Wir kennen in unserem Umfeld viele Personen, die in bestimmten Situationen – oder auch generell – eher pessimistisch, bzw. optimistisch reagieren. Zwischen den beiden Polen gibt es möglicherweise ein Kontinuum, sodass diese Dichotomie etwas kritisch zu sehen ist.
Dennoch: Es gibt durchaus Personen, die sich als überwiegend pessimistisch – also als Pessimist – sehen, und das als grundlegende Eigenschaft ihrer Persönlichkeit einordnen. Das das ein Fehler sein kann, erläutert Prof. Dr. Florian Bauer:
“Das ist ein Fehler. Dies nennt man „Fixed Mindset“. Jemand mit einem Fixed Mindset ist beispielsweise tief überzeugt, dass er einfach nicht geschäftlich verhandeln kann. Diese negative Erwartung ist ein Grund, weshalb seine Verhandlungen wirklich misslingen. Eine sich selbst erfüllende Prophezeiung. Und nach jedem Misserfolg wird der Glaube bestärkt, dass man an dem Problem nichts ändern kann …” (Bauer 2025, in projektmanagementaktuelle 2/2025).
Diese grundlegende Einstellung “Man kann ja eh nichts machen …” geht indirekt darauf zurück, dass Veränderungen kaum möglich sind, ja sogar der “eigenen Natur” widersprechen. So, oder so ähnliche, Einschätzungen gabe es auch schon einmal bei der frühen Diskussion um den Begriff “Intelligenz”.
Besser ist es, eher optimistisch zu sein und von einem Growth Mindset auszugehen. Diese Einstellung führt oftmals zu einer Verstärkung positiver Aspekte und letztendlich zu positiven Ergebnissen. Siehe dazu auch
Die aktuelle Diskussion um Künstliche Intelligenz wird einerseits technisch geführt, andererseits geht es dabei auch um Menschliche Kompetenzen. Alleine diese Gegenüberstellung von “Intelligenz” hier und “Kompetenz” dort wirft schon Fragen auf:
(1) Ist der Begriff “Künstliche Intelligenz” schon ein Kategorienfehler?
Zunächst soll es um den etablierten Begriff “Künstliche Intelligenz” gehen, der durchaus kritisch hinterfragt werden kann. Genau das hat Beispielsweise der Meister der Systemtheorie, Niklas Luhmann, getan:
“Der Soziologe Niklas Luhmann beschreibt dies treffend als Kategorienfehler(Luhmann & Schorr, 1982) – ein grundlegender Unterschied zwischen maschineller Informationsverarbeitung und menschlichen Qualitäten. Maschinen können zwar Daten präzise und schnell verarbeiten, doch echte Kreativität, Sinnverständnis und emotionale Reflexion bleiben ihnen verschlossen” (Ehlers 2025, in weiter bilden 1/2025).
Jetzt kann man natürlich anmerken, dass sich diese Argumentation auf die damaligen IT-Systeme bezog, die heutigen KI-Systeme allerdings doch anders sind. Diese Perspektive ist durchaus berechtigt, doch ist an der Argumentation Luhmanns immer noch etwas dran, wenn wir die heutigen KI-Systeme betrachten.
(2) Ist der Vergleich zwischen Künstlicher Intelligenz und Menschlicher Intelligenz etwa auch ein Kategorienfehler?
Interessant ist hier, dass es den Hinweis auf einen Kategorienfehler auch aus der Intelligenzforschung gibt. Siehe dazu ausführlicher OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Wenn wir also mit Intelligenz das meinen, was ein Intelligenztest misst, sieht es für den Menschen schon jetzt ziemlich schlecht aus.
Wenn wir allerdings Intelligenz entgrenzen und eher den Ansatz von Howard Gardner sehen, der von Multiplen Intelligenzen ausgeht, wird es schon etwas spannender, denn nach Howard Gardner ist Intelligenz u.a. ein biopsychologisches Potenzial:
„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).
Das AIComp-Kompetenzmodell, bei dem nicht die Abgrenzung zwischen den Möglichkeiten der Künstlichen Intelligenz und den Menschlichen Kompetenzen steht, sondern die “produktive Kooperationskultur” (ebd.). Eine Kooperationskultur zwischen Intelligenz und Kompetenz?
