Digitale Souveränität: Die Initiative AI for Citizens

Website: https://mistral.ai/news/ai-for-citizens

Immer mehr Privatpersonen, Organisationen, Verwaltungen usw. überlegen, wie sie die Möglichkeiten der Künstlichen Intelligenz nutzen können. Dabei gibt es weltweit drei grundsätzlich unterschiedliche Richtungen: Der US-amerikanische Ansatz (Profit für wenige Unternehmen), der chinesische Ansatz (KI für die politische Partei) und den europäischen Ansatz, der auf etwas Regulierung setzt, ohne Innovationen zu verhindern. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Es freut mich daher sehr, dass es in Europa immer mehr Initiativen gibt, die Künstliche Intelligenz zum Wohle von Bürgern und der gesamte Gesellschaft anbieten möchten – alles Open Source. Das in 2023 gegründete Unternehmen Mistral AI hat so einen Ansatz, der jetzt in der Initiative AI for Citizens eine weitere Dynamik bekommt, und einen Gegenentwurf zu den Angeboten der bekannten Tech-Giganten darstellt:

“Empowering countries to use AI to transform public action and catalyze innovation for the benefit of their citizens” (Quelle).

Dabei listet die Website noch einmal ausführlich die Nachteile der “One size fits all AI” auf, die vielen immer noch nicht bewusst sind.

Informieren Sie sich über die vielen Chancen, Künstliche Intelligenz offen und transparent zu nutzen und minimieren Sie die Risiken von KI-Anwendungen, indem Sie offene und transparente Trainingsmodelle (Large Language Models; Small Language Models) und KI-Agenten nutzen. Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner)

Die Überschrift ist reißerisch und soll natürlich Aufmerksamkeit generieren. Dabei stellt man sich natürlich gleich die Frage: Wie kommt das? Geschickt ist, dass Gartner selbst die Antwort gibt:

“Over 40% of agentic AI projects will be canceled by the end of 2027, due to escalating costs, unclear business value or inadequate risk controls, according to Gartner, Inc.” (Gartner vom 25.06.2025).

Es ist nun wirklich nicht ungewöhnlich, dass in der ersten Euphorie zu Agentic AI alles nun wieder auf ein sinnvolles und wirtschaftliches Maß zurückgeführt wird. Dennoch haben Unternehmen, die entsprechende Projekte durchgeführt haben, wertvolles (Erfahrungs-)Wissen generiert.

Schauen wir uns in diesem Zusammenhang den bekannten Gartner Hype Cycle 2025 an, so können wir sehen, dass AI Agents ihren “Peak of Inflated Expectations” erreicht haben, und es nun in das Tal “Through of Desillusionment” geht. Dabei wird in dem oben genannten Artikel natürlich auch darauf hingewiesen, dass Gartner gerne beratend behilflich ist, Agentic AI wirtschaftlicher und besser zu gestalten. Honi soit qui mal y pense.

Dennoch können gerade Kleine und Mittlere Unternehmen (KMU) von dieser Entwicklung profitieren, indem sie bewusst und sinnvoll KI Agenten nutzen. Am besten natürlich in Zusammenhang mit Open Source AI. Komisch ist, dass Open Source AI in dem Gartner Hype Cycle gar nicht als eigenständiger Begriff vorkommt. Honi soit qui mal y pense.

Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden

Wenn es um allgemein verfügbare Daten aus dem Internet geht, können die bekannten Closed Source KI-Modelle erstaunliche Ergebnisse liefern. Dabei bestehen die genutzten Trainingsdaten der LLMs (Large Language Models) oft aus den im Internet verfügbaren Daten – immer öfter allerdings auch aus Daten, die eigentlich dem Urheberrecht unterliegen, und somit nicht genutzt werden dürften.

Wenn es um die speziellen Daten einer Branche oder eines Unternehmens geht, sind deren Daten nicht in diesen Trainingsdaten enthalten und können somit bei den Ergebnissen auch nicht berücksichtigt werden. Nun könnte man meinen, dass das kein Problem darstellen sollte, immerhin ist es ja möglich ist, die eigenen Daten für die KI-Nutzung zur Verfügung zu stellen – einfach hochladen. Doch was passiert dann mit diesen Daten?

