The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework

Im Projektmanagement ist es heute wichtig, zwischen einfachen, komplizierten und komplexen Projekten zu unterscheiden, um das angemessene Vorgehensmodell zu bestimmen.

Dabei können Organisationen im einfachsten Fall mit der Stacey-Matrix, oder auch mit ausführlicheren Analysemethoden nach Boehm & Turner oder Timinger usw. arbeiten. Siehe dazu Projektmanagement: Das geeignete Vorgehensmodell finden.

Darin wird auch das Cynefin-Framework als geeignetes Instrument erwähnt, das ursprünglich aus dem Wissensmanagement kommt. Siehe dazu Projektmanagement: Das Cynefin-Framework und der Bereich “disorder”. Natürlich kann man sich bei Wikipedia oder auch von KI-Modellen Informationen zum Cynefin-Framework zusammenstellen, doch ist es manchmal auch gut, sich ein Buch anzusehen,.

Brougham, G. (2015): The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework | PDF

Das frei verfügbare Mini-Buch zum Thema ist deshalb wertvoll, da es die verschiedenen Facetten des Cynefin-Frameworks intensiv thematisiert, und dazu auch noch wichtige Quellen angibt.

Wissensarchitektur: Brick or Brain?

Image by Pexels from Pixabay

Dass wir als Gesellschaft immer stärker von Wissen abhängig sind, deutet der Begriff Wissensgesellschaft an. Dabei möchte ich anmerken, dass viele Akteure, Verwaltungen, Unternehmen, einzelne Personen noch immer Wissen mit Daten und Informationen gleichsetzen, und z.B. die implizite Dimension des Wissens vernachlässigen.

In der Industriegesellschaft wurden Gebäude geplant und gebaut, die das arbeitsteilige Prinzip des Taylorismus unterstützten. Dabei wurde großer Wert auf das Trennende gelegt: Hier wurde gearbeitet, dort gelebt. Hier gab es das Schuhgeschäft, dort die Schule und an einem anderen Ort das Altenheim. In Zeiten einer Reflexiven Modernisierung kommt es allerdings seit Jahrzehnten immer mehr zu Entgrenzungen und Vernetzungen von bisher getrennten Bereichen.

Immer mehr hybride Strukturen entstehen – im Management, bei der Raumgestaltung, der Architektur. Eine Architektur, die sich an der Wissensperspektive und an einem vielschichtigen Wissensaustausch orientiert, muss sich zwangsläufig von einer Architektur unterscheiden, die eher industriell geprägt war. Es wundert daher nicht, dass immer mehr offene Räume entstehen (Open Spaces), Räume in denen gearbeitet und gelebt wird usw. usw. All das kann aus der Soziologie (Reflexive Modernisierung) und mit Hilfe der Wissensperspektive erklärt werden.

In dem Artikel Schröder, I. (2014): Wissensarchitektur: Erfahrungen eines Wissenschaftsparks, in Wessels (Hrsg.) (2014) stellt die Autorin das Thema Wissensarchitektur anhand eines Wissenschaftsparks dar. Dabei verweist sie auch auf eine einprägsame Formulierung:

“Der Science Park Manchester hat die zu Grunde liegende Wissensarchitektur-Frage in der Kürze auf den Punkt gebracht, die der englischen Sprache eigen ist:: brick or brain? Die deutsche Übersetzung könnte Gebäude oder Geist lauten” (ebd.).

Ergänzend würde ich allerdings hier empfehlen von “Brick and Brain ” auszugehen – ganz im sinne einer hybriden Denk- und Handlungsweise.

Siehe dazu auch Tsigkas, A. (2024): Between Theory and Practice in Architectural Design.

GfWM (2025): Wissenstransfer und Onboarding in der öffentlichen Verwaltung

Image by Krissie from Pixabay

Öffentliche Verwaltungen haben vielschichtige Aufgaben zu bewältigen. Aufgrund unzähliger Gesetze, Verordnungen usw. der Europäischen Union, des Bundes, der Länder, der Bezirke, der Landkreise, der Städte und Gemeinden hat sich ein Umfeld ergeben, das den Bürgern, Unternehmen, Organisationen und der öffentlichen Verwaltung selbst, kaum noch Luft zum Atmen lässt.