Wenn das alles nicht schon verwirrend genug ist, schreiben mehrere Autoren in dem Gesamtzusammenhang auch noch von Menschlichen Qualitäten oder Skills (Future Skills). Letzteres unterstellt eine eher amerikanische Perspektive auf Kompetenzen.
“Frühere Kompetenzdefinitionen beziehen sich auf die im anglo-amerikanischen Raum gebräuchliche Unterscheidung individueller Leistunsgsdispositionen in Knowledge, Skills, Abilities and Other Characteristics (KSAO), wobei modernere Definitionen auch eher die Selbstorganisationsdisposition in den Vordergrund stellen” (Freund 2011).
Sollten wir daher lieber von Künstlichen Kompetenzen und Menschlichen Kompetenzen auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk sprechen, und diese dann vergleichen?
Conceptual technology illustration of artificial intelligence. Abstract futuristic background
In unserer heutigen Welt, in der alles und jeder miteinander vernetzt ist, ist die Komplexität in allen Systemen nicht nur Theorie, sondern hat auch für jeden Einzelnen praktische Auswirkungen. Dabei scheint es eine gewisse gesellschaftliche Ohnmacht gegenüber den vielfältigen globalen Problemen zu geben. Denn obwohl es Belege für diese Probleme gibt, wird nicht/kaum gehandelt. Siehe dazu z.B. Nassehi (2020) mit der entsprechenden Begründung aus der Systemtheorie.
In “Zeiten von Corona” allerdings haben wir deutlich erkennen können, dass es den jeweiligen Staaten durchaus gelungen ist, für die Menschen und deren Überleben zu handeln. Dabei wurde auf die Unternehmen und Finanzinstitutionen im Markt weniger Rücksicht genommen. Solche historischen Punkte können also Wendepunkte(Bifurkationspunkte) dafür sein, von bekannten Wegen – also einer Pfadabhängigkeit – abzuweichen, und neue Wege/Pfade zu gehen.
“In bestimmten Konstellationen aber, zu bestimmten Zeitpunkten im historischen Verlauf, die als geschichtliche „Bifurkationspunkte“ begriffen werden können, eröffnen sich plötzlich Chancen auf einen Pfadwechsel, weil aufgetretene Anomalien nicht mehr ignoriert werden können (vgl. Knöbl 2010; Goldstone 1998). Es handelt sich um Krisenmomente, in denen die Fortsetzung der institutionellen Operationen in Frage steht, in denen eben nicht klar ist, wie es weitergeht, weil die Prozessketten gerissen sind. An solchen Gabelungen erscheint es vielen Akteuren wünschenswert, auf den alten Pfad zurückzukehren und so schnell wie möglich die eingespielten Routinen wiederzubeleben. Es ist aber auch möglich, einen neuen Pfad einzuschlagen” (Rosa, H. Pfadabhängigkeit, Bifurkationspunkte und die Rolle der Soziologie. Ein soziologischer Deutungsversuch der Corona-Krise. Berlin J Soziol 30, 191–213 (2020). https://doi.org/10.1007/s11609-020-00418-2).
Stehen wir möglicherweise mit dem Aufkommen Künstlicher Intelligenz wieder vor so einem Wendepunkt, einem Bifurkationspunkt, der staatliche Organisationen dazu aufruft, ihre tradierten, marktorientierten Entscheidungen wieder mehr auf das Wohl der Menschen auszurichten? Siehe dazu auch
Auch bei dem Thema Smart City wird oft der Begriff “Intelligenz” verwendet. Dabei denkt man meistens an die noch vorherrschende Meinung, dass sich Intelligenz in einem Intelligenz-Quotienten (IQ), also in einer Zahl, darstellen lässt.