Immer mehr Unternehmen, Organisationen und Verwaltungen sind bei diesem Punkt vorsichtig, da sie nicht wissen, was mit ihren Daten bei der KI-Nutzung durch Closed Source oder auch Closed Weighted Modellen passiert. Diese Modelle sind immer noch intransparent und daher wie eine Black Box zu bewerten. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI oder Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Wollen Sie wirklich IHRE Daten solchen Modellen zur Verfügung stellen, um DEREN Wettbewerbsfähigkeit zu verbessern?

“So here’s the deal: you’ve got data. That data you have access to isn’t part of these LLMs at all. Why? Because it’s your corporate data. We can assure you that many LLM providers want it. In fact, the reason 99% of corporate data isn’t scraped and sucked into an LLM is because you didn’t post it on the internet. (…) Are you planning to give it away and let others create disproportionate amounts of value from your data, essentially making your data THEIR competitive advantage OR are you going to make your data YOUR competitive advantage?” (Thomas et al. 2025).

Doch was ist die Alternative? Nutzen Sie IHRE Daten zusammen mit Open Source AI auf ihren eigenen Servern. Der Vorteil liegt klar auf der Hand: Alle Daten bleiben bei Ihnen.

Siehe dazu auch

LocalAI: KI-Modelle und eigene Daten kombinieren

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Digitale Souveränität: Wo befinden sich deine Daten?

Künstliche Intelligenz: Vorteile von Small Language Models (SLMs)

Aktuell bekannte KI-Anwendungen rühmen sich seit Jahren, sehr große Mengen an Trainingsdaten (Large Language Models) zu verarbeiten. Der Tenor war und ist oft noch: Je größer die Trainingsdatenbank, um so besser.

In der Zwischenzeit weiß man allerdings, dass das so nicht stimmt und Large Language Models (LLMs) durchaus auch Nachteile haben. Beispielsweise ist die Genauigkeit der Daten ein Problem – immerhin sind die Daten oft ausschließlich aus dem Internet. Daten von Unternehmen und private Daten sind fast gar nicht verfügbar. Weiterhin ist das Halluzinieren ein Problem. Dabei sind die Antworten scheinbar plausibel, stimmen aber nicht.

Muddu Sudhaker hat diese Punkte in seinem Artikel noch einmal aufgeführt. Dabei kommt er zu dem Schluss, dass es in Zukunft immer mehr darauf ankommen wird, kleinere, speziellere Trainingsdatenbanken zu nutzen – eben Small Language Models (SLMs).

Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, Forbes, LINK

Große Vorteile der SLMs sieht der Autor natürlich einmal in der Genauigkeit der Daten und damit in den besseren Ergebnissen. Weiterhin sind SLMs natürlich auch kostensparender. Einerseits sind die Entwicklungskosten geringer, andererseits benötigt man keine aufwendige Hardware, um SLMs zu betreiben. Teilweise können solche Modelle auf dem eigenen PC, oder auf dem Smartphone betrieben werden.

Solche Argumente sind natürlich gerade für Kleine und Mittlere Unternehmen (KMU) interessant, die mit den geeigneten SLMs und ihren eigen, unternehmensinternen Daten ein interessantes und kostengünstiges KI-System aufbauen können.

Voraussetzung dafür ist für mich, dass alle Daten auf den eigenen Servern bleiben, was aktuell nur mit Open Source AI möglich ist. OpenAI mit ChatGPT ist KEIN Open Source AI.

Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Image by AIAC Interactive Agency from Pixabay

Das Bild zeigt ein Glas mit einer Flüssigkeit. Es ist allerdings nicht genau zu erkennen, um welchen Inhalt es sich handelt. Es könnte also sein, dass die Flüssigkeit gut für Ihre Gesundheit ist, oder auch nicht. Vertrauen Sie dieser Situation? Vertrauen Sie demjenigen, der das Glas so hingestellt hat?

Würden Sie aus diesem Glas trinken?

So ähnlich ist die Situation bei Künstlicher Intelligenz. Die Tech-Unternehmen veröffentlichen eine KI-Anwendung nach der anderen. Privatpersonen, Unternehmen, ja ganze Verwaltungen nutzen diese KI-Apps als Black Box, ohne z.B. zu wissen, wie die Daten in den Large Language Models (LLM) zusammengetragen wurden – um nur einen Punkt zu nennen.