Die kleinteiligen Regelungen, mit ihren Millionen Schnittstellen, haben wir uns in Deutschland selbst geschaffen. Vielen wird langsam aber sicher klar, dass die öffentliche Verwaltung in manchen Bereichen des gesellschaftlichen Lebens einen Flaschenhals darstellt – Digitalisierung von Akten hin oder her.

Die Veröffentlichung GfWM (2025): Wissenstransfer und Onboarding in der öffentlichen Verwaltung ist eine Empfehlungen der GfWM-Fachgruppe Digitale Transformationsprozesse. In verschiedenen Beiträgen stellen Autoren der Fachgruppe theoretische Grundlagen und erfolgreiche Beispiele dar. Insgesamt sind das alles sehr sinnvolle Beiträge, um in Zukunft Verbesserungen in der öffentlichen Verwaltung anzustoßen.

Ich stelle mir zusätzlich folgende Fragen:

Was ist eigentlich aus den vielen Studien (zum Thema) aus der Vergangenheit (z.B. Studie aus 2013, oder länderspezifische Initiativen) geworden? Dort waren auch schon sehr viele Hilfsmittel bereitgestellt/veröffentlicht worden. Manche Vorlagen erinnern mich an ProWis, obwohl die Seite nicht speziell für die öffentliche Verwaltung ist.

Gehen alle Autoren vom selben Wissensbegriff aus? Wenn ja, von welchem? Arnold schlägt beispielsweise einen “neuen” Wissensbegriff vor.

Wenn der Wissensbegriff unklar ist, wie soll dann der Umgang mit Wissen, also auch ein Wissenstransfer gelingen?

Ist es möglich, sich auf “Wissenstransfer und Onboarding” zu konzentrieren, ohne ein geeignetes Wissenssystem mit heute sehr viel verteilten Wissensbeständen zu thematisieren?

Ist die Wissensbilanz (früher: Made in Germany) eine Möglichkeit, geeignete Ansatzpunkte (Projekte) für das jeweilige (kontextspezifische) Wissens-System zu finden, und damit Ressourcen zu sparen?

Siehe dazu auch

Gegenüberstellung: Öffentliche Verwaltung und Erfolgsfaktoren von Projekten

Siehe dazu auch Warum verfehlen viele öffentliche Projekte die ursprünglich geschätzten Kosten?

Stärkere Projektorientierung um den Ineffizienzkreislauf bei öffentlichen Verwaltungen zu durchbrechen

Künstliche Intelligenz: Von der Produktentwicklung wieder (zurück) zur Prozessentwicklung?

Künstliche Intelligenz wird unseren individuellen Alltag, Unternehmen/Organisationen und letztendlich die gesamte Gesellschaft in verschiedenen Anwendungsformen immer stärker beeinflussen.

Dabei deutet sich in den Unternehmen/Organisationen eine interessante Entwicklung an.

Organisationen waren in den letzten 100 Jahren der Industrialisierung darauf fokussiert, ihre Prozesse (oftmals Routineprozesse) immer weiter zu optimieren, effektiver und effizienter zu machen. Diese Prozesslandschaften haben dann zu den bekannten Qualitätsmanagement-Systemen oder auch Projektmanagement-Systemen geführt. Gerade im Projektmanagement hat sich diese Vorgehensweise (Vorgehensmodelle) bei Projekten im Entwicklungsbereichen (Innovationen) zu einer Arbeitsform (Vorgehensmodell) entwickelt, die eher produktorientiert ist. Paradebeispiel dafür ist das Scrum-Framework mit den zu erzielenden Increments am Ende des Sprints oder das Minimum Viable Product (MVP), das wir aus dem Lean Start-up-Ansatz kennen.

