Auf die Omo 3 Familie von AI2 hatte ich ja schon in dem Beitrag vom 06.12.205 hingewiesen. Es geht dabei um frei verfügbare KI-Modelle, die auf der Website im Playground getestet, oder auch auf dem eigenen Server genutzt werden können.
Im Dezember 2025 wurde darüber hinaus auch noch die Modell-Familie Molmo 2 mit dem veröffentlicht. Der besondere Schwerpunkt der Modell-Familie sind Videos:
Molmo 2 (8B) is Qwen 3-based and our best overall model for video grounding and QA.
Molmo 2 (4B) – also Qwen 3-based – is optimized for efficiency.
Molmo 2-O (7B) is built on Olmo, offering a fully open end-to-end model flow including the underlying LLM. This Olmo-backed variant is particularly useful for researchers who want full control over every part of the stack—vision encoder, connector, and language model.
Die verschiedenen Modelle bieten auch wieder die Möglichkeit, je nach technischer Ausstattung, diese auf den eigenen Servern, oder im Playground zu testen – probieren Sie es doch einfach einmal aus.
Die aktuelle Diskussion zu Künstlicher Intelligenz befasst sich u.a. mit den Möglichkeiten generativer Künstlicher Intelligenz (GenAI) und den Entwicklungen bei KI-Agenten (AI Agents). KI-Agenten können in Zukunft viele Tätigkeiten/Jobs in Organisationen übernehmen, und so deren Effektivität und Effizienz steigern.
Solche Entwicklungen sind allerdings nicht alleine auf Organisationen begrenzt. Auf der individuellen, persönlichen Ebene entwickeln sich KI-Agenten immer mehr zu persönlichen Agenten, oder sogar zu Personal AI Twins:
„Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).
Die hier angesprochene Entwicklung von generischen KI-Agenten zu personalisierten KI-Agenten (personal ai twins) ist bemerkenswert. Es stellt sich natürlich gleich die Frage, ob eine Person solche Personal AI Twins nur für ihre Arbeit, oder auch für alle ihre Aktivitäten nutzen möchte. Dabei kommt es immer wieder zu Überschneidungen zwischen der beruflichen Domäne und den privaten Kontexten.
Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins ihre eigenen Ideen besser selbst entwickeln oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch
Es liegt natürlich auf der Hand die für die bestehenden projektmanagement-Standards und Vorgehensmodelle Künstliche Intelligenz einzusetzen. Interessant dabei ist, dass das weltweit führende Institut empfiehlt, ethisch vorzugehen und dazu noch einen Leitfaden herausgebracht hat.
IPMA (2025): IPMA Guidelines on Applying AI in Project Management. Moving the profession forward by acting ethically! | PDF
Auf knapp 30 Seiten wird der Bezug zum professionellen Projektmanagement hergestellt und hervorgehoben, anhand welcher Kriterien Künstliche Intelligenz beurteilt werden sollten (ebd.):
„Selecting the right AI tools is a critical step for project managers. Commercially available AI tools vary in functionality, quality, and ethical considerations. When selecting and using these tools, project managers should evaluate them based on the following criteria: » Alignment with Project Goals » Vendor Transparency: » Ethical and Social Impact: » Adaptability and Scalability
Wenn Projektmanager weltweit diese Hinweise beachten, so kommen aus meiner Sicht die häufig genutzten, kommerziellen KI-Apps wie ChatGPT, Grok, Gemini etc. nicht infrage, da sie die Punkte „Vendor Transparency“ (Transparent der Anbieter) und „Ethical and Social Impact“ (Ethische und Soziale Auswirkungen) nicht, oder nur wenig berücksichtigen.
In dem Kontinuum der KI-Modelle sind die Übergänge zwischen den Polen fließend. Immer mehr große Modelle bieten daher neben den Closed Models (Proprietäre Modelle) sogenannte Open Weights Modelle an.
OpenAI hat am 05.08.2025 GPT OSSveröffentlicht, das in der kleinsten Version mit 20B z.B. über Huggingface genutzt werden kann. Grundsätzlich erscheint diese Öffnung gut zu sein. Der Beitrag OpenAI Cracks The Door With GPT OSS vom 11.08.2025 geht darauf detaillierter ein. Ich möchte dazu folgende Punkte anmerken:
(1) OpenAI suggerierte bei der Gründung mit dem Namen, dass man sich den Open Source Werten verpflichtet fühlt. Seit 2019 ist OpenAI allerdings vorwiegend ein kommerzielles Unternehmen, das den Firmennamen für geschicktes Marketing nutzt.
(2) Der Modellname GPT OSS weist zunächst darauf hin, dass es sich um Open Source Software (OSS) handelt, was grundsätzlich zu begrüßen ist.
(3) Möglicherweise werden viele GTP OSS mit Open Source AIverwechseln, was möglicherweise auch gewollt ist. Ansonsten hätte das Unternehmen auch einen anderen Namen verwenden können.
(4) Bei GPT OSS handelt es sich nicht um Open Source AI, sondern um einen Open Weight Model: „Among the Big AI companies, attitudes towards openness vary. Some, like OpenAI or Anthropic, do not release any of their models openly. Others, like Meta, Mistral or Google, release some of their models. These models — for example, Llama, Mistral or Gemma — are typically shared as open weights models“ (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).
(5) Dabei ist zu beachten, dass man sich mit proprietärer Künstlicher Intelligenz (KI) immer noch die Denkwelt der Eigentümer einkauft.
Bei Künstlicher Intelligenz denken aktuell die meisten an die KI-Modelle der großen Tech-Konzerne. ChatGPT, Gemini, Grok etc sind in aller Munde und werden immer stärker auch in Agilen Organisationen eingesetzt. Wie in einem anderen Blogbeitrag erläutert, sind in Agilen Organisationen Werte und Prinzipien mit ihren Hebelwirkungen die Basis für Praktiken, Methoden und Werkzeuge. Dabei beziehen sich viele, wenn es um Werte und Prinzipien geht, auf das Agile Manifest, und auf verschiedene Vorgehensmodelle wie Scrum und Kanban. Schauen wir uns einmal kurz an, was hier jeweils zum Thema genannt wird:
Agiles Manifest:Individuen und Interaktionen mehr als Prozesse und Werkzeuge In der aktuellen Diskussion über die Möglichkeiten von Künstlicher Intelligenz werden die Individuen eher von den technischen Möglichkeiten (Prozesse und Werkzeuge) getrieben, wobei die Interaktion weniger zwischen den Individuen, sondern zwischen Individuum und KI-Modell stattfindet. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.
SCRUM: Die Werte Selbstverpflichtung, Fokus, Offenheit, Respekt und Mut sollen durch das Scrum Team gelebt werden Im Scrum-Guide 2020 wird erläutert, was die Basis des Scrum Frameworks ist. Dazu sind die Werte genannt, die u.a. auch die Offenheit thematisieren, Ich frage mich allerdings, wie das möglich sein soll, wenn das Scrum Team proprietäre KI-Modelle wie ChatGPT, Gemini, Grok etc. nutzt, die sich ja gerade durch ihr geschlossenes System auszeichnen? Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.
KANBANbasiert auf folgenden Werten: Transparenz, Balance, Kooperation, Kundenfokus, Arbeitsfluss, Führung, Verständnis, Vereinbarung und Respekt. Bei den proprietären KI-Modellen ist die hier angesprochene Transparenz kaum vorhanden. Nutzer wissen im Detail nicht, mit welchen Daten das Modell trainiert wurde, oder wie mit eingegebenen Daten umgegangen wird, etc.
Um agile Arbeitsweisen mit Künstlicher Intelligenz zu unterstützen, sollte das KI-Modell den genannten Werten entsprechen. Bei entsprechender Konsequenz, bieten sich also KI-Modelle an, die transparent und offen sind. Genau an dieser Stelle wird deutlich, dass das gerade die KI-Modelle sind, die der Definition einer Open Source AI entsprechen – und davon gibt es in der Zwischenzeit viele. Es wundert mich daher nicht, dass die Open Source Community und die United Nations die gleichen Werte teilen.
Auf die Olmo Modell Familie hatte ich diesen Blogbeitrag schon einmal hingewiesen: Mit der Olmo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben. Es handelt sich dabei um Modelle, die vom Ai2 Institut entwickelt und veröffentlicht werden. Ziel des Instituts ist es, neben der Offenheit der Modelle auch einen Beitrag zur Lösung der gesellschaftlichen Herausforderungen zu leisten. Im November 2025 ist die Olmo3 Modell-Familie veröffentlicht worden:
Olmo 3-Think (7B, 32B)–our flagship open reasoning models for advanced experiments, surfacing intermediate thinking steps.
Olmo 3-Instruct (7B)–tuned for multi-turn chat, tool use, and function/API calling.
Olmo 3-Base (7B, 32B)–strong at code, reading comprehension, and math; our best fully open base models and a versatile foundation for fine-tuning.
Die Modelle sind bei Huggingface frei verfügbar und können in einem Playground getestet werden.
Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.
Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.
Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.
„Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)
In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:
„Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)
Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.
Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.
Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.
Wenn es um Innovationen geht, denken viele an bahnbrechende Erfindungen (Inventionen), die dann im Markt umgesetzt, und dadurch zu Innovationen werden.. Da solche Innovationen oft grundlegende Marktstrukturen verändern, werden diese Innovationen mit dem Begriff „disruptiv“ charakterisiert. Siehe dazu auch Disruptive Innovation in der Kritik.
Betrachten wir uns allerdings die Mehrzahl von Innovationen etwas genauer, so entstehen diese hauptsächlich aus der Neukombination von bestehenden Konzepten. Dazu habe ich auch eine entsprechende Quelle gefunden, die das noch einmal unterstreicht.
„New ideas do not come from the ether; they are based on existing concepts. Innovation scholars have long pointed to the importance of recombination of existing ideas. Breakthrough often happen, when people connect distant, seemingly unrelated ideas“ (Mollick 2024).
Bei Innovationsprozessen wurden schon in der Vergangenheit immer mehr digitale Tools eingesetzt. Heute allerdings haben wir mit Künstlicher Intelligenz (GenAI) ganz andere Möglichkeiten, Neukombinationen zu entdecken und diese zu Innovationen werden zu lassen.
Dabei kommt es natürlich darauf an, welche Modelle (Large Language Models, Small Language Models, Closed Sourced Models, Open Weighted Models, Open Source Models) genutzt werden.
Wir favorisieren nicht die GenAI Modelle der bekannten Tech-Unternehmen, sondern offene, transparente und für alle frei zugängige Modelle, um daraus dann Innovationen für Menschen zu generieren.
Wir setzen diese Gedanken auf unseren Servern mit Hilfe geeigneter Open Source Tools und Open Source Modellen um:
Dabei bleiben alle Daten auf unseren Servern – ganz im Sinne einer Digitalen Souveränität.
Den Gedanken, dass Künstliche Intelligenz (Cognitive Computing) Innovationen (hier: Open Innovation) unterstützen kann, habe ich schon 2015 auf der Weltkonferenz in Montreal (Kanada) in einer Special Keynote vorgestellt.
Siehe dazu Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer
In unserem Blog habe ich schon oft über die notwendige Digitale Souveränität von einzelnen Personen, Organisationen und Länder geschrieben. Es wird dabei immer deutlicher, dass wir in Europa Modelle benötigen, die nicht vom Mindset amerikanischer Tech-Konzernen oder vom Mindset chinesischer Politik dominiert werden, und auf Open Source Basis zur Verfügung stehen.
So etwas soll nun mit SOOFI (Sovereign Open Source Foundation Models) entwickelt werden. In der Abbildung ist der prinzipielle Aufbau zu erkennen. Auf Basis geeigneter Daten können Foundation Models an die jeweiligen Bedürfnisse ganzer Branchen angepasst werden. Darauf aufbauend, schließen sich u.a. auch AI Agenten an.
„Ein wichtiger Schritt für die europäische KI-Souveränität: Unter SOOFI arbeiten zukünftig Wissenschaftlerinnen und Wissenschaftler aus 6 führenden deutschen Forschungseinrichtungen zusammen, um souveräne europäische Alternativen zu KI Technologien aus den USA und China bereitzustellen. Der Fokus liegt darin, mit den Modellen einen Beitrag für die industrielle Nutzung von KI zu leisten“ (Quelle: Pressemitteilung | PDF).