Künstliche Intelligenz und Arbeitshandeln: Grenzen wissenschaftlich-technischer Beherrschung

Böhle et al. 2011:21; entnommen aus Huchler 2016:62

In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.

Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.

Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.

Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).

Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.

Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.

Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?

Ein aufgeklärter “Ich-Begriff” bedeutet, dass Individuen ihren Einfluss perspektivisch drastisch ausbauen können

Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.

Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.

Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.

Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.

Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.

Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:

“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).

Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.

Dabei steht nicht der Profit im Mittelpunkt, sondern das soziale Miteinander zum Wohle aller.

GPM (2025): Künstliche Intelligenz im Projektkontext – Studie

Es ist schon eine Binsenweisheit, dass Künstliche Intelligenz (GenAI) alle Bereiche der Gesellschaft mehr oder weniger berühren wird. Das ist natürlich auch im Projektmanagement so. Dabei ist es immer gut, wenn man sich auf verlässliche Quellen, und nicht auf Berater-Weisheiten verlässt.

Eine dieser Quellen ist die Gesellschaft für Projektmanagement e.V., die immer wieder Studien zu verschiedenen Themen veröffentlicht. In der Studie GPM (2025): Gehalt und Karriere im Projektmanagement. Sonderthema: Die Anwendung Künstlicher Intelligenz im Projektmanagement findet sich auf Seite 13 folgende Zusammenfassung:

Künstliche Intelligenz im Projektkontext
Künstliche Intelligenz (KI) wird im Bereich Projektmanagement in der Mehrheit der Unternehmen eingesetzt, allerdings in noch geringem Maße.
(1) KI-basierte Tools werden insgesamt eher selten genutzt, wenn sie zum Einsatz kommen, dann sind es hauptsächlich ChatGPT, Jira, MS Pilot oder eigenentwickelte Tools.
(2) Es zeichnet sich kein eindeutiger Projektmanagement-Bereich ab, in dem KI bevorzugt zum Einsatz kommt. Am deutlichsten noch in der Projektplanung und in der Projektinitiierung, am seltensten im Projektportfolio- und im Programmmanagement.
(3) Der Nutzen der KI wird tendenziell eher positiv gesehen, insbesondere als Unterstützung der alltäglichen Arbeit, zur Erleichterung der Arbeit im Projektmanagement und zur Erhöhung der Produktivität.
(4) Der Beitrag von KI zu einem höheren Projekterfolg wird von der Mehrheit der Befragten nicht gesehen – allerdings nur von einer knappen Mehrheit.
(5) Es besteht eine grundlegende Skepsis gegenüber KI, was verschiedene Leistungsparameter im Vergleich zum Menschen betrifft. Alle hierzu gestellten Fragen wie Fehleranfälligkeit, Genauigkeit, Konsistenz der Information oder Konsistenz der Services wurden mehrheitlich zu Gunsten des Menschen bewertet.
(6) Die überwiegende Mehrheit der befragten Projektmanagerinnen und Projektmanager teilt diverse Ängste gegenüber der KI nicht, wie z. B. diese werde Jobs vernichten oder dem Menschen überlegen sein.”
Quelle: GPM (2025). Anmerkung: Im Originaltext wurden Aufzählungszeichen verwendet. Um besser auf einzelnen Punkte einzugehen, habe ich diese nummeriert, was somit keine Art von Priorisierung darstellt.

