Künstliche Intelligenz: Pfadentstehung und Pfadbrechung

Pfadentstehung und Pfadbrechung (Ortmann 2009)

Bei Innovationen wird oft die Theorie der Pfadabhängigkeit thematisiert. Dabei ist am Anfang, in der Phase I der Entscheidungsselektivität, die Variationsbreite noch groß. Mit der Zeit wechselt die Situation (Critical Juncture) in die Phase II der positiven Rückkopplungen. Hier ist der Handlungsspielraum noch immer groß, doch die verfügbaren Varianten reduzieren sich. Eine gewisse Gewohnheit stellt sich ein, und es kommt zu einem Lock-in in der Phase III der Pfadabhängigkeit.

Diese Phasen können wir aktuell bei der Nutzung von KI-Modellen gut nachvollziehen, wobei ich vermute, dass viele durch die Nutzung der bekannten proprietären KI-Modelle wie ChatGPT, Gemini, Anthropic, Grok usw. in der Phase der Pfadabhängigkeit sind.

Es wundert daher nicht, dass Anbieter wie ChatGPT nun langsam aber sicher anfangen, diese Situation zu monetarisieren, und z.B. Werbung schalten. Diese Situation ist für viele Nutzer ärgerlich, doch stellen sich bei einem gewünschten Wechsel zu anderen KI-Modellen nun Switching Cost ein, die zu einer Hürde werden. Ein De-locking ist möglich, doch mit Aufwand verbunden.

Pfadabhängigkeit heißt ja: Prozesse sind nicht durch unsere Entscheidungen und Pläne zu determinieren, sondern nehmen ihren erst Schritt für Schritt näher bestimmten Verlauf in einem spezifischen Wechsel von Kontingenz und Notwendigkeit – in Folge von lauter intendierten und nicht-intendierten Effekten, schließlich in Folge von Selbstverstärkungseffekten, vor denen sich die Entscheidungsgewalt der Entscheider vollends blamiert (Ortmann 2009:11).

In der aktuellen Situation kann es dazu kommen, dass wir aus Bequemlichkeit nicht aus der Pfadabhängigkeit herauskommen. Vielen Nutzern ist diese Situation nicht bewusst. Sie glauben immer noch, dass sie es sind, die die KI-Systeme mit ihren Eingaben (Prompts) steuern…. Siehe dazu auch Digitale Souveränität: Europa, USA und China im Vergleich.

Open Source AI: SERA – Open Coding Agents at low cost

Source: https://allenai.org/blog/open-coding-agents

Das Ai2 Institut hat immer wieder interessante KI-Modelle auf Open Source Basis veröffentlicht. Unter anderem sind das die OLMO 3 – Familien oder auch MOLMO mit Schwerpunkt auf Videos. Mit der SERA ist es nun möglich, Open Coding Agents zu stellen, und das zu geringen Kosten.

„Today we’re releasing not just a collection of strong open coding models, but a training method that makes building your own coding agent for any codebase – for example, your personal codebase or an internal codebase at your organization – remarkably accessible for tasks including code generation, code review, debugging, maintenance, and code explanation. (…) The challenge: specializing agents to your data“ (Source: https://allenai.org/blog/open-coding-agents).

Die Modellfamilie (8B bis 32B) steht selbstverständlich auf Huggingface zur Verfügung, und kann auf eigenen Servern genutzt werden. Ganz im Sinne von Open Source AI und Digitalen Souveränität.

Künstliche Intelligenz: Es ist so bequem, unmündig zu sein

Image by Alexa from Pixabay

Der Wahlspruch der Aufklärung lautet: „Habe Mut, Dich Deines eigenen Verstandes zu bedienen!“ Die Aufklärung stellt somit die eigene Wissenskonstruktion in den Mittelpunkt. Was würde also passieren, wenn sich jeder seines eigenen Verstandes bedienen, und sich nicht mehr so abhängig machen würde? 

Immerhin ist es den meisten Menschen in Europa heute viel problemloser als früher möglich, seinen eigenen Verstand zu nutzen, doch die meisten machen es einfach nicht. Warum nur? Eine Antwort darauf finden wir schon bei Immanuel Kant, der am Ende des 18. Jahrhunderts folgende Erkenntnis formulierte:

Immanuel Kant schrieb schon 1784 in seiner Streitschrift: „Beantwortung der Frage: Was ist Aufklärung?“: „Unmündigkeit ist das Unvermögen, sich seines Verstandes ohne Leitung eines anderen zu bedienen. Faulheit und Feigheit sind die Ursachen, warum ein so großer Teil erwachsener Menschen, nachdem sie die Natur längst von fremder Leitung freigesprochen hat, dennoch gerne zeitlebens unmündig bleiben, und warum es anderen so leicht wird, sich zu deren Vormündern aufzuwerfen. Es ist so bequem, unmündig zu sein!“ (Fuchs, J.; Stolorz, C. (2001): Produktionsfaktor Intelligenz. Wiesbaden).

In Bezug auf aktuelle geopolitische, gesellschaftliche oder technologische Entwicklungen sehen wir heute, wie falsch es war, dass wir uns in Europa in alle möglichen und unmöglichen Abhängigkeiten begeben haben – es war eben alles so bequem. Dafür haben wir bewusst eine Unmündigkeit in Kauf genommen, die uns jetzt und in Zukunft teuer zu stehen kommt.

Auch bei der oftmals unreflektierten Nutzung der marktführenden KI-Modelle sehen wir wieder eine Entwicklung, die zur Unmündigkeit führt – ist ja alles so bequem. Siehe dazu beispielhaft: Digitale Souveränität: Europa, USA und China im Vergleich.

Alternativ zu den marktführenden KI-Modellen könnte man sich mit den Möglichkeiten von Open Source KI-Modellen befassen, was natürlich unbequemer sein kann, doch andererseits zu mündigen (aufgeklärten) Bürgern führt. In diesem Sinne: Sapere aude!

Von KI-Agenten zu Personalized AI Twins

Die aktuelle Diskussion zu Künstlicher Intelligenz befasst sich u.a. mit den Möglichkeiten generativer Künstlicher Intelligenz (GenAI) und den Entwicklungen bei KI-Agenten (AI Agents). KI-Agenten können in Zukunft viele Tätigkeiten/Jobs in Organisationen übernehmen, und so deren Effektivität und Effizienz steigern.

Solche Entwicklungen sind allerdings nicht alleine auf Organisationen begrenzt. Auf der individuellen, persönlichen Ebene entwickeln sich KI-Agenten immer mehr zu persönlichen Agenten, oder sogar zu Personal AI Twins:

Personal AI Twins represent a profound shift from generic to deeply personalized agents. Unlike today´s systems that may maintain the memory of past interactions but remain fundamentally the same for all users, true AI twins will deeply internalize an individual´s thinking patterns, values, communication style, and domain expertise“ (Bornet et al. 2025).

Die hier angesprochene Entwicklung von generischen KI-Agenten zu personalisierten KI-Agenten (personal ai twins) ist bemerkenswert. Es stellt sich natürlich gleich die Frage, ob eine Person solche Personal AI Twins nur für ihre Arbeit, oder auch für alle ihre Aktivitäten nutzen möchte. Dabei kommt es immer wieder zu Überschneidungen zwischen der beruflichen Domäne und den privaten Kontexten.

Möglicherweise können einzelne Personen in Zukunft mit Hilfe von Personalized AI Twins ihre eigenen Ideen besser selbst entwickeln oder sogar als Innovationen in den Markt bringen. Dabei empfiehlt sich aus meiner Sicht die Nutzung von Open Source AI – ganz im Sinne einer Digitalen Souveränität und im Sinne von Open User Innovation nach Eric von Hippel. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Von Democratizing Innovation zu Free Innovation

Organisationale Daten-Souveränität bedeutet nicht unbedingt Digitale Souveränität

Image by Tumisu from Pixabay

Digitale Souveränität wird oftmals mit Daten-Souveränität in Organisationen verwechselt. Es ist daher wichtig zu verstehen, was Organisationale Daten-Souveränität ausmachen kann. Dazu habe ich folgenden Vorschlag in einem Paper gefunden:

„We define organizational data sovereignty as the self-determined and deliberate exercise of control over an organization’s data assets, which includes the recognition of their value, the proactive management of data activities (collection, storage, sharing, analysis, and interpretation), and the ability to assimilate and apply these data to drive value creation through interorganizational collaboration“ (Moschko et al. 2024).

In dem Paper geht es den Autoren um Organisationale Daten-Souveränität in Bezug auf Open Value Creation (OVC) in offenen Innovationsprozessen (Open Innovation).

Die hier angesprochene eigene (organisationale) Kontrolle der Daten würde durch den Einsatz von proprietären (Closed Models) KI-Anwendungen konterkariert, da man bei deren Nutzung nicht wirklich weiß, was mit den eigenen Daten passiert. Siehe dazu auch Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

In dem Blogbeitrag Digitale Souveränität, oder doch nur Souveränitäts-Washing? finden Sie eine Definition von Digitaler Souveränität. Dabei werden Sie feststellen, dass Digitale Souveränität in diesem Sinne nur möglich ist, wenn Open Source AI – Modelle verwendet werden.

Digitale Souveränität, oder doch nur Souveränitäts-Washing?

Nachdem viele europäische und nationale Institutionen erkannt haben, wie abhängig wir in der Europäischen Union von US-amerikanischen und chinesischen Tech-Konzernen geworden sind, gibt es einen starken Trend zur Digitalen Souveränität

Das Zentrum für Digitale Souveränität der Öffentlichen Verwaltung (ZenDiS GmbH) stellt dazu fest, dass der Begriff der Digitalen Souveränität oftmals irreführend verwendet wird, und es sich oftmals eher ein Souveränitäts-Washing handelt.

In einem Whitepaper wurden dazu verschiedene Beispiele genannt, die das illustrieren. Weiterhin wurde auch noch einmal klargestellt, was unter Digitale Souveränität zu verstehen ist.

„Ein Höchstmaß an Digitaler Souveränität bietet eine digitale Lösung dann, wenn sie:

rechtssicher/DSGVO-konform betrieben werden kann (bspw. ohne Zugriff durch ausländische Behörden auf Daten),

Wechselfähigkeit ermöglicht (d. h. kein Vendor-Lock-in besteht),

Kontrolle sichert (auch bei Ausfall, Sperrung oder Wechsel von Dienstleistern),

Transparenz bietet (z. B. durch einsehbaren Quellcode)

und anpassbar und gestaltbar ist (z. B. durch Weiterentwicklung in der Community oder durch Dienstleister).“

Quelle: Zentrum für Digitale Souveränität der Öffentlichen Verwaltung (ZenDiS) GmbH (2025): Souveränitäts-Washing bei Cloud-Diensten erkennen. Warum Digitale Souveränität mehr ist als ein Standortversprechen | Whitepaper (PDF).

Anhand dieser Kriterien kann nun jeder Einzelne, jedes Unternehmen und jede Öffentliche Verwaltung prüfen, ob es sich bei einem Angebot um Digitale Souveränität oder doch eher um Souveränitäts-Washing handelt. Ähnliche Entwicklungen gibt es ja auch beim Green-Washing.

Künstliche Intelligenz, Agiles Manifest, Scrum und Kanban

Bei Künstlicher Intelligenz denken aktuell die meisten an die KI-Modelle der großen Tech-Konzerne. ChatGPT, Gemini, Grok etc sind in aller Munde und werden immer stärker auch in Agilen Organisationen eingesetzt. Wie in einem anderen Blogbeitrag erläutert, sind in Agilen Organisationen Werte und Prinzipien mit ihren Hebelwirkungen die Basis für Praktiken, Methoden und Werkzeuge. Dabei beziehen sich viele, wenn es um Werte und Prinzipien geht, auf das Agile Manifest, und auf verschiedene Vorgehensmodelle wie Scrum und Kanban. Schauen wir uns einmal kurz an, was hier jeweils zum Thema genannt wird:

Agiles Manifest: Individuen und Interaktionen mehr als Prozesse und Werkzeuge
In der aktuellen Diskussion über die Möglichkeiten von Künstlicher Intelligenz werden die Individuen eher von den technischen Möglichkeiten (Prozesse und Werkzeuge) getrieben, wobei die Interaktion weniger zwischen den Individuen, sondern zwischen Individuum und KI-Modell stattfindet. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

SCRUM: Die Werte Selbstverpflichtung, Fokus, Offenheit, Respekt und Mut sollen durch das Scrum Team gelebt werden
Im Scrum-Guide 2020 wird erläutert, was die Basis des Scrum Frameworks ist. Dazu sind die Werte genannt, die u.a. auch die Offenheit thematisieren, Ich frage mich allerdings, wie das möglich sein soll, wenn das Scrum Team proprietäre KI-Modelle wie ChatGPT, Gemini, Grok etc. nutzt, die sich ja gerade durch ihr geschlossenes System auszeichnen? Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI.

KANBAN basiert auf folgenden Werten: Transparenz, Balance, Kooperation, Kundenfokus, Arbeitsfluss, Führung, Verständnis, Vereinbarung und Respekt.
Bei den proprietären KI-Modellen ist die hier angesprochene Transparenz kaum vorhanden. Nutzer wissen im Detail nicht, mit welchen Daten das Modell trainiert wurde, oder wie mit eingegebenen Daten umgegangen wird, etc.

In einem anderen Blogbeitrag hatte ich dazu schon einmal darauf hingewiesen, dass man sich mit proprietärer Künstlicher Intelligenz (KI) auch die Denkwelt der Eigentümer einkauft.

Um agile Arbeitsweisen mit Künstlicher Intelligenz zu unterstützen, sollte das KI-Modell den genannten Werten entsprechen. Bei entsprechender Konsequenz, bieten sich also KI-Modelle an, die transparent und offen sind. Genau an dieser Stelle wird deutlich, dass das gerade die KI-Modelle sind, die der Definition einer Open Source AI entsprechen – und davon gibt es in der Zwischenzeit viele. Es wundert mich daher nicht, dass die Open Source Community und die United Nations die gleichen Werte teilen.

Es liegt an uns, ob wir uns von den Tech-Giganten weiter in eine immer stärker werdende Abhängigkeit treiben lassen, oder andere Wege gehen – ganz im Sinne einer Digitalen Souveränität. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Proprietäre Software im Vergleich zu Open Source Software

Quelle: SFLC vom 11.11.2025

Digitale Souveränität fängt damit an, sich von propritärer Software unabhängiger zu machen. Proprietäre Software ist Software, deren Quellcode nicht öffentlich ist, und die Unternehmen gehört (Closed Software). Dazu zählen einerseits die verschiedenen Anwendungen von Microsoft, aber auch die von Google oder ZOHO usw.

Demgegenüber gibt es in der Zwischenzeit leistungsfähige Open Source Software. Die indische Organisation SFLC hat am 11. November eine Übersicht veröffentlicht, die Google Workplace, ZOHO Workplace und Nextcloud Office/ProtonMail/BigBlueButton gegenüberstellt – die Abbildung zeigt einen Ausschnitt aus der Tabelle, die in diesem Beitrag zu finden ist.

„The purpose of this comparison is to assess the different approaches, features, and trade-offs each solution presents and to help organizations make informed decisions based on their operational requirements, technical capabilities, and priorities around privacy, flexibility, and cost“ (ebd.).

Wir nutzen seit einiger Zeit Nextcloud mit seinen verschiedenen Möglichkeiten, inkl. Nextcloud Talk (Videokonferenzen), sodass BigBlueButton nicht separat erforderlich ist.

Darüber hinaus nutzen wir LocalAI über den Nextcloud Assistenten, haben OpenProject integriert und erweitern diese Möglichkeiten mit Langflow und Ollama, um KI-Agenten zu entwickeln.