Dieser Trend wird aktuell durch Künstliche Intelligenz scheinbar wieder umgekehrt. Wie kommt das?

Schauen wir uns einmal an, wie stark Künstliche Intelligenz den gesamten Lebenszyklus der Software-Entwicklung beeinflusst, so können wir erahnen, dass die Zyklen, in denen ein (Software-)Ergebnis (Increment, MVP) produziert werden kann, immer kürzer werden. Möglicherweise so kurz, dass es sich gar nicht mehr lohnt, den gesamten Scrum-Zyklus mit den vorgesehenen Artefakten und Events durchzuführen, und es zu einem kontinuierlichen Fluss an Ergebnissen (Produkten) kommt. In meinem Beitrag Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban? hatte ich das schon einmal angedeutet. Es freut mich daher, dass der Gedanke durchaus auch von anderen Autoren vertreten wird:

“Der Fokus essenzieller Design- und Architekturentscheidungen verschiebt sich in der Digitalisierung genau wie einst in der Industrialisierung von der Produktentwicklung hin zur Prozessentwicklung. Hier schließt sich auch der Kreis zu Scrum, denn zwei der wichtigsten Scrum-Pioniere Hirotaka Takeuchiund Ikujiro Nonaka kamen ursprünglich aus industriellen Produktions- und Innovationskontexten, nicht aus der Softwareentwicklung” (Immich, T.(2025): KI-Agenten Teil 2: Von der Produktentwicklung zur Prozessoptimierung, in Heise Online vom 27.05.2025).

Welche betrieblichen Probleme können durch ein modernes Wissensmanagement gelöst werden?

Nicht alles, was in Organisationen so passiert, wird vom Management beachtet. Doch gibt es immer wiederkehrende betriebliche Probleme, die dann doch in den Fokus des Managements rücken. Oft kommen entsprechende Impulse/Hinweise aus den betriebswirtschaftlichen Kennzahlen, den KPIs. Die folgenden Punkte stellen dabei keine Rangfolge dar:

– Project teams exhibit slow progress due to insufficient collaboration among individuals or business units
– Frequent reinvention of solutions due to inefficient information retrieval or lack of oversight
– High rate of specialist retirements
– Prolonged onboarding time for new employees
– Need for upskilling through cross-domain knowledge or information transfer
– Lack of comprehensive oversight for effective action Increasing complexity in process coordination due to insufficient communication between administrative units
– Customers struggle to find answers independently, leading to excessive reliance on human support
– Inefficient information retrieval
– High turnover of knowledge workers
Source: Kraus & Bornemann (2024)

Die Autoren argumentieren in ihrem Paper (Konferenzbeitrag), dass ein modernes Wissensmanagement dazu beitragen kann, die Aufmerksamkeit des Managements (C-Level) zu gewinnen, und dazu beiträgt, die genannten Probleme zu lösen / zu verbessern.

Siehe dazu Ein neuer Wissensbegriff und meine vielen Blogbeiträge zum Thema.

Wie kann man Wissensarbeit analysieren?

Eigne Darstellung nach Hube (2005)

Immer mehr Arbeiten sind wissensintensiv und unterscheiden sich somit von anderen Arbeitsweisen in Organisationen. Dabei gibt es oftmals einen branchenspezifischen Mix an Arbeit (BMAS 2015):

Arbeiten 1.0 bezeichnet die beginnende Industriegesellschaft und die ersten Organisationen von Arbeitern.

Arbeiten 2.0 ist die beginnende Massenproduktion und die Anfänge des Wohlfahrtsstaats am Ende des 19. Jahrhunderts.

Arbeiten 3.0 umfasst die Zeit der Konsolidierung des Sozialstaats und der Arbeitnehmerrechte auf Grundlage der sozialen Marktwirtschaft.

Arbeiten 4.0 wird vernetzter, digitaler und flexibler sein. Wie die zukünftige Arbeitswelt im Einzelnen aussehen wird, ist noch offen. Seit Beginn des 21. Jahrhundert stehen wir vor einem erneuten grundlegenden Wandel der Produktionsweise.