An dieser Stelle möchte ich nur zwei der hier genannten Ergebnisse kommentieren:

Punkt (1): Es wird deutlich, dass hauptsächlich Closed Source Modelle verwendet werden. Möglicherweise ohne zu reflektieren, was mit den eigenen Daten bei der Nutzung passiert – gerade wenn auch noch eigene, projektspezifische Daten hochgeladen werden. Besser wäre es, ein Open Source basiertes KI-System und später Open Source basierte KI-Agenten zu nutzen. Dazu habe ich schon verschiedene Blogbeiträge geschrieben. Siehe dazu beispielhaft Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Punkt (6): Es geht bei der Nutzung von KI nicht immer um die “Vernichtung” (Was für ein schreckliches Wort) von Jobs, sondern darum, dass viele verschiedene Aufgaben (Tasks) in Zukunft von KI autonom bearbeitet werden können. Siehe dazu auch The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen

Quelle: Xu et al. (2025): The Agent Company | https://the-agent-company.com/

Es ist mehr als eine interessante Spielerei von KI-Enthusiasten: KI-Agenten (AI-Agents) können immer mehr Aufgaben in einem Unternehmen autonom übernehmen. Um das genauer zu untersuchen, haben Wissenschaftler in dem Paper

Xu et al. (2025): TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

wichtige Grundlagen dargestellt, und auch untersucht, welche Tasks in einem Unternehmen von KI-Agenten autonom übernommen werden können.

Wie in der Abbildung zu erkennen ist, wurden Mitarbeiterrollen simuliert (Engineer, CTO, HR) und verschiedene Tasks angenommen. Bei dem Admin beispielsweise “arrange meeting room” und bei dem Projektmanager (PM) “teams sprint planning”, was auf das Scrum Framework hinweist. Als Modelle für Trainingsdaten wurden Large Language Models (LLMs) genutzt – closed source und open weight models:

“We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that the most competitive agent can complete 30% of tasks autonomously” (Xu et al (2025).

Es wird zwar ausdrücklich auf die Beschränkungen (Limitations) hingewiesen, doch gibt diese Untersuchung konkrete Hinweise darauf, welche Aufgaben (Tasks) in Zukunft möglicherweise von KI-Agenten in Unternehmen übernommen werden können.

Interessant bei dem Paper ist, dass dazu auch eine ausführliche Website https://the-agent-company.com/ aufgebaut wurde, auf der Videos, inkl. der verschiedenen KI-Agenten zu finden sind. Interessiert Sie das? Wenn ja, nutzen Sie einfach den Quick Start Guide und legen Sie los!

Natürlich sollte jedes Unternehmen für sich herausfinden, welche Tasks von KI-Agenten sinnvoll übernommen werden sollten. Dabei wird schon deutlich, dass es hier nicht darum geht, ganze Berufe zu ersetzen, sondern ein Sammelsurium von unterschiedlichen Tasks (Ausgaben) autonom durchführen zu lassen.

Hervorzuheben ist aus meiner Sicht natürlich, dass die Autoren mit dem letzten Satz in ihrem Paper darauf hinweisen, dass die Nutzung von Open Source AI in Zukunft ein sehr vielversprechender Ansatz sein kann – aus meiner Sicht: sein wird!

“We hope that TheAgentCompany provides a first step, but not the only step, towards these goals, and that we or others may build upon the open source release of TheAgentCompany to further expand in these promising directions” (Xu et al 2025).

Organisation und Lernen – ein immer noch schwieriges Thema. Warum eigentlich?

Image by Gerd Altmann from Pixabay

Veränderungen in unserem Umfeld bedeuten, dass sich Gesellschaften, Organisationen und einzelne Personen anpassen müssen. Die lieb gewonnenen Routinen auf verschiedenen Ebenen verlieren immer öfter ihre Berechtigung und werden ersetzt. Anpassung bedeutet, dass wir Neues lernen müssen. Siehe dazu auch Reskilling 2030 des World Economic Forum.

Bei dem Wort “Lernen” denken viele an Schule oder Universitäten usw., doch ist Lernen eher als lebenslanger Prozess zu sehen. – auch in (Lernenden) Organisationen. Weiterhin haben sich die Schwerpunkte des Lernens in der letzten Zeit verschoben, denn in Zukunft kommt dem selbstorganisierten Lernen – auch mit Hilfe von Künstlicher Intelligenz – eine bedeutende Rolle zu.