Die Entgrenzungstendenzen bei dem Thema Intelligenz in den letzten Jahrzehnten zeigen allerdings, dass der Intelligenz-Quotient gerade bei komplexen Problemlösungen nicht mehr ausreicht – somit keine Passung mehr zur Wirklichkeit hat. Begriffe wie “Soziale Intelligenz”, “Multiple Intelligenzen” oder auch “Emotionale Intelligenz” werden in diesem Zusammenhang genannt. Am Beispiel einer Smart City, oder später einer AI City, wird das wie folgt beschrieben:
“For a smart city, having only “IQ” (intelligence quotient) is not enough; “EQ” (emotional quotient) is equally essential. Without either, the abundant data generated and accumulated in urban life may either remain dormant and isolated or be used solely for data management without truly serving the people. In the concept of an AI-driven city, emotional intelligence refers to utilizing technological means to better perceive the emotions of citizens in the era of the “Big Wisdom Cloud.” This involves actively expressing urban sentiment, self-driving and motivating the emotions of citizen communities, empathizing with the vulnerable in the city, and establishing a comprehensive sentiment feedback mechanism” (Wu 2025).
Es wird in Zukunft immer wichtiger werden, ein besseres Verständnis von Intelligenz zu entwickeln, das besser zu den heutigen Entwicklungen passt. Die angesprochene Entgrenzung des Konstrukts “Intelligenz” ist dabei ein Ansatz, die Perspektive auf Intelligenz als biopsychologisches Potential eine weitere:
„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).
In den Diskussionen um Künstliche Intelligenz (Artificial Intelligence) werden die Tech-Riesen nicht müde zu behaupten, dass Künstliche Intelligenz die Menschliche Intelligenz ebenbürtig ist, und es somit eine Generelle Künstliche Intelligenz (AGI: Artificial General Intelligence) geben wird.
Dabei wird allerdings nie wirklich geklärt, was unter der Menschlichen Intelligenz verstanden wird. Wenn es der Intelligenz-Quotient (IQ) ist, dann haben schon verschiedene Tests gezeigt, dass KI-Modelle einen IQ erreichen können, der höher ist als bei dem Durchschnitt der Menschen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?Heißt das, dass das KI-Modell dann intelligenter ist als ein Mensch? Viele Experten bezweifeln das:
“Most experts agree that artificial general intelligence (AGI), which would allow for the creation of machines that can basically mimic or supersede human intelligence on a wide range of varying tasks, is currently out of reach and that it may still take hundreds of years or more to develop AGI, if it can ever be developed. Therefore, in this chapter, “digitalization” means computerization and adoption of (narrow) artificial intelligence” (Samaan 2024, in Werthner et al (eds.) 2024, in Anlehnung an https://rodneybrooks.com/agi-has-been-delayed/).
Es wird meines Erachtens Zeit, dass wir Menschliche Intelligenz nicht nur auf den IQ-Wert begrenzen, sondern entgrenzen. Die Theorie der Multiplen Intelligenzen hat hier gegenüber dem IQ eine bessere Passung zu den aktuellen Entwicklungen. Den Vergleich der Künstlichen Intelligenz mit der Menschlichen Intelligenz nach Howard Gardner wäre damit ein Kategorienfehler.
Embedding ethical deliberations into Scrum; based on Zuber et al. (2022) http:// creativecommons.org/licenses/by/4.0/, zitiert in Zuber et al (2024) in Werther et al. (eds) (2024)
Wenn es um Technik geht wird immer wieder die Frage nach der Ethik gestellt, denn Technik kann zum Wohle oder zum Nachteil von (allen) Menschen und der Umwelt genutzt werden. Aktuell geht es dabei beispielsweise um die Ethik bei der Nutzung von Künstlicher Intelligenz. Siehe dazu auch Technikethik (Wikipedia).
In der Softwareentwicklung hat sich der Einsatz von Scrum als Rahmenwerk (Framework) bewährt. In der Abbildung sind die verschiedenen Events, Artefakte und Rollen zu erkennen. Die Autoren Zuber et al. (2024) schlagen nun vor, ethische Überlegungen (ethical deliberations) mit in das Scrum-Framework einzubauen. Diese sind in der Abbildung grün hervorgehoben.
“The core idea is that, before the regular agile cadence begins, in a sprint 0, we first proceed descriptively and align ourselves with societal and organizational value specifications, i.e., we start from a framework defined by society and organization. Second, in the relationship between the product owner and the client, central ethical values are identified within this framework on a project-specific basis, if necessary, and become part of the product backlog. This can be done on the basis of existing codes of conduct or with other tools and methods that are specific to culture and context. We call this the normative horizon that is established during disclosive contemplation. Value-Sensitive Software Design: Ethical Deliberation in Agile. Within each individual sprint, it is a matter of identifying new values and implementing normative demands through suitable technical or organizational mechanisms” (Zuber et al 2024, in Werther et al (eds.) 2024).
Es ist wichtig, dass wir uns mit den ethischen Fragen neuer Technologien wie z.B. der Künstliche Intelligenz auseinandersetzen und es nicht zulassen, dass Tech-Konzerne die Vorteile der neuen Möglichkeiten in Milliarden von Dollar Gewinn ummünzen, und die sozialen Folgen der der neuen KI-Technologien auf die Gesellschaft abwälzen. Hier muss es eine Balance geben, die durch ethische Fragestellungen in den Entwicklungsprozessen von Technologien mit integriert sein sollten – nicht nur im Scrum-Framework.
Wenn es um die Beschreibung des Umfeldes geht, verwenden wir oft den Begriff “Ungewissheit”. Dabei wird allerdings nicht immer erkannt, dass “Ungewissheit” zwei Dimensionen enthält, die ganz unterschiedlich gehandhabt werden müssen. Einerseits sind es die “Known Unknowns“, die mit den bekannten Managementansätzen (Risikomanagement) angegangen werden können. Eine weitaus wichtigere Dimension stellen allerdings die “Unknown Unknowns” dar. Dazu habe ich folgenden Text gefunden:
“Wichtig ist beim Blick auf Ungewissheit die Unterscheidung zwischen „Known Unknowns“ und „Unknown Unknowns“. Ersteres bezieht sich auf die Bearbeitung von Risiken und das Risikomanagement. Ziel ist, nicht vollständig vorhersehbare und kontrollierbare Ereignisse gleichwohl weitmöglichst zu beschreiben und die Wahrscheinlichkeit ihres Eintretens zu berechnen. Auf dieser Grundlage erscheint es dann auch möglich, den Umgang mit Risiken zu planen und ein entsprechendes Risikomanagement zu entwickeln. Demgegenüber besteht bei „Unknown Unknowns“ Ungewissheit sowohl über die konkreten Erscheinungsformen als auch die jeweils situativen Bedingungen (Zeit, Ort, Umfang) ihres Auftretens. Risiken und das Risikomanagement lassen sich somit weitgehend dem klassischen Management mit Planung und Kontrolle zuordnen, wohingegen die „Unknown Unknowns“ die eigentliche Ungewissheit benennen und ein weitgehend „blinder Fleck“ im Projektmanagement sowie auch Management insgesamt sind” (Boehle et al 2018, in projektmanagementaktuell 1/2018).
Es wird in Zukunft immer entscheidender sein, wie Management mit beiden Dimensionen umgeht. Aktuell liegt der Fokus auf den “Known Unknowns”, für das eher klassisches Management und auf Technologien, wie z.B. auch Künstliche Intelligenz, angewendet wird – dabei werden die “Unknown Unknowns” häufig vernachlässigt. Gerade bei der Bewältigung von “Unknown Unknowns” kommt dem Menschen eine bedeutende Rolle zu, da der Mensch in der Lage ist diese Form der Ungewissheit zu bewältigen. Siehe dazu auch Über den Umgang mit Ungewissheit und Kompetenzmanagement.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Der Begriff “Intelligenz” wird in der aktuellen Diskussion um Künstliche Intelligenz (Artificial Intelligence) immer wichtiger. Dabei gibt es oft zwei Argumentations-Pole, die sich scheinbar unüberbrückbar gegenüberstehen:
Zunächst ist da der Standpunkt, dass Künstliche Intelligenz (Technologie) in Zukunft auch die Menschliche Intelligenz umfassen wird. Demgegenüber gibt es die Perspektive, dass die Menschliche Intelligenz Elemente enthält, die (noch) nicht von Technologie (Künstlicher Intelligenz) ersetzt werden kann.
