Künstliche Intelligenz: Mit der OLMo2 Modell-Familie offene Forschung an Sprachmodellen vorantreiben

Eigener Screenshot: olmo2 istalliert in Ollama auf unserem Server

Auf unseren Servern haben wir LocalAI installiert, das wir über den Nextcloud Assistenten in allen Nextcloud-Anwendungen nutzen können. Dabei bleiben alle Daten auf unserem Server.

Weiterhin arbeiten wir an KI-Agenten, die wir in Langflow entwickeln. Dazu greifen wir auf Modelle zurück, die wir in Ollama installiert haben. Auch Langflow und Ollama sind auf unserem Servern installiert, sodass auch hier alle Daten bei uns bleiben.

In Ollama haben wir nun ein weiteres Modell installiert, das aus einer ganzen OLMo2-Familie stammt. In der Abbildung ist zu erkennen, dass wir OLMo2:latest installiert haben. Wir können nun auch das Modell in Ollama testen und dann später – wie schon angesprochen – in Langflow in KI-Agenten einbinden.

Alle Modelle, die wir auf unseren Servern installieren, sollen den Anforderungen einer Open Source AI entsprechen. Manchmal nutzen wir auch Open Weights Models, um zu Testzwecken die Leistungsfähigkeit verschiedener Modelle zu vergleichen. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

Das Modell OLMo2:latest ist ein Modell, aus einer Modell-Familie, dass im wissenschaftlichen Umfeld / Forschung eingesetzt werden kann.

“OLMo is Ai2’s first Open Language Model framework, intentionally designed to advance AI through open research and to empower academics and researchers to study the science of language models collectively” (Ai2-Website).

An diesem Beispiel zeigt sich, dass es einen Trend gibt: Weg von einem Modell, das alles kann – one size fits all. In Zukunft werden immer mehr Modelle gefragt und genutzt werden. die sich auf eine bestimmte berufliche Domäne (Forschung, Wissenschaft etc.) fokussieren und dadurch bessere Ergebnisse erzielen und weniger Ressourcen benötigen.

Siehe dazu auch KI-Modelle: Von “One Size Fits All” über Variantenvielfalt in die Komplexitätsfalle?

Künstliche Intelligenz: Das Modell GRANITE in unsere LocalAI eingebunden

Screenshot von unserer LocalAI-Installation: Selected Model Granite 3.0

In dem Beitrag Künstliche Intelligenz: Würden Sie aus diesem Glas trinken? ging es um die Frage, ob man KI-Modellen vertrauen kann. Bei den Closed Source Models der Tech-Konzerne ist das kaum möglich, da die Modelle gar nicht, bzw. kaum transparent sind und nicht der Definition von Open Source AI entsprechen.

Wenn aber der erste Schritt zur Nutzung von Künstlicher Intelligenz Vertrauen sein sollte (Thomas et al. 2025), sollte man sich als Privatperson, als Organisation, bzw. als Verwaltung nach Alternativen umsehen.

Wie Sie als Leser unseres Blogs wissen, tendieren wir zu (wirklichen) Open Source AI Modellen, doch in dem Buch von Thomas et al. (2025) ist mir auch der Hinweis auf das von IBM veröffentlichte KI-Modell Granite aufgefallen. Die quelloffene Modell-Familie kann über Hugging Face, Watsonx.ai oder auch Ollama genutzt werden.

Das hat mich neugierig gemacht, da wir ja in unserer LocalAI Modelle dieser Art einbinden und testen können. Weiterhin haben wir ja auch Ollama auf unserem Server installiert, um mit Langflow KI-Agenten zu erstellen und zu testen.

Im Fokus der Granite-Modellreihe stehen Unternehmensanwendungen, wobei die kompakte Struktur der Granite-Modelle zu einer erhöhten Effizienz beitragen soll. Unternehmen können das jeweilige Modell auch anpassen, da alles über eine Apache 2.0-Lizenz zur Verfügung gestellt wird.

Wie Sie der Abbildung entnehmen können, haben wir Granite 3.0 -1b-a400m in unsere lokale KI (LocalAI) eingebunden. Das geht relativ einfach: Wir wählen aus den aktuell mehr als 1.000 Modellen das gewünschte Modell zunächst aus. Anschließend brauchen wir nur auf “Installieren” zu klicken, und das Modell steht in der Auswahl “Select a model” zur Verfügung.

Im unteren Fenster (Send a message) habe ich testweise “Stakeholder for the project Website” eingegeben. Dieser Text erscheint dann blau hinterlegt, und nach einer kurzen Zeit kommen dann schon die Ergebnisse, die in der Abbildung grün hinterlegt sind. Wie Sie am Balken am rechten Rand der Grafik sehen können, gibt es noch mehrere Stakeholder, die man sieht, wenn man nach unten scrollt.

Ich bin zwar gegenüber Granite etwas skeptisch, da es von IBM propagiert wird, und möglicherweise eher zu den Open Weighted Models zählt, doch scheint es interessant zu sein, wie sich Granite im Vergleich zu anderen Modellen auf unserer LocalAI-Installation schlägt.

Bei allen Tests, die wir mit den hinterlegten Modellen durchführen, bleiben die generierten Daten alle auf unserem Server.

LangFlow: Per Drag & Drop KI-Agenten auf dem eigenen Server entwickeln und testen

Screenshot von unserer LangFlow-Installation (Simple Agent)

In dem Beitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren wird erläutert, wie Modelle – abhängig von der Eingabe – so kombiniert werden können, dass ein qualitativ gutes Ergebnis herauskommt.

Der nächste Schritt wäre, beliebig viele KI-Modelle in einem Framework zu entwickeln und zu koordinieren. Die Plattform LangChain bietet so eine professionelle, und somit auch anspruchswolle Möglichkeit.

“LangChain is an incredibly valuable tool for linking up chains of models and defining steps for how an output from a model should be handled before being sent to a different model (or often, the same model with a different prompt) for a new step in a workflow” (Thomas et al. 2025).

Wenn es etwas einfacher sein soll, bietet sich LangFlow an, bei dem mit einfachen Mitteln per Drag & Drop KI-Agenten in Zusammenspiel mit verschiedenen Modellen konfiguriert werden können.

Wir haben LangFlow auf unserem Server installiert (Open Source) und können nun KI-Agenten für verschiedene Anwendungen entwickeln und testen. Die Abbildung zeigt einen Screenshot der Startseite, wenn man einen einfachen Agenten entwickeln möchte. Auf der linken Seite können sehr viele Optionen ausgewählt werden, in dem grau hinterlegten Bereich werden diese dann per Drag & Drop zusammengestellt. Die farbigen Verbindungslinien zeigen, welche Optionen miteinander kombiniert werden können. Abschließend kann im anwählbaren Playground das Ergebnis beurteilt werden.

Dabei bietet LangfFlow auch die Möglichkeit, eigene Daten, oder auch externe Datenquellen einzubinden – alles per Drag & Drop. Weiterhin haben wir den Vorteil, dass alle generierten Daten auf unserem Server bleiben.

(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit?

Wenn es um Menschliche Intelligenz geht, sprechen wir auch oft über die scheinbare Menschliche Dummheit. In meinen Blogbeiträgen Reden wir über Dummheit und Steckt hinter der Künstlichen Intelligenz keine echte Intelligenz? Wie ist das zu verstehen? bin ich auf das Thema eingegangen. Weiterhin finden sich in der Rezension Ina Rösing: Intelligenz und Dummheit weitere interessante Anmerkungen.

Im Zusammenhang mit Künstlicher Intelligenz könnte man natürlich auch über eine Art Künstliche Dummheit nachdenken. Wie schon länger bekannt, stellen beispielsweise Halluzinationen und falsche Antworten ein nicht zu vernachlässigendes Phänomen dar. Darüber hinaus gibt es allerdings auch noch eine Art Bullshit-Faktor. Es geht dabei um die Missachtung der Wahrheit in großen Sprachmodellen. Genau diesen Aspekt haben sich verschiedene Forscher der Princeton University einmal genauer angesehen und ein interessantes Paper dazu veröffentlicht:

Liang et al. (2025): Machine Bullshit: Characterizing the Emergent Disregard for Truth in Large Language Models | PDF

Es stellt sich hier natürlich die Frage, wie sich Halluzination und der genannte Bullshit-Faktor unterscheiden. Dazu habe ich folgendes gefunden:

“Daher gebe es auch einen entscheidenden Unterschied zwischen Halluzinationen und dem, was er als „Bullshit“ bezeichnet – und der liegt in der internen Überzeugung des Systems. Wenn ein Sprachmodell halluziniert, ist es nicht mehr in der Lage, korrekte Antworten zu erzeugen. „Beim Bullshit hingegen ist das Problem nicht Verwirrung über die Wahrheit, sondern eine fehlende Verpflichtung, die Wahrheit zu berichten” (t3n vom 21.08.2025).

Interessant finde ich, dass die Forscher wohl auch eine erste Möglichkeit gefunden haben, um diesen Bullshit-Faktor zu überprüfen. Gut wäre es natürlich, wenn die Ergebnisse dann allen zur Verfügung stehen würden. Gespannt bin ich besonders darauf, wie Open Source AI Modelle abschneiden.

KI-Agenten im Projektmanagement

Künstliche Intelligenz kann ganz generell in vielen Bereichen einer Organisation eingesetzt werden – natürlich auch im Projektmanagement. Zu KI im Projektmanagement gibt es in der Zwischenzeit viele Beiträge. Siehe dazu beispielsweise auch Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit.

In der Zwischenzeit geht es in der Diskussion zu KI auch immer stärker um die Frage, wie KI Agenten im Projektmanagement genutzt werden können. Dazu gibt es den Beitrag KI-Agenten im Projektmanagement: So unterstützen digitale Rollen den Projektalltag von Jörg Meier, vom 15.07.2025 im GPM Blog. Darin werden erste gute Hinweise gegeben. Dennoch:

Ich hätte mir hier gewünscht, dass der Author auch auf die Problematik der Nutzung von Closed Sourced Modellen wie ChatGPT oder Gemini hinweist. Ausgewählte KI Modelle sollten möglichst “wirklich” Open Source AI (Definition aus 2024) sein. Es wäre m.E. auch die Aufgabe der GPM die Digitale Souveränität insgesamt stärker bewusst zu machen. Siehe dazu beispielsweise auch Digitale Souveränität: Souveränitätsscore für KI Systeme.

Dass KI Agenten gerade in der Software-Entwicklung erhebliche Potenziale erschließen können, wird in diesem Beitrag deutlich: The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

Digital Sovereignty Index Score

Quelle: https://dsi.nextcloud.com/

In dem Blogbeitrag Digitale Souveränität: Europa, USA und China im Vergleich hatte ich schon einmal darauf hingewiesen, wie unterschiedlich die Ansätze zur Digitalen Souveränität in verschiedenen Regionen der Welt sind. Die verschiedenen Dimensionen waren hier “Right-based”, “Market-based”, “State-based” und “Centralization”, aus denen sich die gegensätzlichen Extreme “Hard Regulation” und “Soft Regulation” ergeben haben.

Der Digital Sovereignty Index Score (Abbildung) unterscheidet sich von dieser Betrachtungsweise. Im Unterschied zu der zu Beginn erwähnten Analyse, die eher die politische oder marktwirtschaftliche Perspektive hervorhebet, entsteht der Digital Sovereignty Index anders.

Hier wird analysiert, ob die wichtigsten 50 relevanten, selbst gehosteten Tools für digitale Kollaboration und Kommunikation verfügbar sind.

“We selected 50 of the most relevant self-hosted tools for digital collaboration and communication. These include platforms for file sharing, video conferencing, mail, notes, project management, and more.

We then measured their real-world usage by counting the number of identifiable server instances per country.

The result is an index score per country, (…)”

Source: https://dsi.nextcloud.com/

Die Digitale Souveränität wird in einem Score berechnet und für verschiedene Länder in einer anschaulichen Grafik dargestellt (Abbildung). Die Farben zeigen an, wie gut (grün) oder schlecht (rot) es in dem beschriebenen Sinn mit der Digitalen Souveränität in dem jeweiligen Land bestellt ist. Es ist gut zu erkennen, das die beiden Länder Finnland und Deutschland grün hervorgehoben sind.

Wie der Grafik weiterhin zu entnehmen ist, sind viele Länder, u.a. China noch weiß dargestellt. Die Limitierung der Analyse ist den Initiatoren des DSI Score durchaus bewusst, dennoch sehen sie diese Grafik als Startpunkt für eine bessere Übersicht zu dem Thema, zum dem jeder aufgefordert ist, mitzumachen.

Mich hat natürlich interessiert, wer hinter der Website steckt… – siehe da, es ist die Nextcloud GmbH mit dem Büro Stuttgart. Das wundert mich jetzt nicht wirklich, da Nextcloud schon immer auf die Digitale Souveränität bei Einzelpersonen, Organisationen und Öffentlichen Verwaltungen hingewiesen hat. Auch wir stellen nach und nach auf die Möglichkeiten von Nextcloud um, inkl. LocalAI und Open Source KI-Agenten. Siehe dazu auch

Von der digitalen Abhängigkeit zur digitalen Souveränität

Digitale Souveränität: Welche Open Source Alternativen gibt es?

Digitale Souveränität: Souveränitätsscore für KI Systeme

Digitale Souveränität: Google Drive im Vergleich zu Nextcloud

Künstliche Intelligenz: Was ist unter einer Mixture of Experts (MoE) Architektur zu verstehen?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten.

Doch es gibt noch eine andere Möglichkeit, und das ist eine Mixture of Experts (MoE) Architektur.

“In January of 2025, the MoE architecture got broad attention when DeepSeek released its 671 billion MoE model. But DeepSeek wasn’t the first to release an MoE model. The French AI Lab, Mistral AI, made headlines with the release of one of the first high-performing MoE models: Mixtral 8x7B (we think the name is great, Mistral + mixture) all the way back in December of 2023″ (Thomas et al. 2025).

Es geht also im Prinzip darum, für den jeweiligen Input das geeignete Modell auszuwählen, um einen qualitativ hochwertigen Output zu generieren. Das erinnert mich stark an meinen Blogbeitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Doch es gibt einen Unterschied: Bei dem Konzept eines AI-Routers, sind es verschiedene Modelle (LLM, SLM), die für den jeweiligen Input ausgewählt werden. Bei einer Mixture of Experts (MoE) Architektur ist das prinzipielle Vorgehen zwar ähnlich, doch es sind hier speziell trainierte Modelle mit Expertenstatus, die dann zur Auswahl stehen.

Es zeigt sich in solchen Beiträgen immer mehr, dass ein Unternehmen ein dynamisches, eigenes KI-System konfigurieren sollte, damit die Möglichkeiten der Künstlichen Intelligenz genau zu den Anforderungen und dem Kontext passt.

Aus meiner Sicht, sollten die Modelle alle der Definition einer Open Source AI entsprechen – das ist aktuell noch nicht überall gegeben. Siehe dazu auch Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Künstliche Intelligenz: Mit FlexOlmo Trainingsmodelle kollaborativ erarbeiten – eine interessante Idee

Quelle: https://www.youtube.com/watch?v=dbTRBpA7FVQ

Trainingsmodelle sind für die Qualität der Ergebnisse von KI-Abfragen bedeutend. Dabei kann es sich im einfachsten Fall um ein Large Language Model (LLM) handeln – ganz im Sinne von “One Size Fits All, oder auch um verschiedene, spezialisierte Small Language Models (SLMs). Alles kann dann auch mit Hilfe eines AI-Routers sinnvoll kombiniert werden. Darüber hinaus ist es auch möglich, bestehende Modelle über InstructLab mit eigenen Daten zu kombinieren und zu trainieren.

Noch weiter geht jetzt Ai2, eine Not for Profit Organisation, über die ich schon einmal geschrieben hatte (Blogbeitrag). Mit FlexOlmo steht nun über Ai2 ein Trainingsmodell zur Verfügung, bei dem die Daten flexibel von einer Community weiterentwickelt / trainiert werden können:

“The core idea is to allow each data owner to locally branch from a shared public model, add an expert trained on their data locally, and contribute this expert module back to the shared model. FlexOlmo opens the door to a new paradigm of collaborative AI development. Data owners who want to contribute to the open, shared language model ecosystem but are hesitant to share raw data or commit permanently can now participate on their own terms” (Ai2 2025).

Die Idee ist wirklich spannend, da sie auf einem offenen Trainingsmodell basiert – ganz im Sinne von Open Source AI – und die Eigentümer der Daten darüber entscheiden, ob ihre Daten von dem gemeinsamen Modell genutzt werden können, oder eben nicht. Wer noch tiefer in diese Idee einsteigen möchte, kann das mit folgendem Paper gerne machen:

Shi et al (2025): FLEXOLMO: Open Language Models for Flexible Data Use | PDF

Innovationen: Künstliche Intelligenz und die White Spot Analyse

White Spot Analyse als Prozess nach Achatz (2012)

Manchmal könnte man der Meinung sein, dass es kaum noch Möglichkeiten gibt, etwas Neues auf den Markt zu bringen, doch das ist natürlich ein Trugschluss. Beispielhaft möchte ich dazu folgendes Zitat erwähnen:

“Es gibt nichts Neues mehr. Alles, was man erfinden kann, ist schon erfunden worden. “
Charles H. Duell, US-Patentamt 1899

Da stellt sich natürlich gleich die Frage: Wo sind die neuen Produkte, neuen Dienstleistungen, neuen Märkte, und wie finde ich diese?

Dass das nicht so einfach ist, haben Innovationstheorien und -modelle schon ausführlich dargestellt. Dabei hat sich der Begriff der “blinden Flecke” etabliert. Gerade große Organisationen sehen einfach nicht mehr das Offensichtliche. Diese Wahrnehmungshemmung kann mit der Theorie der Pfadabhängigkeit erklärt werden.

Diese Gemengelage führt zwangsläufig zur nächsten Frage: Wie kann ein Unternehmen (oder auch eine einzelne Person) Bereiche finden, die noch nicht besetzt sind?

Solche weiße Flecken – White Spots – können relativ systematisch mit einem entsprechenden Prozess abgebildet und untersucht werden (Abbildung). Mit den heute vorhandenen Möglichkeiten der Künstlichen Intelligenz (GenAI) können Sie

Sprechen Sie mich bitte an, wenn Sie dazu Fragen haben.