Kern-Isberner 2019). Einer der Vorzüge wissensbasierter Systeme ist, dass eine einfache Übertragung eines Systems auf einen neuen Anwendungsfall oder eine neue Domäne möglich ist. Dazu muss lediglich das Wissen im alten System durch das Wissen der neuen Domäne ausgetauscht werden. Die restlichen Systemkomponenten können unverändert bleiben. Außerdem kann durch die explizite Repräsentation des Wissens oft einfacher eine Form der Erklärbarkeit hergestellt werden (Meske et al. 2022). Die ist auch angesichts der Datenschutzgrundverordnung (Goodman und Flaxman 2017) und der KI-Regulierung der EU von zunehmender Bedeutung” (Richter et al. (2024): Glossar Künstliche Intelligenz für die interdisziplinär vernetzte Arbeitsforschung).
Etwas stutzig macht mich hier, dass es bei wissensbasierten Systemen so einfach möglich sein soll, Wissen auf eine andere Domäne (auf einen anderen Kontext) zu übertragen. Wenn man allerdings Wissen auf explizites Wissen reduziert, wird dieser Umstand klarer, denn in diesem Fall sind wissensbasierte Systeme im Kern Softwaresysteme, die mit expliziten Wissen umgehen (Quelle).
Die Vielzahl von Projekten wird in Einzelprojekte, Programme und Portfolios strukturiert. Als Dienstleister für Projektmanagement hat sich das Projektmanagement-Office (PMO) in vielen Organisationen als Kompetenzzentrum etabliert. Dabei kann das PMO unterschiedliche Aufgaben übernehmen. Mit der immer stärkeren Nutzung von Künstlicher Intelligenz im Projektmanagement kommt dem Projektmanagement-Office (PMO) eine Vielzahl an neuen Aufgaben zu.
Zu den neuen Aufgaben des Projektmanagement Offices gehören unter anderem – Die Beobachtung der technologischen Entwicklung von KI-Systemen im Allgemeinen. – Die kontinuierliche Evaluierung des sinnvollen Einsatzes von KI im Projektmanagement. – Das Testen und Beschaffen entsprechender Systeme. – Die Anpassung oder das Training von KI-Komponenten auf Basis vorhandener Prozesse, Daten vergangener Projekte und Lessons Learned. – Die Integration von KI-Komponenten an relevanten Stellen im Projektmanagement, wo sie Mehrwert bieten. – Die Schulung der Stakeholder, angefangen von Projektteammitgliedern bis hin zur Führungsebene. – Die Initiierung von Changeprozessen, die durch die Einführung von KI in Projektmanagementaufgaben und -Prozesse erforderlich werden. – Die kritische Überwachung der Arbeitsweise von KI-Systemen hinsichtlich Risiken, Voreingenommenheit (Bias) und potenzieller blinder Flecken. – Die Reflexion über die Auswirkungen solcher Systeme auf die Aufgabenbereiche des PMO.
Quelle: Ordner, G. (2024) in Anlehnung an Ordner/Stuhr (2024). In: Bernert et al. (2024): KI in der Projektwirtschaft.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.
Racine, J. (2006): Projektmanagement ist Verhandlungsmanagement, projektmanagementaktuell 3/2006
Als Projektleitung möchte man es allen Beteiligten/Stakeholdern recht machen. Die Situation kann mit einem Bild veranschaulicht werden: einem Projektmanagement-Sandwich (Abbildung). Dieses “Orchestrieren” verschiedener Gesichtspunkte/Perspektiven auf und in einem Projekt ist oft eine Herkulesaufgabe und fordert Projektverantwortliche über die reine Fach- und Methodenkompetenz heraus.