Der Vergleich von dem Glas mit Künstlicher Intelligenz hinkt zwar etwas, doch erscheint mir die Analogie durchaus bemerkenswert, da der erste Schritt zur Anwendung von Künstlicher Intelligenz Vertrauen sein sollte.

Step 1: It All Starts with Trust
“Think about it: the glass is opaque, you can’t even see inside it! The water inside that glass could pure spring water, but it could also be cloudy and murky puddle water, or even contaminated water! If you couldn’t see inside that glass, would you still drink what’s inside it after adding tons of high-quality sugar and lemon to it? Probably not, so why would you do this with one of your company’s most previous assets—your data?” (Thomas et al. 2025).

Vertrauen Sie der Art von Künstlicher Intelligenz, wie sie von den etablierten Tech-Giganten angeboten wird? Solche Closed Source Modelle sind nicht wirklich transparent, und wollen es auch weiterhin nicht sein. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

Vertrauen Sie besser wirklichen Open Source AI – Anwendungen: Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Digitale Souveränität: Wo befinden sich deine Daten?

Screenshot von unserer Nextcloud-Installation

Die Digitale Abhängigkeit von amerikanischen oder chinesischen Tech-Konzernen, macht viele Privatpersonen, Unternehmen und Verwaltungen nervös und nachdenklich. Dabei stellen sich Fragen wie:

Wo befinden sich eigentlich unsere Daten?

Wissen Sie, wo sich ihre Daten befinden, wenn Sie neben ihren internen ERP-Anwendungen auch Internet-Schnittstellen, oder auch Künstliche Intelligenz, wie z.B. ChatGPT etc. nutzen?

Um wieder eine gewissen Digitale Souveränität zu erlangen, setzen wir seit mehreren Jahren auf Open Source Anwendungen. Die Abbildung zeigt beispielhaft einen Screenshot aus unserer NEXTCLOUD. Es wird deutlich, dass alle unsere Daten in Deutschland liegen – und das auch bei Anwendungen zur Künstlichen Intelligenz, denn wir verwenden LocalAI.

GWA Whitepaper (2025): Künstliche Intelligenz (KI) in der Kommunikationsbranche

Image by Alexa from Pixabay

Wie in dem Beitrag Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung zu erahnen, wird Künstliche Intelligenz (KI) alle Prozesse in Organisationen beeinflussen.

Dass das auch die Medienbranche/Kreativbranche betrifft, sollte jedem klar sein, der in diesem Umfeld arbeitet. Es ist daher gut, dass der Gesamtverband Kommunikationsagenturen (GWA) in einem KI-Whitepaper 2025 viele Perspektiven zu dem Thema beschrieben hat. Darin findet sich auch der folgende Hinweis:

“Die Kreativbranche sollte sich aktiv für Open- Source-KI einsetzen und dabei Unterstützung von allen erhalten, die von kreativer Arbeit profitieren. Wir alle, auch Marken und Produktanbieter, profitieren von offenen Systemen, da diese ihre eigenen visuellen Konzepte und Produkte in Form von „Custom-Modellen“ integrieren können, wie es bereits mit „LoRA Models“ in Stable Diffusion und Flux möglich ist” (GWA KI-Whitepaper 2025).

In den fast 100 Seiten des Whitepapers wird der Gedanke leider nicht weiter erläutert. Es wäre gut gewesen, auf die inzwischen vorliegende Definition zu Open Source AI und auf das Das Kontinuum zwischen Closed Source AI und Open Source AI hinzuweisen, denn hier gibt es für die Branche noch sehr viele neue Möglichkeiten, die sich vom Mainstream der KI-Anwendungen unterscheiden.

Digitale Souveränität: Welche Open Source Alternativen gibt es?

Open Source Alternativen (Ausschnitt). Quelle: https://digital-sovereignty.net/recommendations/product-recom

In den letzten Jahrzehnten haben wir uns an alle möglichen Tools gewöhnt. Dazu gehören z.B. alle Microsoft-, Google-, Meta-Produkte. Es fällt vielen Privatpersonen und Organisationen sehr schwer, sich aus dieser Abhängigkeit zu befreien (Pfadabhängigkeit). Dennoch merken in letzter Zeit viele Privatpersonen und Organisationen, dass es Zeit wird, Alternativen zu suchen.

