Der Begriff User Experience (UX) spielt bei der Entwicklung von Produkten und Dienstleistungen eine große Rolle. Etwas kurz ausgedrückt, geht es bei UX um das “Benutzererlebnis” oder auch “Nutzererlebnis”. Dabei wird davon ausgegangen, dass es sich bei dem User um Menschen (Human) handelt.
In Zukunft wird es neben der Interaktion zwischen Technologien und Menschen auch immer mehr Interaktionen zwischen Technologien selbst stattfinden. Am Beispiel von KI-Agenten lässt sich das ganz gut nachvollziehen, denn hier muss das Design auf einen oder mehrere Agenten abgestimmt sein (Agentic Experience: AX). Der folgende Text unterstreicht das noch einmal:
“The designs of tomorrow will have to consider two kinds of users: humans and agents. The agent experience (AX) will be using APIs to compose workflows but now includes desktop interactions” (Thomas et al. 2025).
Ich bin gespannt, wie die UX-Community auf diese Entwicklung reagiert.
(c) Dr. Robert Freund; Quelle: vgl. Kuhnhenn et al. (2024)
In den verschiedenen gesellschaftlichen Diskussionen geht es oft um den “Markt” mit der entsprechenden Market Economy. Solche Beschreibungen suggerieren eine Homogenität, die es in “dem Markt” nicht gibt. Unternehmen, gerade große Konzerne, möchten allerings gerne, dass die im Markt üblichen unterschiedlichen Wissensströme kontrollierbar und nutzbar sind. Im einfachsten Fall bedeutet das dann: Der Markt ist das Ziel, um Gewinne zu erzielen.
Wie in dem Beitrag Von “Märkte als Ziele” zu “Märkte als Foren” erläutert, gibt es durch die vielschichtigen Vernetzungen der Marktteilnehmer untereinander eine hohe Komplexität und entsprechende Rückkopplungen. Märkte im ersten Schritt eher als Foren zu sehen, könnte hier eine angemessene Perspektive sein.
Wie in der Abbildung zu erkennen ist, ist die heute (2024) übliche Verteilung zwischen Universal Public Services, Market Economy und einer Self-organized Gift Economy deutlich: Die Market Economy dominiert alles, und das eben nicht zum Wohle aller, sondern zum Wohle weniger Personengruppen mit diffusen Vorstellungen davon, wie die “anderen” (Menschen) gefälligst leben sollen.
Demgegenüber gibt es in der Gesellschaft durchaus Bestrebungen, viele Produkte und Dienstleistungen zu entwickeln und anzubieten, die nicht den üblichen “Marktgesetzen” folgen, und eher selbst-organisiert sind. Die von Eric von Hippel seit vielen Jahren veröffentlichten Studien zeigen das beispielsweise bei Innovationen (Open User Innovationen) deutlich auf – und dieser Anteil wird immer größer!
Die von mehreren Autoren veröffentlichte Projektion in das Jahr 2048 zeigt eine deutliche Verschiebung der aktuellen Verteilung zu Gunsten einer Self-organized Gift Economy. Es wundert allerdings nicht, dass die Profiteure der Market Economy sich massiv gegen diese Entwicklung stemmen – mit allen demokratischen, allerdings auch mit nicht-demokratischen Mitteln.
Kuhnhenn et al. (2024): Future for All. A vision for 2048. Just • Ecological • Achievable | PDF
Am Beispiel der Künstlichen Intelligenz ist zu erkennen, dass die Profiteure der Market Economy mit immer neuen KI-Anwendungen Menschen, Organisationen und Nationen vor sich hertreiben und letztendlich abhängig machen wollen. Auf der anderen Seite bietet Künstliche Intelligenz vielen Menschen, Organisationen und Nationen heute die Chance, selbst-organisiert die neuen KI-Möglichkeiten zu nutzen.
Das allerdings nur, wenn Künstliche Intelligenz transparent, offen und demokratisiert zur Verfügung steht. Genau das bietet Open Source AI. Bitte beachten Sie, dass nicht alles, was Open Source AI genannt wird, auch Open Source AI ist! Siehe dazu beispielsweise
Qualitätsnetzwerk zur Analyse für mögliche Verbesserungen
Es gibt möglicherweise nichts, oder sehr wenig, was nicht verbessert werden kann. Diese Überlegung mündet in den allseits bekannten Kontinuierlichen Verbesserungsprozess (KVP, oder japanisch Kaizen). Die Frage, die in dem Zusammenhang gleich auftaucht lautet:
Wie kann diese kontinuierliche Verbesserung systematischer gestaltet werden?
Die Abbildung zeigt Ihnen dazu ein geeignetes Netzwerk, in dem die Dimensionen des Ishikawa-Diagramms und des Magischen Dreiecks (Qualität, Zeit und Kosten) in einer Matrix gegenübergestellt werden.
Suchen Sie sich zunächst einen Geschäftsprozess, oder einen Teilprozess aus, und formulieren Sie für die Schnittstellen, die mit den Nummern 1-15 gekennzeichnet sind, geeignete Fragen. Dadurch entsteht eine Art Leitfaden oder auch Checkliste, abgestimmt auf Ihre Organisation.
Wenn Sie “nur” zu jeder Schnittstelle 3-5 Fragen formulieren, kommen Sie dabei schon auf insgesamt 45-75 Möglichkeiten für Verbesserungen.
Die Digitale Abhängigkeit von amerikanischen oder chinesischen Tech-Konzernen, macht viele Privatpersonen, Unternehmen und Verwaltungen nervös und nachdenklich. Dabei stellen sich Fragen wie:
Wo befinden sich eigentlich unsere Daten?
Wissen Sie, wo sich ihre Daten befinden, wenn Sie neben ihren internen ERP-Anwendungen auch Internet-Schnittstellen, oder auch Künstliche Intelligenz, wie z.B. ChatGPT etc. nutzen?
Um wieder eine gewissen Digitale Souveränität zu erlangen, setzen wir seit mehreren Jahren auf Open Source Anwendungen. Die Abbildung zeigt beispielhaft einen Screenshot aus unserer NEXTCLOUD. Es wird deutlich, dass alle unsere Daten in Deutschland liegen – und das auch bei Anwendungen zur Künstlichen Intelligenz, denn wir verwenden LocalAI.
Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.
Da sich das Umfeld von Personen, Organisationen und ganzen Gesellschaften turbulent ändert, kommt es darauf an, die sich daraus ergebenden komplexen Situationen zu bewältigen. Dabei kommt der Resilienz eine besondere Bedeutung zu.
Der Begriff wird allerdings in der Wissenschaft unterschiedlich interpretiert. In Bezug auf Menschen und deren Gemeinschaften, kann Resilienz als eine Art “Widerstandsfähigkeit” verstanden werden, ohne dadurch dauerhaft beeinträchtigt zu werden. (vgl. Nuber 2021). Die Autorin hat dazu sieben Säulen genannt:
“Ursula Nuber hat 2011 in einem wegweisenden Artikel sieben Säulen der Resilienz definiert: Optimismus, Akzeptanz, Lösungsorientierung, Opferrolle verlassen, Verantwortung übernehmen, Netzwerkorientierung und Zukunftsplanung. Wie die Praxis zeigt, ist das wahre Wunderwerkzeug dabei die Akzeptanz. Ein wichtiges Akzeptanzmodell stammt von Theo Wehner, der sich mit der psychischen Verarbeitung von Diskrepanzen zwischen Wunsch und Wirklichkeit beschäftigt hat” (Marx 2025, in projektmanagementaktuell 2/2025).
In dem Artikel von Susanne Marx werden auch die dazugehörenden Quellen genannt:
Nuber, U. (2011): Leben mit einer dicken Haut. Psychologie heute.
Wehner, T. e. (2015).:Organisationale Praktiken zum Lernen aus unerwarteten Ereignissen in Krankenhäusern. In H. G. M. Gartmeier, Fehler. Ihre Funktionen im Kontext individueller und gesellschaftlicher Entwicklung.
Es ist immer gut, wenn man sich bei einem Thema auf Primärliteratur bezieht, und sich nicht von populärwissenschaftlichen oder sogar pseudowissenschaftlichen Veröffentlichungen beeinflussen lässt. Siehe zu dem gesamten Thema auch:
Wir kennen in unserem Umfeld viele Personen, die in bestimmten Situationen – oder auch generell – eher pessimistisch, bzw. optimistisch reagieren. Zwischen den beiden Polen gibt es möglicherweise ein Kontinuum, sodass diese Dichotomie etwas kritisch zu sehen ist.
Dennoch: Es gibt durchaus Personen, die sich als überwiegend pessimistisch – also als Pessimist – sehen, und das als grundlegende Eigenschaft ihrer Persönlichkeit einordnen. Das das ein Fehler sein kann, erläutert Prof. Dr. Florian Bauer:
“Das ist ein Fehler. Dies nennt man „Fixed Mindset“. Jemand mit einem Fixed Mindset ist beispielsweise tief überzeugt, dass er einfach nicht geschäftlich verhandeln kann. Diese negative Erwartung ist ein Grund, weshalb seine Verhandlungen wirklich misslingen. Eine sich selbst erfüllende Prophezeiung. Und nach jedem Misserfolg wird der Glaube bestärkt, dass man an dem Problem nichts ändern kann …” (Bauer 2025, in projektmanagementaktuelle 2/2025).