“Vereinfacht dargestellt, führen Projekte zu Interaktionen zwischen drei Akteuren bzw. Gruppen von Akteuren: den Auftraggebenden, den Auftragausführenden und der Projektleitung in der Mitte (Abbildung). Auch wenn sie alle das Projektziel unterstützen (wollen), haben sie unterschiedliche Motivationen und nehmen unterschiedliche Perspektiven ein. In der Regel leben Auftraggebende und -ausführende in völlig unterschiedlichen Welten. Aus diesem Grund haben die unmittelbaren Sorgen der einen mit denjenigen der anderen oft wenig oder überhaupt nichts zu tun. Der Projektleitung kommt damit eine Schnittstellen- und Brückenbaufunktion zwischen diesen zwei Gruppen zu” (Racine 2006).
Diese notwendigen vielen sozialen Interaktionen führen auch zu einer sozialen Komplexität in Projekten, die es für Projektleitungen zu bewältigen gilt. Neben den fachlichen und methodischen Kompetenzen verschiebt sich der Fokus – gerade in Zeiten von Künstlicher Intelligenz – mehr zu persönlichen und sozialen Kompetenzen von Projektmanagern.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.
Der Einsatz von Künstlicher Intelligenz im Projektmanagement kann an vielen Stellen erfolgen. In dem Blogbeitrag von Dave Garret Using AI Tools to Make Meeting Minutes Magic! (PMI-Blog vom 11.01.2024) wird empfohlen, Sitzungsprotokolle (Meeting Minutes) für den Einstieg zur Nutzung von KI zu nutzen.
Der Autor hat zur Erläuterung in einer Abbildung zwei Achsen gegenüber gestellt. Y-Achse: Komplexität des Tasks von niedrig bis hoch, X-Achse: Wer bearbeitet den Task (Maschine oder Mensch)?
Die eingetragenen Tasks zeigen, dass es in der Abbildung ein Kontinuum von Möglichkeiten gibt. Es geht wie so oft nicht um ein “Entweder Maschine (KI) oder Mensch”, sondern um ein sinnvolles “sowohl-as-auch”.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.
Künstliche Intelligenz (KI) ist in unserem Alltag nicht mehr wegzudenken. Es vergeht kein Tag, an dem nicht von neuen, beeindruckenden Möglichkeiten berichtet wird. Große Technologie-Konzerne, Beratungsfirmen usw. zeigen oft nur die eine, positive Seite von Künstlicher Intelligenz. Es ist daher gut, dass das Bundesamt für Sicherheit in der Informationstechnik (BSI) den LeitfadenGenerative KI-Modelle (PDF) herausgebracht hat, in dem es um die Chancen und Risiken für Industrie und Behörden geht. Am Ende werden die wichtigsten Punkte für eine systematische Risikoanalyse zusammengefasst (S. 3.-31):
Quelle: Holtel, S. (2024): The Impact of ChatGPT on the Consultancy Value Chain. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.
Berater (Consultant) haben oft einen mehr oder weniger stark vorgegebenen Prozess für die jeweiligen Problemlösungen (Value Chain). Dieser ist in der Abbildung auf der X-Achse dargestellt: problem analysis – solution quest – experimental implementation – evaluation & refinement – external value.
Wie weiter zu erkennen ist, ist der Grad der Unsicherheit (degree of uncertainty) am Prozessanfang sehr groß (Y-Achse). Mit der Zeit, und mit dem jeweils generierten neuen Wissen, reduziert sich diese Unsicherheit, sodass eine Art Kegel entsteht (cone of uncertainty).
Die wissensebene zeigt weiterhin, dass implizites Wissen und explizites Wissen im Prozess integriert werden müssen. Die Zahlen (1), (2) und (3) verweisen darauf, dass an diesen Stellen Künstliche Intelligenz eingesetzt werden kann , was durch das ChatGPT-Symbol illustriert wurde.
Es zeigt sich auch hier, dass es zu einer angemessenen Kombination von Künstlicher Intelligenz und Menschlicher Intelligenz kommen sollte.
Stellen Sie doch auch einmal Ihren Ablauf zu Problemlösungen dar und überlegen Sie, an welchen Stellen Sie Künstliche Intelligenz einsetzen können.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.
Bei Veränderungsprojekten (Change Projekten) geht es neben den rationalen Gründen auch um die mit den Veränderungen verbundenen Ängste von Mitarbeitern in Organisationen. Aktuell können beispielsweise der immer stärkere Einsatz von Künstlicher Intelligenz zu solchen Ängsten führen.
Der Organisationswissenschaftler Schein (2004) hat dazu neben der Existenzangst auch die Lernangst thematisiert. Da die Existenzangst fast (!) selbsterklärend ist, möchte ich in diesem Blogbeitrag eher auf die angesprochene Lernangst eingehen. Dazu habe ich folgendes gefunden:
“Beim Lernen werden Ängste wiederum sowohl durch den nötigen Erwerb neuer Skills oder Wissensbereiche als auch durch das ebenso notwendige Verlernen des Alten wachgerufen. Etwa Ängste
> vor vorübergehender oder dauerhafter Inkompetenz: „Ich kann das einfach nicht!“,
> aufgrund der Inkompetenz Bestrafungen oder zumindest Benachteiligungen erwarten zu müssen: „Wenn ich das nicht schaffe, verliere ich meine Position!“,
> einen persönlichen Identitätsverlust zu erleiden: „Ich war mein Leben lang Entwicklungsspezialist, wieso muss ich plötzlich auch analysieren oder testen?“,
> nicht mehr Mitglied einer bestimmten Gruppe oder Community zu sein: „Was, wenn ich in meinem Spezialgebiet plötzlich den Anschluss an meine Kollegen verliere?“”
(Leopold/Kaltenecker 2018:135).
Aus diesen Anmerkungen zur Lernangst in Veränderungsprojekten leitet sich ab, dass eine Organisationen über das Lernen ihrer Mitarbeiter, von Teams, der gesamten Organisation und in Netzwerken Bescheid wissen sollte. Das ist allerdings in vielen Organisationen nicht der Fall. Oft ist bekannt, WAS gelernt wurde (Zertifikatsinhalte usw.), allerdings nicht WIE gelernt wurde. Führungskräfte sollten sich hier einmal bei der Erwachsenenbildung umsehen, deren Schwerpunkt die “Transformation von Deutungsmustern” ist.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.
Wenn es um die neuen Arbeitsformen geht, wird das oft mit Arbeit 1.0 bis Arbeit 4.0 beschrieben. Der Fokus liegt dabei auf der Arbeit 4.0, obwohl es in der Gesellschaft, und damit auch in Organisationen, häufig mehrere der genannten Arbeitsformen gibt – also einen Mix von Arbeit 1.0, Arbeit 2.0, Arbeit 3.0 und Arbeit 4.0.
Dennoch ist aufgrund des veränderten Umfelds klar, dass der Anteil von Arbeit 4.0 zunimmt. Bei dieser Arbeitsform geht es um eine neuartige Form der Kollaboration, also der Zusammenarbeit, die durch neue technologische Möglichkeiten entsteht, ja getrieben wird. Technologie ist also ein Enabler (Befähiger), der auch zu mehr Raum für Kreativität führen kann. Dazu habe ich folgenden Text gefunden:
Der schwierige Teil beim neuen Arbeiten liegt weder in der Ausrufung neuer Paradigmen noch in der Qualifikation, neue Tools bedienen zu können. Natürlich braucht es beides. Aber erst danach wird es richtig spannend (…). Es sind die Folgen, die sich aus den neuen technischen Möglichkeiten ergeben (…). Dafür entsteht Raum für mehr Kreativität, mehr Synergie und mehr Effizienz. Kurz gesagt: Wir können mehr Energie in „die eigentliche Arbeit“ stecken” (Muuß-Merholz, J. (2024): Pre-empathische Zusammenarbeit als Future Skill. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).
