Warum öffnet OpenAI mit GPT OSS die Tür zu Open Source?

Quelle; https://openai.com/de-DE/index/introducing-gpt-oss/

In dem Kontinuum der KI-Modelle sind die Übergänge zwischen den Polen fließend. Immer mehr große Modelle bieten daher neben den Closed Models (Proprietäre Modelle) sogenannte Open Weights Modelle an.

OpenAI hat am 05.08.2025 GPT OSS veröffentlicht, das in der kleinsten Version mit 20B z.B. über Huggingface genutzt werden kann. Grundsätzlich erscheint diese Öffnung gut zu sein. Der Beitrag OpenAI Cracks The Door With GPT OSS vom 11.08.2025 geht darauf detaillierter ein. Ich möchte dazu folgende Punkte anmerken:

(1) OpenAI suggerierte bei der Gründung mit dem Namen, dass man sich den Open Source Werten verpflichtet fühlt. Seit 2019 ist OpenAI allerdings vorwiegend ein kommerzielles Unternehmen, das den Firmennamen für geschicktes Marketing nutzt.

(2) Der Modellname GPT OSS weist zunächst darauf hin, dass es sich um Open Source Software (OSS) handelt, was grundsätzlich zu begrüßen ist.

(3) Möglicherweise werden viele GTP OSS mit Open Source AI verwechseln, was möglicherweise auch gewollt ist. Ansonsten hätte das Unternehmen auch einen anderen Namen verwenden können.

(4) Bei GPT OSS handelt es sich nicht um Open Source AI, sondern um einen Open Weight Model: „Among the Big AI companies, attitudes towards openness vary. Some, like OpenAI or Anthropic, do not release any of their models openly. Others, like Meta, Mistral or Google, release some of their models. These models — for example, Llama, Mistral or Gemma — are typically shared as open weights models“ (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).

(5) Dabei ist zu beachten, dass man sich mit proprietärer Künstlicher Intelligenz (KI) immer noch die Denkwelt der Eigentümer einkauft.

Siehe dazu auch

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Buyl et al. (2024): Large Language Models Reflect the Ideology of their Creators

Künstliche Intelligenz, Agiles Manifest, Scrum und Kanban

Bei Künstlicher Intelligenz denken aktuell die meisten an die KI-Modelle der großen Tech-Konzerne. ChatGPT, Gemini, Grok etc sind in aller Munde und werden immer stärker auch in Agilen Organisationen eingesetzt. Wie in einem anderen Blogbeitrag erläutert, sind in Agilen Organisationen Werte und Prinzipien mit ihren Hebelwirkungen die Basis für Praktiken, Methoden und Werkzeuge. Dabei beziehen sich viele, wenn es um Werte und Prinzipien geht, auf das Agile Manifest, und auf verschiedene Vorgehensmodelle wie Scrum und Kanban. Schauen wir uns einmal kurz an, was hier jeweils zum Thema genannt wird:

Agiles Manifest: Individuen und Interaktionen mehr als Prozesse und Werkzeuge
In der aktuellen Diskussion über die Möglichkeiten von Künstlicher Intelligenz werden die Individuen eher von den technischen Möglichkeiten (Prozesse und Werkzeuge) getrieben, wobei die Interaktion weniger zwischen den Individuen, sondern zwischen Individuum und KI-Modell stattfindet. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

SCRUM: Die Werte Selbstverpflichtung, Fokus, Offenheit, Respekt und Mut sollen durch das Scrum Team gelebt werden
Im Scrum-Guide 2020 wird erläutert, was die Basis des Scrum Frameworks ist. Dazu sind die Werte genannt, die u.a. auch die Offenheit thematisieren, Ich frage mich allerdings, wie das möglich sein soll, wenn das Scrum Team proprietäre KI-Modelle wie ChatGPT, Gemini, Grok etc. nutzt, die sich ja gerade durch ihr geschlossenes System auszeichnen? Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

KANBAN basiert auf folgenden Werten: Transparenz, Balance, Kooperation, Kundenfokus, Arbeitsfluss, Führung, Verständnis, Vereinbarung und Respekt.
Bei den proprietären KI-Modellen ist die hier angesprochene Transparenz kaum vorhanden. Nutzer wissen im Detail nicht, mit welchen Daten das Modell trainiert wurde, oder wie mit eingegebenen Daten umgegangen wird, etc.

In einem anderen Blogbeitrag hatte ich dazu schon einmal darauf hingewiesen, dass man sich mit proprietärer Künstlicher Intelligenz (KI) auch die Denkwelt der Eigentümer einkauft.

Um agile Arbeitsweisen mit Künstlicher Intelligenz zu unterstützen, sollte das KI-Modell den genannten Werten entsprechen. Bei entsprechender Konsequenz, bieten sich also KI-Modelle an, die transparent und offen sind. Genau an dieser Stelle wird deutlich, dass das gerade die KI-Modelle sind, die der Definition einer Open Source AI entsprechen – und davon gibt es in der Zwischenzeit viele. Es wundert mich daher nicht, dass die Open Source Community und die United Nations die gleichen Werte teilen.

Es liegt an uns, ob wir uns von den Tech-Giganten weiter in eine immer stärker werdende Abhängigkeit treiben lassen, oder andere Wege gehen – ganz im Sinne einer Digitalen Souveränität. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Künstliche Intelligenz: Die neue Olmo3 Modell-Familie

https://allenai.org/

Auf die Olmo Modell Familie hatte ich diesen Blogbeitrag schon einmal hingewiesen: Mit der Olmo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben. Es handelt sich dabei um Modelle, die vom Ai2 Institut entwickelt und veröffentlicht werden. Ziel des Instituts ist es, neben der Offenheit der Modelle auch einen Beitrag zur Lösung der gesellschaftlichen Herausforderungen zu leisten. Im November 2025 ist die Olmo3 Modell-Familie veröffentlicht worden:

Olmo 3-Think (7B, 32B)–our flagship open reasoning models for advanced experiments, surfacing intermediate thinking steps.

Olmo 3-Instruct (7B)–tuned for multi-turn chat, tool use, and function/API calling.

Olmo 3-Base (7B, 32B)–strong at code, reading comprehension, and math; our best fully open base models and a versatile foundation for fine-tuning.

Die Modelle sind bei Huggingface frei verfügbar und können in einem Playground getestet werden.

Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.

Mit Künstlicher Intelligenz zu Innovationen – aber wie?

Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.

Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.

„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).

Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.

Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.

Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.

Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:

LocalAI: Open EuroLLM: Ein Modell Made in Europe – eingebunden in unsere LocalAI

Ollama und Langflow: Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.

Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.

Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Digitale Souveränität: Projekt SOOFI (Sovereign Open Source Foundation Models) gestartet

Quelle: Pressemitteilung | PDF | zu SOOFI

In unserem Blog habe ich schon oft über die notwendige Digitale Souveränität von einzelnen Personen, Organisationen und Länder geschrieben. Es wird dabei immer deutlicher, dass wir in Europa Modelle benötigen, die nicht vom Mindset amerikanischer Tech-Konzernen oder vom Mindset chinesischer Politik dominiert werden, und auf Open Source Basis zur Verfügung stehen.

So etwas soll nun mit SOOFI (Sovereign Open Source Foundation Models) entwickelt werden. In der Abbildung ist der prinzipielle Aufbau zu erkennen. Auf Basis geeigneter Daten können Foundation Models an die jeweiligen Bedürfnisse ganzer Branchen angepasst werden. Darauf aufbauend, schließen sich u.a. auch AI Agenten an.

„Ein wichtiger Schritt für die europäische KI-Souveränität: Unter SOOFI arbeiten zukünftig Wissenschaftlerinnen und Wissenschaftler aus 6 führenden deutschen Forschungseinrichtungen zusammen, um souveräne europäische Alternativen zu KI Technologien aus den USA und China bereitzustellen. Der Fokus liegt darin, mit den Modellen einen Beitrag für die industrielle Nutzung von KI zu leisten“ (Quelle: Pressemitteilung | PDF).

Möglicherweise interessieren Sie auch noch folgende Beiträge zum Thema:
Digitale Souveränität: Europa, USA und China im Vergleich
Von der digitalen Abhängigkeit zur digitalen Souveränität,
Digitale Souveränität: Welche Open Source Alternativen gibt es?
Digitale Souveränität: Souveränitätsscore für KI Systeme
Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Open Source AI: Kimi K2 Thinking vorgestellt

Mit DeepSeek ist chinesischen Entwicklern ein Coup gelungen, denn sie konnten zeigen, dass ein KI-Modell nicht teuer sein muss. Die amerikanischen Tech-Giganten standen damals mit ihren Milliarden-Investitionen ziemlich schlecht dar.

Nun gibt es mit Kimi K2 Thinking ein weiteres Modell, mit dem chinesische Entwickler zeigen, wie mit relativ wenigen Ressourcen – und damit Kosten – ein leistungsfähiges Modell angeboten werden kann. Der Schwerpunkt des Modells liegt dabei auf „Coding“.