In der Zwischenzeit setzt sich – wie so oft – immer stärker die Auffassung durch, dass es durchaus Sinn machen kann, eine Art Hybride Intelligenz zu thematisieren, also eine Art Schnittmenge zwischen Menschlicher und Künstlicher Intelligenz. In der Abbildung ist diese Sicht auf Intelligenz dargestellt.
“Put simply, humans possess “general intelligence” in being able to comprehend and analyze various situations and stimuli, to ideate, create and imagine. The intelligence projected by AI systems is predominantly task-centered (Narayanan and Kapoor, 2022)” (Hossein Jarrahi et al. 2022).
Ergänzen möchte ich an dieser Stelle, dass hier der Begriff “general intelligence” bei der Menschlichen Intelligenz wohl auf den Intelligenz-Quotienten verweist, der allerdings in der Gesamtdiskussion wenig hilfreich erscheint. In dem Beitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? wird deutlich, dass aktuelle KI-Modelle schon locker entsprechende Intelligenz-Tests bestehen.
Meines Erachtens scheint es immer wichtiger zu sein, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern Dieses Verständnis hätte eine bessere Passung zu der aktuellen Entwicklung.
Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.
Die Zeitschrift projektmanagementaktuell wird in 2025 verschiedene Schwerpunktthemen haben. Darunter ist auch Projektmanagement und Resilienz. In der aktuellen Ausgabe wird darauf wie folgt hingewiesen:
“Das ökonomische, ökologische und gesellschaftliche Umfeld ist in ständiger Bewegung. Das sorgt bei Projekten für Unsicherheiten und Risiken und für Stress in den Projektteams. Projekte und Projektteams müssen anpassungsfähiger werden.
Wie können Veränderungsmuster und konkrete Projektrisiken früher erkannt werden?
Welche Rolle können dabei Simulations-, Szenariotools oder die KI spielen?
Wie können Projektkrisen besser bewältigt werden?
Was kann unternommen werden, um die psychologische Resilienz der Projektteams zu fördern?
Welche zusätzlichen Kompetenzen müssen ProjektleiterInnen erwerben?”
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Jede Sekunde prasseln auf uns eine Unmenge an Daten ein. Zheng und Meister (2024) vom California Institute of Technology haben in ihrem Paper The Unbearable Slowness of Being: Why do we live at 10 bits/s? (PDF) dazu analysiert, dass der gesamte menschliche Körper eine Datenmenge von 109 bits/s absorbieren kann. Die Autoren nennen das “outer brain“.
Dabei stellt sich natürlich gleich die Frage, ob ein Mensch diese Menge auch zeitgleich verarbeiten kann. Die Antwort: Das ist nicht der Fall. Um existieren/leben zu können, müssen wir viele der äußeren Reize / Daten ausblenden. Doch wie viele Daten benötigen wir Menschen bei unserem Verhalten (“inner brain“, ebd.) pro Sekunde? Auch hier geben die Autoren eine deutliche Antwort:
“Human behaviors, including motor function, perception, and cognition, operate at a speed limit of 10 bits/s. At the same time, single neurons can transmit information at that same rate or faster. Furthermore, some portions of our brain, such as the peripheral sensory regions, clearly process information dramatically faster” (Zheng und Meister 2024).
Die Evolution hat gezeigt, dass es für den Menschen von Vorteil ist, gegenüber der absorbierbaren Datenflut (outer brain) ein innerliches Regulativ (inner brain) zu haben. Wir haben in der Vergangenheit auch unsere gesamte Infrastruktur (Straßen, Brücken usw.) auf die 10 bits/s ausgerichtet. Was ist, wenn wir die Infrastruktur auf die neuen technologischen Möglichkeiten ausrichten? Ist der Mensch dann darin eher ein Störfaktor?
Meines Erachtens sollten wir nicht immer versuchen, den Menschen an die neuen technologischen Möglichkeiten anzupassen, sondern die technologischen Möglichkeiten stärker an die menschlichen (inkl. Umwelt) Erfordernisse adaptieren. Aktuell geht die weltweite Entwicklung immer noch zu stark von der Technologie und den damit verbundenen “Märkten” aus. Eine mögliche Alternative sehe ich in der von Japan vor Jahren schon propagierten Society 5.0.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.OK