Die heutige Wissensarbeit unterscheidet sich in vielen Dimensionen von klassischer Routinearbeit in der Industriegesellschaft.

Die Abbildung zeigt verschiedene Typen von Arbeit, die in einem Fragebogen abgefragt werden können. In der Darstellung ist zu erkennen, dass in diesem Beispiel sequenzielles Arbeiten und standardisierte Abläufe eher niedrig bewertet werden – also kaum Bestandteil der Arbeit sind. Demgegenüber sind alle anderen Arbeitstypen sehr stark (hoch) ausgeprägt. Das deutet auf wissensintensive Arbeit hin.

Vom Mindmap zu einem KI-Agenten für Wissensmanagement?

 „Wissensmanagement-Mindmap“ von Martin Harnisch, Sonja Kaiser, Dirk Liesch, Florian Schmuhl, Gabriele Vollmar, Sabine Wax, lizenziert unter CC BY 4.0

In einer Arbeitsgruppe der Gesellschaft für Wissensmanagement e.V. (GfWM) wurde 2024 ein umfangreiches Mindmap zu Wissensmanagement erstellt. In der Abbildung ist die Quelle und die Lizenz zur Nutzung genannt.

“Die Wissensmanagement-Mindmap soll einen systematischen Überblick über die wesentlichen Handlungsfelder, Modelle, Methoden und Tools im Bereich des Wissensmanagements geben” (ebd.).

Die Mindmap ist auf der Website der GfWM in verschiedenen Dateiformaten zu finden, die mit Angabe der Quelle genutzt werden können.

Einerseits ist es gut, einen Überblick zu den vielfältigen Themenbereichen des Wissensmanagements zu erhalten. Andererseits weisen die Autoren berechtigt darauf hin, dass dieses Mindmap keinen Anspruch auf Vollständigkeit hat. Wenn da allerdings noch viele weitere “Äste” hinzukommen, wirkt das Mindmap weniger hilfreich und “erschlägt” möglicherweise den Interessenten.

Insofern frage ich mich, ob es nicht besser wäre einen Einstig zu wählen, der sich aus den jeweiligen Situationen, Kontexten, Domänen ergibt. Solche “Ankerpunkte” konkretisieren den Umgang mit Wissen, und führen in einem Bottom-Up-Ansatz zur Entdeckung der vielfältigen Möglichkeiten des Wissensmanagements – speziell abgestimmt auf die einzelne Person, die Gruppe, die Organisation und/oder das Netzwerk.

Umgesetzt werden kann das heute mit KI- Agenten (AI Agents).

Creating Knowledge: Welche Tools sind geeignet?

An dieser Stelle möchte ich mich nicht an den bekannten Modellen aus Europa orientieren, sondern auch einmal nach Asien schauen. Die APO (Asian Productivity Organization) beispielsweise orientiert sich an den folgenden 5 Aktivitäten, die den europäischen Modellen allerdings sehr ähneln : Identifying the Knowledge – Creating Knowledge – Storing Knowledge – Sharing Knowledge – Applying Knowledge. Die APO (2020) schlägt für den Schritt “Creating knowledge” (Wissen schaffen) vor, folgende Methoden/Tools zu nutzen:

Brainstorming
Learnings and Ideas Capture
Learning Reviews
After Action Reviews
Collaborative Physical Workspaces
Knowledge Café
Communities of Practice
Knowledge Bases (Wikis, etc.)
Blogs
Video Communication and Webinars
Advanced Search
Building Knowledge Clusters
Expertise Locator/Who’s Who
Collaborative Virtual Workspaces
Mentor/Mentee Scheme
Knowledge Portal
Video Sharing

Es ist gut, bei der Vielzahl von Möglichkeiten, eine erste Orientierung zu haben, die selbständig weiterentwickelt, und mit den neuen Möglichkeiten der Künstlichen Intelligenz ergänzt werden kann. Siehe dazu beispielsweise auch Künstliche Intelligenz: Vorwissen, Wissenszuwachsvorhersage, Wissenszuwachs und Markov-Ketten.

Wissensmanagement: Schlüsselpersonen identifizieren

Wissen im Unternehmen ist in allen Prozessen einer Organisation relevant. Manchmal findet man Wissen in Form von Daten und Informationen in IT-Systemen, manchmal ist spezielles Wissen an Personen gebunden.

Solche Schlüsselpersonen werden immer wieder kontaktiert, doch gibt es oftmals keinen Überblick darüber, was solche Schlüsselpersonen ausmacht. In einer Veröffentlichung wurden nun Merkmalscluster für Schlüsselpersonen in Kleinen und mittleren Unternehmen (KMU) ermittelt, die in der genannten Quelle detaillierter dargestellt werden:

Exklusives Wissen
– Spezialisierte )Unternehmens-) Kenntnisse und Erfahrungen
– Mangelnde Bereitschaft/Möglichkeit Wissen zu teilen

Spezielle Kompetenzen
– Stark ausgeprägte soziale Kompetenzen.
– Stark ausgeprägte Fach-Kompetenzen

Vernetzung und Beziehung
– Interne fachübergreifende Beziehungen
– Starke Beziehung zu Geschäftspartner:innen

Mangelnde Ersetzbarkeit
– Mangelnde Vertretungsmöglichkeiten (intern)
– Mangelnde Ersetzungsmöglichkeiten (Arbeitsmarkt)

Kritische Auswirkungen bei Ausfall
– (Geschäfts-) Kritikalität der Arbeitsaufgabe
– (Geschäfts-) Kritikalität der Person

Quelle: Schiedermair, Ina, Kick, Elena, Baumgartner, Marco, Kopp, Tobias and Kinkel, Steffen. “Wissensmanagement in KMU: Kriterien zur Identifikation von internen Schlüsselpersonen” Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 118, no. 6, 2023, pp. 395-399. https://doi.org/10.1515/zwf-2023-1087

Siehe dazu auch Pyramiding für das Herausfinden von Experten nutzen .

Wissen identifizieren: Welche Tools sind geeignet?

Es gibt verschiedene Wissensmanagement-Modelle, die sich ähneln, allerdings auch unterscheiden. Das Modell von Probst/Raub/Romhardt, das SEKI-Modell, das Münchener Modell, das Fraunhofer-Referenzmodell, das EU-Modell, und das Geschäftsprozessorientierte Wissensmanagement sollen hier nur beispielhaft genannt werden. Die Wissensmanagement-Modelle, die von 4, 5 oder 6 Wissensmanagement-Kernaktivitäten ausgehen, sollen hier weiter betrachtet werden.

An dieser Stelle möchte ich mich nicht an den bekannten Modellen aus Europa orientieren, sondern auch einmal nach Asien schauen. Die APO (Asian Productivity Organization) beispielsweise orientiert sich an den folgenden 5 Aktivitäten, die den europäischen Modellen allerdings sehr ähneln : Identifying the Knowledge – Creating Knowledge – Storing Knowledge – Sharing Knowledge – Applying Knowledge. Die APO (2020) schlägt für den ersten Schritt “Indentifying the knowledge” (Wissen identifizieren) vor, folgende Methoden/Tools zu nutzen:

APO Knowledge Assessment Tool
Knowledge Café
Communities of Practice
Advanced Search Tools
Building Knowledge Clusters
Expertise Locator/Who’s Who
Collaborative Virtual Workspaces
Knowledge Mapping
KM Maturity Model
Mentor/Mentee Scheme

Es ist gut, bei der Vielzahl von Möglichkeiten, eine erste Orientierung zu haben, die selbständig weiterentwickelt, und mit den neuen Möglichkeiten der Künstlichen Intelligenz ergänzt werden kann. Siehe dazu beispielsweise auch Künstliche Intelligenz: Vorwissen, Wissenszuwachsvorhersage, Wissenszuwachs und Markov-Ketten.