Es ist für mich daher immer noch erstaunlich, wie wenig Organisationen über das Lernen von Mitarbeitern, von Teams, der gesamten Organisation und im Netzwerk wissen. Bezeichnend ist hier, dass das Lernen im beruflichen Kontext oftmals nur als reiner Kostenfaktor gesehen wird (Merkmal der klassischen industriellen Kosten- und Leistungsrechnung).

“In a 2020 BCG study of the learning capabilities of 120 large global companies, only 15% said they granted corporate learning the high priority it deserves. Skills are not linked to corporate strategy. The same BCG study shows that less than 15% of leaders believe that learning constitutes a core part of their company’s overall business strategy” (Quelle).

Das Corporate Learning sollte sich bewusst machen, dass Lernen, Kompetenzentwicklung und Erfolg einer Organisation zusammenhängen. Siehe dazu auch meinen Beitrag Wettbewerbsfähigkeit, Lernen, Kompetenz und Intelligenz hängen zusammen – aber wie?, den ich schon 2013 geschrieben hatte.

Warum wird in den Organisationen darauf zu wenig geachtet, obwohl doch viele Studien und Veröffentlichungen immer dringender auf diese Zusammenhänge hinweisen?

Meines Erachtens liegt es daran, dass viele Führungskräfte nichts von Lernen verstehen und auch keine entsprechende Kompetenzen entwickelt haben. Wie wäre es, wenn Führungskräfte einen Masterabschluss im Bereich Erwachsenenbildung nachweisen müssten? Ich habe meinen Masterabschluss im Bereich der Erwachsenenbildung beispielsweise an der TU Kaiserslautern erfolgreich abgeschlossen. Siehe dazu auch

Lernende Organisation oder Organisationales Lernen?

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Von der Market Economy zur Self-organized Gift Economy

(c) Dr. Robert Freund; Quelle: vgl. Kuhnhenn et al. (2024)

In den verschiedenen gesellschaftlichen Diskussionen geht es oft um den “Markt” mit der entsprechenden Market Economy. Solche Beschreibungen suggerieren eine Homogenität, die es in “dem Markt” nicht gibt. Unternehmen, gerade große Konzerne, möchten allerings gerne, dass die im Markt üblichen unterschiedlichen Wissensströme kontrollierbar und nutzbar sind. Im einfachsten Fall bedeutet das dann: Der Markt ist das Ziel, um Gewinne zu erzielen.

Wie in dem Beitrag Von “Märkte als Ziele” zu “Märkte als Foren” erläutert, gibt es durch die vielschichtigen Vernetzungen der Marktteilnehmer untereinander eine hohe Komplexität und entsprechende Rückkopplungen. Märkte im ersten Schritt eher als Foren zu sehen, könnte hier eine angemessene Perspektive sein.

Wie in der Abbildung zu erkennen ist, ist die heute (2024) übliche Verteilung zwischen Universal Public Services, Market Economy und einer Self-organized Gift Economy deutlich: Die Market Economy dominiert alles, und das eben nicht zum Wohle aller, sondern zum Wohle weniger Personengruppen mit diffusen Vorstellungen davon, wie die “anderen” (Menschen) gefälligst leben sollen.

Demgegenüber gibt es in der Gesellschaft durchaus Bestrebungen, viele Produkte und Dienstleistungen zu entwickeln und anzubieten, die nicht den üblichen “Marktgesetzen” folgen, und eher selbst-organisiert sind. Die von Eric von Hippel seit vielen Jahren veröffentlichten Studien zeigen das beispielsweise bei Innovationen (Open User Innovationen) deutlich auf – und dieser Anteil wird immer größer!

Die von mehreren Autoren veröffentlichte Projektion in das Jahr 2048 zeigt eine deutliche Verschiebung der aktuellen Verteilung zu Gunsten einer Self-organized Gift Economy. Es wundert allerdings nicht, dass die Profiteure der Market Economy sich massiv gegen diese Entwicklung stemmen – mit allen demokratischen, allerdings auch mit nicht-demokratischen Mitteln.