Diese grundlegende Einstellung “Man kann ja eh nichts machen …” geht indirekt darauf zurück, dass Veränderungen kaum möglich sind, ja sogar der “eigenen Natur” widersprechen. So, oder so ähnliche, Einschätzungen gabe es auch schon einmal bei der frühen Diskussion um den Begriff “Intelligenz”.
Besser ist es, eher optimistisch zu sein und von einem Growth Mindset auszugehen. Diese Einstellung führt oftmals zu einer Verstärkung positiver Aspekte und letztendlich zu positiven Ergebnissen. Siehe dazu auch
Von anderen Organisationen zu lernen, erscheint auf den ersten Blick eine wirkungsvolle Möglichkeit zu sein, organisationales Lernen zu unterstützen. Dabei ist Lernen der Prozess und Wissen das Ergebnis.
Betrachten wir in dem Zusammenhang die drei Möglichkeiten, Wissen zu artikulieren, zu kodifizieren und zu transformieren, so wird schnell deutlich, dass es schwierig ist, Wissen von einem Best Practice Unternehmen auf ein anderes Unternehmen zu übertragen.
“This leads to a discussion in organisational learning theory: that ‘best practices’ no longer represent ‘the golden standard’ to achieve successful learning across organisational boundaries. The logic is that best practices represent ‘false generalisations’ because best practices “(…) depend on the predictability and stability for the environment, and it is well known that the environment of alliances lacks both criteria” (Nielsen & Brix 2024).
Es ist dennoch erstaunlich, wie oft noch Best Practices verwendet werden. Durch das stark veränderte Umfeld haben sich manche Erkenntnisse aus der Vergangenheit (hier: Organisationale Lerntheorien) möglicherweise überholt.
Innovationsmanagement zwischen Steuerung und Zufall (Kaudela-Baum 2008:35)
In dem Beitrag Innovationsmanagement zwischen Steuerung und Zufall hatte ich schon einmal darauf hingewiesen, dass Organisationen gerade in Innovationsmanagement zwischen Steuerung und Zufall hin und her “pendeln” (siehe Abbildung).
Die gesamte Organisationen soll somit Routineprozesse (inkl. KVP: Kontinuierlicher Verbesserungsprozess / oder Kaizen) effizient gestalten (Exploitation), und andererseits in dem aktuell turbulenten Umfeld flexibel und dynamisch sein (Exploration). Dieses Sowohl-als-auch wird auch als Organisationale Ambidextrie bezeichnet. Siehe dazu ausführlich:
Lang-Koetz, C., Reischl, A., Fischer, S., Weber, S., Kusch, A. (2023). Ambidextrie und das hybride Vorgehen. In: Ambidextres Innovationsmanagement in KMU. Springer Gabler, Berlin, Heidelberg.
Natürlich erinnert das auch an die Hybride Wettbewerbsstrategie Mass Customization und an das Hybride Projektmanagement.
Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:
(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?
Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:
“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler(Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).
Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.
(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?
Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.
Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:
„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).
Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?
Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.
“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).
Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?
In den letzten Jahrzehnten haben wir uns an alle möglichen Tools gewöhnt. Dazu gehören z.B. alle Microsoft-, Google-, Meta-Produkte. Es fällt vielen Privatpersonen und Organisationen sehr schwer, sich aus dieser Abhängigkeit zu befreien (Pfadabhängigkeit). Dennoch merken in letzter Zeit viele Privatpersonen und Organisationen, dass es Zeit wird, Alternativen zu suchen.
Es stellt sich allerdings die Frage: Welche Open Source Alternativen gibt es?
Wer sich bisher mit dem Thema noch nicht wirklich auseinandergesetzt hat, wird über die von Prof. Wehners zusammengestellte Liste an Open Source Alternativen überrascht sein. In der Abbildung ist nur ein Ausschnitt zu sehen. Darin habe ich hervorgehoben (grün umrahmt), welche der genannten Tools wir selbst schon einsetzen. Bei den Videokonferenzen sollte noch das in NEXTCLOUD intergierte TALK mit aufgenommen werden.
Schauen Sie sich die Liste an und überlegen Sie, welche Alternative Sie einmal ausprobieren wollen. Bei Fragen können Sie uns ansprechen. Wir teilen Ihnen gerne unsere Erfahrungen mit.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.