Es ist Open Source basiert und wurde unter der MIT-Lizenz veröffentlicht. Diese enthält eine interessante Klausel: Da amerikanische Konzerne chinesische Open Source Modelle gerne für ihre Entwicklungen nutzen – ohne das transparent zu machen – ist die freie kommerzielle Nutzung bis zu einem monatlichen Umsatz von 20 Millionen Dollar möglich.

Kimi K2 Thinking ist ein MoE-Modell, (for Coding) dessen Entwicklung nur 4,6 Millionen Dollar gekostet haben soll – wieder eine beeindruckende Kennzahl. Darüber hinaus zeigen Benchmarks, die enorme Leistungsfähigkeit des Modells. Weitere Informationen sind in dem folgenden Beitrag zusammengefasst:

Moonshot AI stellt Kimi K2 Thinking als „bestes Open-Source-Thinking-Modell“ vor (Krempler, J. 2025, in the decoder vom 07.11.2025).

Mal sehen, ob wir das Modell auch in LocalAI, bzw. in Ollama auf unseren Servern einbinden können. Bis dahin kann auf der Landingpage Kimi K2 Thinking getestet werden.

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Screenshot: https://allenai.org/blog/olmoearth-models

Über die Open Source AI-Modelle der Olmo2-Familie habe ich schon einmal in diesem Blogbeitrag geschrieben. Grundsätzlich soll mit diesen Modellen die Forschung an Sprachmodellen unterstützt werden. Anfang November hat Ai2 nun bekannt gegeben, dass mit OlmoEarth eine weitere Modell-Familie als Foundation Models (Wikipedia) zur Verfügung steht.

OlmoEarth is a family of open foundation models built to make Earth AI practical, scalable, and performant for real-world applications. Pretrained on large volumes of multimodal Earth observation data“ (Source: Website).

Es handelt sich also um eine offene, trainierte Modell-Familie, die zur Lösung realer Probleme (real world problems) beitragen sollen. Hier ein Beispiel von der Nutzung der Daten für eine Fragestellung in Nigeria:

Es gibt vier unterschiedliche Modelle. Interessant dabei ist, dass es auch kleine Modelle (Nano und Tiny) gibt, die kostengünstig sind, und schnell genutzt werden können:

OlmoEarth-v1-Nano (~1.4M parameters) & OlmoEarth-v1-Tiny (~6.2M)—for fast, cheap inference at scale
OlmoEarth-v1-Base (~90M)—balanced accuracy and speed for most use cases
OlmoEarth-v1-Large (~300M)—best performance on challenging tasks

Auf der OlmoEarth-Platform können die Modelle getestet werden.

Innovationen: Künstliche Intelligenz und Neu-Kombinationen

Bei Innovationen sollten wir uns zunächst einmal klar machen, was im Unternehmenskontext darunter zu verstehen ist. Das Oslo Manual schlägt vor, Innovation wie folgt zu interpretieren:

„(…) a new or improved product or process (or combination thereof) that differs significantly from the unit’s previous products or processes and that has been made available to potential users (product) or brought into use by the unit (process)” (Oslo Manual 2018).

Dass Innovation u.a. eine Art Neu-Kombination von Existierendem bedeutet, ist vielen oft nicht so klar (combination thereof). Neue Ideen – und später Innovationen – entstehen oft aus vorhandenen Konzepten. oder Daten.

An dieser Stelle kommen nun die Möglichkeiten der Künstlichen Intelligenz (GenAI oder auch AI Agenten) ins Spiel. Mit KI ist es möglich, fast unendlich viele Neu-Kombinationen zu entwickeln, zu prüfen und umzusetzen. Das können Unternehmen nutzen, um ihre Innovationsprozesse neu zu gestalten, oder auch jeder Einzelne für seine eigenen Neu-Kombinationen im Sinne von Open User Innovation nutzen. Siehe dazu Von Democratizing Innovation zu Free Innovation.

Entscheidend ist für mich, welche KI-Modelle dabei genutzt werden. Sind es die nicht-transparenten Modelle der Tech-Unternehmen, die manchmal sogar die Rechte von einzelnen Personen, Unternehmen oder ganzer Gesellschaften ignorieren, oder nutzen wir KI-Modelle, die frei verfügbar, transparent und für alle nutzbar sind (Open Source AI)?

Wenn wir das Wohl der Menschen, und nicht nur den Profit einzelner Tech-Konzerne in den Mittelpunkt stellen, kommt für mich im Sinne einer Digitalen Souveränität nur Open Source AI infrage. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.