Es stellt sich allerdings die Frage: Welche Open Source Alternativen gibt es?

Wer sich bisher mit dem Thema noch nicht wirklich auseinandergesetzt hat, wird über die von Prof. Wehners zusammengestellte Liste an Open Source Alternativen überrascht sein. In der Abbildung ist nur ein Ausschnitt zu sehen. Darin habe ich hervorgehoben (grün umrahmt), welche der genannten Tools wir selbst schon einsetzen. Bei den Videokonferenzen sollte noch das in NEXTCLOUD intergierte TALK mit aufgenommen werden.

Schauen Sie sich die Liste an und überlegen Sie, welche Alternative Sie einmal ausprobieren wollen. Bei Fragen können Sie uns ansprechen. Wir teilen Ihnen gerne unsere Erfahrungen mit.

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Vergleich zwischen Google Drive und Nextcloud im Rahmen der Bewertung mithilfe des Souveränitätsscores
.

Der Souveränitätsscore von Prof. Wehnes stellt verschiedene Kriterien auf, anhand derer Angebote verglichen werden können. In der Abbildung ist zu erkennen, dass Google Drive und Nextcloud (Open Source) gegenübergestellt wurden. Das Ergebnis ist eindeutig.

Google Drive erfüll kein einziges Kriterium, wohingegen Nextcloud 5 von insgesamt 6 Kriterien erfüllt. Daraus ergibt sich für Google Drive ein Souveränitätsscore von 0 und für Nextcloud ein Souveränitätsscore von 1.

Diese einfache Gegenüberstellung zeigt, dass die Digitale Souveränität mit Nextcloud erreicht werden kann.

Fangen Sie an, und machen Sie den ersten Schritt zu Ihrer eigenen Digitalen Souveränität, indem Sie auf Open Source Anwendungen setzen, bei denen Sie die Kontrolle über Ihre eigenen Daten haben – z.B. mit Nextcloud.

Wir nutzen seit 2022 auf unserem Server Nextcloud und in der Zwischenzeit auch LocalAI. Dabei können wir innerhalb von Nextcloud auf KI-Modelle zurückgreifen – alle Daten bleiben dabei auf unserem Server. Der nächste Schritt ist, KI-Agenten auf unserem Server zu entwickeln. Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften und

Souveränitätsscore: Zoom und BigBlueButton im Vergleich.

Nextcloud FLOW: Automatisieren von Abläufen

Eigener Screenshot

Viele persönliche, bzw. organisatorische Abläufe sind Routineprozesse, die sich häufig wiederholen. Sobald dazugehörende Unterlagen digital vorliegen, können diese mit Hilfe von definierten Abläufen automatisiert werden.

Auf unserem Server haben wir Nextcloud (Open Source) installiert, sodass alle Daten geschützt sind. Mit der App Nextcloud FLOW können wir auf alle Daten zugreifen, und einfache, oder auch etwas komplexere Abläufe automatisieren.

In der Abbildung ist beispielhaft zu sehen, dass in der linken Navigationsleiste “Ablauf”, also “Flow”, angeklickt wurde. In der rechten Hälfte ist zu erkennen, dass wir den Ablauf “PDF-Umwandlung” hinterlegt haben. Nun können wir anhand der verschiedenen Auswahlfelder bestimmen, unter welchen Bedingungen Dateien automatisiert in PDF umgewandelt werden können.

Das ist natürlich nur ein kleines und einfaches Beispiel für die Nutzung von Nextcloud FLOW, doch sind auch Anwendungen bei IKBD (Information, Kommunikation, Berichtswesen und Dokumentation) in Projekten denkbar, usw. usw. Den Möglichkeiten, sind fast keine Grenzen gesetzt.

Darüber hinaus kann es Sinn machen, auch noch den Nextcloud ASSISTENT oder sogar KI-Agenten zu nutzen – alles auf Open Source Basis, sodass alle Daten auf dem eigenen Server bleiben.