Kuhnhenn et al. (2024): Future for All. A vision for 2048. Just • Ecological • Achievable | PDF

Am Beispiel der Künstlichen Intelligenz ist zu erkennen, dass die Profiteure der Market Economy mit immer neuen KI-Anwendungen Menschen, Organisationen und Nationen vor sich hertreiben und letztendlich abhängig machen wollen. Auf der anderen Seite bietet Künstliche Intelligenz vielen Menschen, Organisationen und Nationen heute die Chance, selbst-organisiert die neuen KI-Möglichkeiten zu nutzen.

Das allerdings nur, wenn Künstliche Intelligenz transparent, offen und demokratisiert zur Verfügung steht. Genau das bietet Open Source AI. Bitte beachten Sie, dass nicht alles, was Open Source AI genannt wird, auch Open Source AI ist! Siehe dazu beispielsweise

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Digitale Souveränität: Wo befinden sich deine Daten?

Screenshot von unserer Nextcloud-Installation

Die Digitale Abhängigkeit von amerikanischen oder chinesischen Tech-Konzernen, macht viele Privatpersonen, Unternehmen und Verwaltungen nervös und nachdenklich. Dabei stellen sich Fragen wie:

Wo befinden sich eigentlich unsere Daten?

Wissen Sie, wo sich ihre Daten befinden, wenn Sie neben ihren internen ERP-Anwendungen auch Internet-Schnittstellen, oder auch Künstliche Intelligenz, wie z.B. ChatGPT etc. nutzen?

Um wieder eine gewissen Digitale Souveränität zu erlangen, setzen wir seit mehreren Jahren auf Open Source Anwendungen. Die Abbildung zeigt beispielhaft einen Screenshot aus unserer NEXTCLOUD. Es wird deutlich, dass alle unsere Daten in Deutschland liegen – und das auch bei Anwendungen zur Künstlichen Intelligenz, denn wir verwenden LocalAI.

Wie hängen Pessimismus und Fixed Mindset zusammen?

Wir kennen in unserem Umfeld viele Personen, die in bestimmten Situationen – oder auch generell – eher pessimistisch, bzw. optimistisch reagieren. Zwischen den beiden Polen gibt es möglicherweise ein Kontinuum, sodass diese Dichotomie etwas kritisch zu sehen ist.

Dennoch: Es gibt durchaus Personen, die sich als überwiegend pessimistisch – also als Pessimist – sehen, und das als grundlegende Eigenschaft ihrer Persönlichkeit einordnen. Das das ein Fehler sein kann, erläutert Prof. Dr. Florian Bauer:

“Das ist ein Fehler. Dies nennt man „Fixed Mindset“. Jemand mit einem Fixed Mindset ist beispielsweise tief überzeugt, dass er einfach nicht geschäftlich verhandeln kann. Diese negative Erwartung ist ein Grund, weshalb seine Verhandlungen wirklich misslingen. Eine sich selbst erfüllende Prophezeiung. Und nach jedem Misserfolg wird der Glaube bestärkt, dass man an dem Problem nichts ändern kann …” (Bauer 2025, in projektmanagementaktuelle 2/2025).

Diese grundlegende Einstellung “Man kann ja eh nichts machen …” geht indirekt darauf zurück, dass Veränderungen kaum möglich sind, ja sogar der “eigenen Natur” widersprechen. So, oder so ähnliche, Einschätzungen gabe es auch schon einmal bei der frühen Diskussion um den Begriff “Intelligenz”.

Besser ist es, eher optimistisch zu sein und von einem Growth Mindset auszugehen. Diese Einstellung führt oftmals zu einer Verstärkung positiver Aspekte und letztendlich zu positiven Ergebnissen. Siehe dazu auch

Wesentliche Eigenschaften eines Growth Mindset

Anmerkungen zu Growth Mindset, Intelligenz und Kompetenz

Mindset: Ein oft verwendeter Begriff etwas genauer betrachtet

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:

(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?

Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:

“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler (Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).

Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.

(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?

Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.

Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner  2002:46-47).

Insofern wäre dann der Vergliche zwischen Künstlicher Intelligenz und Multiplen Intelligenzen ein Kategorienfehler. Siehe dazu auch Künstliche Intelligenz – ein Kategorienfehler? Darin wird auch auf die sozialen und emotionalen Dimensionen bei Menschen hingewiesen.

(3) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlichen Kompetenzen ein Kategorienfehler?

Wenn wir Künstliche Intelligenz mit Menschlichen Kompetenzen vergleichen, vergleichen wir auch indirekt die beiden Konstrukte “Intelligenz” und “Kompetenz. In dem Beitrag Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen? finden Sie dazu ausführlichere Anmerkungen.

Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?

Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.

“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).

Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenzen auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Künstliche Intelligenz: Ein gesellschaftlicher Bifurkationspunkt mit der Chance für einen Pfadwechsel?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

In unserer heutigen Welt, in der alles und jeder miteinander vernetzt ist, ist die Komplexität in allen Systemen nicht nur Theorie, sondern hat auch für jeden Einzelnen praktische Auswirkungen. Dabei scheint es eine gewisse gesellschaftliche Ohnmacht gegenüber den vielfältigen globalen Problemen zu geben. Denn obwohl es Belege für diese Probleme gibt, wird nicht/kaum gehandelt. Siehe dazu z.B. Nassehi (2020) mit der entsprechenden Begründung aus der Systemtheorie.

In “Zeiten von Corona” allerdings haben wir deutlich erkennen können, dass es den jeweiligen Staaten durchaus gelungen ist, für die Menschen und deren Überleben zu handeln. Dabei wurde auf die Unternehmen und Finanzinstitutionen im Markt weniger Rücksicht genommen. Solche historischen Punkte können also Wendepunkte (Bifurkationspunkte) dafür sein, von bekannten Wegen – also einer Pfadabhängigkeit – abzuweichen, und neue Wege/Pfade zu gehen.

“In bestimmten Konstellationen aber, zu bestimmten Zeitpunkten im historischen Verlauf, die als geschichtliche „Bifurkationspunkte“ begriffen werden können, eröffnen sich plötzlich Chancen auf einen Pfadwechsel, weil aufgetretene Anomalien nicht mehr ignoriert werden können (vgl. Knöbl 2010; Goldstone 1998). Es handelt sich um Krisenmomente, in denen die Fortsetzung der institutionellen Operationen in Frage steht, in denen eben nicht klar ist, wie es weitergeht, weil die Prozessketten gerissen sind. An solchen Gabelungen erscheint es vielen Akteuren wünschenswert, auf den alten Pfad zurückzukehren und so schnell wie möglich die eingespielten Routinen wiederzubeleben. Es ist aber auch möglich, einen neuen Pfad einzuschlagen” (Rosa, H. Pfadabhängigkeit, Bifurkationspunkte und die Rolle der Soziologie. Ein soziologischer Deutungsversuch der Corona-Krise. Berlin J Soziol 30, 191–213 (2020). https://doi.org/10.1007/s11609-020-00418-2).

Stehen wir möglicherweise mit dem Aufkommen Künstlicher Intelligenz wieder vor so einem Wendepunkt, einem Bifurkationspunkt, der staatliche Organisationen dazu aufruft, ihre tradierten, marktorientierten Entscheidungen wieder mehr auf das Wohl der Menschen auszurichten? Siehe dazu auch

Der Strukturbruch zwischen einfacher und reflexiver Modernisierung

“Pfadabhängigkeit” in Organisationen

Alle reden über Komplexität, doch wer kennt schon Bifurkationspunkte?

Hybrides Projektmanagement: “Emergent Practice” und Bifurkationspunkte

Worin unterscheiden sich Industry 5.0 und Society 5.0?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften