Digitale Souveränität: Videokonferenzen mit Nextcloud Talk – Open Source, und die Daten bleiben auf dem eigenen Server

Eigener Screenshot: Videokonferenz mit Nextcloud Talk auf unserem Server

Heute hatte ich eine Videokonferenz mit Kollegen aus verschiedenen Ländern. Dabei haben wir statt Zoom oder MS Teams bewusst Nextcloud Talk genutzt, das Bestandteil der Nextcloud-Installation auf unseren Servern ist. Nextcloud ist Open Source und führt zu einer Digitalen Souveränität – auch bei Videokonferenzen. Die Daten bleiben dabei alle auf unseren Servern.

Inhaltlich ging es bei der Videokonferenz um die nächste MCP-Konferenz, die im September 2026 stattfinden soll – die Vorfreude ist bei mir schon jetzt vorhanden. Siehe dazu auch die Konferenz-Website oder unsere Übersichtsseite zu Konferenzen.

Die Abbildung zeigt einen Screenshot zu dem Zeitpunkt, an dem ich eine Videokonferenz (Anruf) in Nextcloud Talk gestartet habe. Den Link zu dem Raum habe ich dann an die Teilnehmer gesandt, die keine weitere Installationen benötigen, um teilzunehmen. Natürlich können auch Videokonferenzen terminiert, und dazu eingeladen werden. Wie dem Screenshot zu entnehmen ist, sind die aus anderen Videokonferenz-Tools bekannten Aktivitäten integriert – ich möchte diese daher hier nicht mehr ausführlich erläutern.

Nextcloud Talk ist dabei in eine komplette Kollaborationsplattform (inkl. Open Project, Deck als Board, Cloud als Datenspeicher, kollaboratives Arbeiten an Dateien, Whiteboard usw. usw.) integriert, die einen souveränen Arbeitsplatz unterstützt – alles Open Source, und die Daten bleiben auf dem eigenen Server.

Darüber hinaus haben wir auch LocalAI integriert, und die Möglichkeit geschaffen, KI-Agenten zu entwickeln und zu nutzen – alles Open Source, alle Daten bleiben auf unseren Servern.

(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

Digitale Souveränität: Was macht ihr denn so mit eurer Nextcloud? Antwort: Immer mehr!

Screenshot unserer Nextcloud-Startseite

Digitale Abhängigkeit kann für Personen, Organisationen oder ganze Gesellschaften kritisch sein. In Zeiten der Trump-Administration und der massiven Marktbeherrschung bei Software, Cloud-Anwendungen und Künstlicher Intelligenz durch US-amerikanische Tech-Konzerne wird es Zeit, auf allen Ebenen über Digitale Souveränität nachzudenken, und entsprechend zu handeln.

Zum Beispiel mit: Sovereign Workplace: Der unabhängige Arbeitsplatz auf integrierter Open Source Basis. Weiterhin wird vielen Verwaltungen in der Zwischenzeit klar, wie viel Geld an Rahmenverträgen, Lizenzen und Software an Big-Tech gezahlt werden muss. Es sind 13,6 Milliarden Euro pro Jahr (Quelle: Golem 04.07.2025).

In der Zwischenzeit gibt es viele Open Source Anwendungen die als Alternativen zur Verfügung stehen. Das dänische Digitalministerium ersetzt beispielsweise Microsoft Office durch Libre Office, Schleswig-Holstein setzt in der Verwaltung auf Nextcloud usw. usw.

Wir haben diese Entwicklung schon vor Jahren kommen sehen, und uns langsam aber sicher ein eigenes Open-Source-Ökosystem zusammengestellt, das wir immer stärker nutzen und ausbauen – Schritt für Schritt.

(1) Zunächst haben wir Nextcloud auf unseren Servern installiert. Damit konnten wir die bekannten Microsoft-Anwendungen, inkl. MS-Teams (jetzt mit Nextcloud Talk), Whiteboard, usw. ersetzen. Dateien können auch kollaborativ, also gemeinsam, bearbeitet werden. Siehe dazu beispielsweise auch Google Drive im Vergleich zu Nextcloud. Alle Möglichkeiten der Nextcloud finden Sie unter https://nextcloud.com/.

(2) Anschließend haben wir OpenProject auf unseren Servern installiert und mit unserer Nextcloud verknüpft. Wir können damit Plangetriebenes Projektmanagement, Hybrides und Agiles Projektmanagement abbilden. Die Integration mit unserer Nextcloud bietet die Möglichkeit, aus OpenProject heraus die komplette Dateiverwaltung in Nextcloud zu verwalten: Projektarbeit mit Nextcloud: Dateien kollaborativ organisieren und bearbeiten.

(3) Danach haben wir den Nextcloud-Assistenten integriert, sodass wir in jeder Nextcloud-Anwendung den Assistenten mit seinen verschiedenen Funktionen nutzen können; inkl. eines Chats mit hinterlegter lokaler Künstlichen Intelligenz – LocalAI (Siehe Punkt 5).

(4) Mit Nextcloud Flow können wir Abläufe automatisieren. Zunächst natürlich Routineabläufe, und wenn es komplexer wird mit KI-Agenten (Siehe Punkt 6).

(5) Eine weitere wichtige Ergänzung war dann LocalAI, das uns lokale KI-Anwendungen auf unserem Server ermöglicht – eingebunden in den Nextcloud-Assistenten (Siehe Punkt 3) Alle Daten bleiben auch hier auf unseren Servern.

(6) Aktuell arbeiten und testen wir KI-Agenten auf Open-Source-Basis. Dabei verknüpfen wir über Ollama eine ausgewählte Trainingsdatenbank (Large Language Model oder Small Language Model – alles natürlich Open Source AI) mit unseren eigenen Daten, die in unserer Nextcloud zur Verfügung stehen. Dafür verwenden wir aktuell Langflow, das auch auf unserem Servern installiert ist – auch diese Daten bleiben alle bei uns.

(…..) und das ist noch lange nicht das Ende der Möglichkeiten. Sprechen Sie uns gerne an, wenn Sie zu den genannten Punkten Fragen haben.

Von GenAI zu Agentic AI bedeutet, eine andere Perspektive einzunehmen, und andere Kompetenzen zu entwickeln

WEF (2024): Navigating the AI Frontier. A Primer on the Evolution and Impact of AI Agents

Alle reden und schreiben über KI (Künstliche Intelligenz / AI: Artificial Intelligence) und meinen damit meistens GenAI. Bei den verschiedenen KI-Anwendungen geht es mehrheitlich darum, Abläufe mit ihren verschiedenen Tasks zu unterstützen. Siehe dazu beispielsweise Künstliche Intelligenz beeinflusst den gesamten Lebenszyklus der Software-Entwicklung. Ähnliches findet man auch bei anderen Branchen wie z.B. der Kommunikationsbranche usw.

Diese vielfältigen Möglichkeiten faszinieren Menschen und Organisationen so sehr, dass sie das auch bei den entsprechenden Kompetenzentwicklungen als einen der Schwerpunkte sehen. Hervorheben möchte ich hier beispielsweise das oft erwähnte Prompt-Engineering.

Betrachten wir allerdings neuere KI-Entwicklungen, so wird immer deutlicher, dass es in der nahen Zukunft immer mehr darum gehen wird, mit KI-Agenten (Agentic AI) umzugehen. Dabei verändern sich allerdings die Perspektiven auf die Nutzung von KI grundlegend. Der folgende Absatz zeigt das deutlich auf:

“Quite simply, today, most people use AI in a task-oriented workflow (for example, to finish a code stub or summarize a document), whereas agents are goal oriented. You give an AI agent a task, and it will get it done and even plan future actions without needing your explicit guidance or intervention. Working with agents requires a change in perspective: instead of designing an AI driven app to run some specific tasks, you use an agentic approach that focuses on outcomes and objectives. An agent will try to achieve a desired outcome and will figure out on its own which tasks are necessary” (Thomas, R.; Zikopoulos, P.; Soule, K. 2025).

Die in dem Zusammenhang mit KI thematisierten Kompetenzen waren und sind immer noch zu sehr auf den “task-oriented workflow” ausgerichtet. Dabei benötigen wird bei der eher “goal oriented”, also ergebnisorientierten (zielorientierten) Herangehensweise, andere Kompetenzen.

Ich bin gespannt, wie die vielen KI-Kompetenzmodelle diese Entwicklungen abfangen werden. Denn: Kaum ist das eher task-oriented Kompetenzmodell veröffentlicht, muss schon nachgebessert werden. In der Logik dieser Kompetenzmodelle wird es wohl bald eine Weiterentwicklung geben, die in Zukunft “AI Agentic” – Kompetenzen in den Mittelpunkt stellt, usw. usw. Ob das für Menschen und Organisationen einen guten (stabilen) Rahmen für ein modernes Kompetenzmanagement bietet?

Wie Sie als Leser meines Blogs wissen, stehe ich diesen KI-Kompetenzmodellen etwas kritisch gegenüber, da sie zu “Bindestrich”-Kompetenzen (Digitale Kompetenzen, Agile Kompetenzen, KI-Kompetenzen) führen, die sich in großen Teilen verändern müssen. Meines Erachtens ist es besser, allgemein von Kompetenzen von Selbstorganisationsdispositionen zu sprechen – und zwar auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – natürlich auch unter dem Aspekt der Nutzung von KI. Siehe dazu Kompetenzmanagement.

Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen

Mass Customization ist ein Oxymoron, das von Davis verwendet, und das vor über 30 Jahren von B. Joseph Pine als hybride Wettbewerbsstrategie bekannt gemacht wurde. Siehe dazu auch Freund, R. (2009): Kundenindividuelle Massenproduktion (Mass Customization). RKW Kompetenzzentrum, Faktenblatt 5/2009.

In der Zwischenzeit hat sich viel bei den technischen Möglichkeiten bei der Herstellung von Produkten und Dienstleistungen getan, sodass Mass Customization in einem neuen Licht gesehen werden kann. Unter anderem sind die Kosten zur Herstellung von Produkten und Dienstleistungen drastisch gesunken (Additive Manufacturing – 3D-Druck, Maker-Bewegung, Robotics etc.). Weiterhin bietet Künstliche Intelligenz mit Large Language Models (LLM) und KI-Agenten ganz neue Möglichkeiten, Mass Customization umzusetzen. Frank Piller hat das in einem Interview an einem Beispiel sehr gut dargestellt:

“An algorithm reading your Instagram profile might know better than you do about your dream shirt or dress. I see opportunity to use the data out there for what I call smart
customization” Piller, Frank T. and Euchner, James, Mass Customization in the Age of AI (June 07, 2024). Research-Technology Management, volume 67, issue 4, 2024 [10.1080/08956308.2024.2350919], Available at SSRN: https://ssrn.com/abstract=4887846.

Frank Piller geht dabei immer noch von der Perspektive eines Unternehmens aus, das die neuen KI-Technologien nutzt, um mass customized products herzustellen. Ich stelle mir dabei allerdings die Frage, ob es nicht für jeden Einzelnen in Zukunft möglich sein wird, mit Hilfe von KI-Agenten viele der alltäglichen Probleme selbst, und/oder zusammen mit anderen in Communities, zu lösen.

Benötigen wir in Zukunft also für alle benötigten Produkte und Dienstleistungen noch Unternehmen?

Immerhin hat ein Unternehmen dann seine Berechtigung, wenn es geringere Transaktionskosten hat. Diese Marktberechtigung gerät durch die neuen technischen Möglichkeiten ins Wanken. Die Technologien, mit denen Unternehmen immer geringere Transaktionskosten generieren, und der User immer mehr selbst machen soll/kann, führt zu einer Art Reflexiven Innovation. Diese schlägt auf die Unternehmen zurück. Siehe dazu beispielsweise aus meinen Veröffentlichungen:

Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe. 4th International Conference for Entrepreneurship, Innovation, and Regional Development (ICEIRD 2011), 05.-07. May, Ohrid, Macedonia.

Immerhin stellen wir alle in unserem Alltag fest, dass die die von den Unternehmen angebotenen Produkte und Dienstleistungen oft nicht den eigenen Anforderungen entsprechen.

Siehe dazu Von Democratizing Innovation zu Free Innovation oder auch Megatrend: Mass Personalization.