Alles basiert auf Open Source Software, die auf unseren Servern laufen, sodass auch alle Daten auf unseren Servern bleiben – ganz im Sinne einer stärkeren Digitalen Souveränität.

Digitale Souveränität: Open Source KI-Systeme fördern Innovationen für die gesamte Gesellschaft

https://www.robertfreund.de/blog/2024/10/28/open-source-ai-definition-1-0-release-candidate-2-am-21-10-2024-veroeffentlicht/

Die kommerziellen, proprietären KI-Systeme machen den Eindruck, als ob sie die einzigen sind, die Innovationen generieren. In gewisser weise stimmt das auch, wenn man unter Innovationen die Innovationen versteht, die sich diese Unternehmen wünschen. Fast jeden Tag gibt es neue Möglichkeiten, gerade diese KI-Modelle zu nutzen. Dieses Modelle treiben ihre Nutzer vor sich her. Wer nicht alles mitmacht wird der Verlierer sein – so das Credo.

Dabei stehen Trainingsdaten zur Verfügung, die intransparent sind und in manchen Fällen sogar ein Mindset repräsentieren, das Gruppen von Menschen diskriminiert.

Versteht man unter Innovationen allerdings, das Neues für die ganze Gesellschaft generiert wird, um gesellschaftlichen Herausforderungen zu bewältigen, so wird schnell klar, dass das nur geht, wenn Transparenz und Vertrauen in die KI-Systeme vorhanden sind – und genau das bieten Open Source AI – Systeme.

Open-source AI systems encourage innovation and are often a requirement for public funding. On the open extreme of the spectrum, when the underlying code is made freely available, developers around the world can experiment, improve and create new applications. This fosters a collaborative environment where ideas and expertise are readily shared. Some industry leaders argue that this openness is vital to innovation and economic growth. (…) Additionally, open-source models tend to be smaller and more transparent. This transparency can build trust, allow for ethical considerations to be proactively addressed, and support validation and replication because users can examine the inner workings of the AI system, understand its decision-making process and identify potential biases“ (UN 2024)

Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Open Source AI: Kimi K2 Thinking vorgestellt

Open Source AI: OlmoEarth Modell-Familie veröffentlicht

Digitale Souveränität: Verschiedene Open Source AI-Modelle ausprobieren

Open Source AI: Veröffentlichung der ALIA AI Modelle für ca. 600 Millionen Spanisch sprechender Menschen weltweit

Apertus: Schweizer Open Source KI – Modell veröffentlicht

Image by Stefan Schweihofer from Pixabay

In der Zwischenzeit gibt es einen Trend zu Open Source KI-Modellen. Aktuell hat beispielsweise die ETH Zürich zusammen mit Partnern das KI-Modell Apertus veröffentlicht:

Apertus: Ein vollständig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zürich und das Schweizerische Supercomputing-Zentrum CSCS haben am 2. September Apertus veröffentlicht: das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein für eine transparente und vielfältige generative KI“ (Pressemitteilung der ETH Zürich vom 02.09.2025)

Der Name Apertus – lateinisch für offen – betont noch einmal das grundsätzliche Verständnis für ein offenes , eben kein proprietäres, KI-Modell, das u.a auch auf Hugging Face zur Verfügung steht. Die beiden KI-Modelle mit 8 Milliarden und 70 Milliarden Parametern bieten somit auch in der kleineren Variante die Möglichkeit, der individuellen Nutzung.

Es gibt immer mehr Personen, Unternehmen und öffentliche Organisationen, die sich von den Tech-Giganten im Sinne einer Digitalen Souveränität unabhängiger machen möchten. Hier bieten in der Zwischenzeit sehr viele leistungsfähige Open Source KI-Modelle erstaunliche Möglichkeiten- auch im Zusammenspiel mit ihren eigenen Daten: Alle Daten bleiben dabei auf Ihrem Server – denn es sind Ihre Daten.

Da das KI-Modell der Schweizer unter einer Open Source Lizenz zur Verfügung steht, werden wir versuchen, Apertus auf unseren Servern auch in unsere LocalAI, bzw. über Ollama in Langflow einzubinden.