Durch den Einsatz von moderner Technologie (inkl. Künstlicher Intelligenz), können Routineprozesse automatisiert und die Kollaboration auf allen Ebenen verbessert/intensiviert werden. Das schafft Freiräume für mehr Kreativität und damit möglicherweise auch zu mehr Innovationen. Diese Chancen “für die eigentliche Arbeit” sollten – bei aller Kritik an den neuen Technologien – erkannt und genutzt werden. Siehe dazu auch New Work im Projektmanagement: auf den Ebenen people, Places und Tools.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Denken ist ja schon per se eine gute Sache, doch kann Denken auch eher selbst-bestätigend sein, da wir gar nicht nach alternativen Informationen suchen, und uns möglicherweise nur mit Personen umgeben, die das gleiche Denken. Es ist ja auch nicht angenehm zu erfahren, dass es auch andere Perspektiven auf ein Thema gibt. Daraus dann in angemessener Form eine Synthese zu bilden, ist eines der vielen Merkmale des kritischen Denkens. Schauen wir uns einmal an, was darunter genauer verstanden wird:
“Kritisches Denken wird beschrieben als „die Fähigkeit, Informationen und Argumente sorgfältig zu analysieren, verschiedene Perspektiven einzunehmen, logisch zu denken und fundierte Schlussfolgerungen zu ziehen. Es beinhaltet die Fähigkeit, Annahmen zu hinterfragen, Beweise zu prüfen und sachliche Entscheidungen zu treffen“ (Metakomm 2023). Das bedeutet auch, keine Informationen zu bevorzugen, die der eigenen Meinung entsprechen oder Gegenpositionen automatisch abzuwerten” (North (2024): Kritisches Denken – eine Schlüsselkompetenz, die KI (noch) fehlt. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).
North hat dazu in einer anderen Veröffentlichung (Grant 2021) wertvolle Hinweise gefunden, um kritisches Denken gegenüber einer eher bestätigenden Wissenskonstruktion zu unterscheiden, und stellt beides in einer Tabelle gegenüber:
Affirmative (bestätigende) Wissenskonstruktion
Kritisches Denken
Denken und lernen ohne zu hinterfragen
Umdenken & Verlernen
In der Behaglichkeit einer Überzeugung leben
Mit dem Unbehagen des Zweifels leben
Auf bestätigende Meinungen hören, die ein gutes Gefühl geben
Aktiv Ideen und Widersprüche suchen, die zum Nachdenken anregen
Sich im Kreis Gleichgesinnter bewegen
Sich zu Menschen hingezogen fühlen, die Gedanken herausfordern
Informationen und Medien konsumieren, die die eigene Meinung bestätigen
Vielfältige Informationen und Medien suchen, die Sachverhalte aus unterschiedlichen Perspektiven betrachten
Stereotype und Vorurteile übernehmen
Stereotype und Vorurteile hinterfragen
Denken und handeln wie Prediger, die heilige Überzeugungen verteidigen, Ankläger, die der Gegenseite beweisen wollen, dass sie im Unrecht ist, Politiker, die um Zustimmung werben
Neugier entwickeln
Denken wie Wissenschaftler auf der Suche nach der Wahrheit
Selbstüberzeugung: ich habe Recht
Selbstreflektion: wie und in welchem Kontext bin ich zu meiner Erkenntnis gekommen?
Quelle: North (2024) in Anlehnung an Grant (2021)
Die Merkmale des kritischen Denkens erinnern deutlich an eine eher wissenschaftliche Herangehensweise an Themenfelder. Es wundert daher nicht, dass das kritische Denken an Universitäten immer wieder geschärft werden sollte – beispielsweise macht das die Manosh University (Englischsprachige Website) sehr ausführlich.
Darüber hinaus ist es auch für einzelne Personen, in Teams, in Organisationen und in Netzwerken wichtig, kritisches Denken zu entwickeln – gerade in Zeiten von Populismus und Künstlicher Intelligenz.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.