Behandelt die Wissensgesellschaft ihr vermeintlich höchstes Gut „Wissen“ angemessen?

Image by Bruno from Pixabay

Die heute propagierte Wissensgesellschaft wird oft kritisiert. Beispielsweise findet man in Liessmann (2008): Theorie der Unbildung den Hinweis, dass Wissen im Gegensatz zu Information nicht unbedingt zweckorientiert ist:

„Wissen lässt sich viel, und ob dieses Wissen unnütz ist, entscheidet sich nie im Moment der Herstellung oder Aufnahme des Wissens“ (ebd.).

Der Autor treibt seine Kritik an der Entwicklung bei den Themen, Wissen, Wissen als Ressource und Wissensmanagement mit einer These auf die Spitze, indem er formuliert:

„Man könnte die These riskieren, dass in der Wissensgesellschaft das Wissen gerade keinen Wert an sich darstellt. Indem das Wissen als ein nach externen Kriterien wie Erwartungen, Anwendungen und Verwertungsmöglichkeiten hergestelltes Produkt definiert wird, ist es naheliegend, dass es dort, wo es diese Kriterien nicht entspricht, auch rasch wieder entsorgt werden muss. Gerne spricht man von der Beseitigung des veralteten Wissens, vom Löschen der Datenspeicher und vom Abwerfen unnötigen Wissensballasts. Mit anderen Worten: Die Wissensgesellschaft behandelt ihr vermeintlich höchstes Gut mitunter so, als wäre es der letzte Dreck“ (Liessmann 2008).

Wissen, immer und überall unter Nutzengesichtspunkten zu sehen, ist fatal. Wissen um seiner selbst willen kann durch überraschende Neukombinationen zu kreativen Gedanken und Problemlösungen führen. Grenzen wir dieses Wissen aus, wird alles Wissen beliebig, und damit auch weniger kreativ, bzw. innovativ, was uns wieder zu den kritisierten Nutzengesichtspunkten führt.

Es scheint paradox zu sein: Wissen ohne Nutzengesichtspunkte zuzulassen, führt zu einer besseren Nutzung von Wissen.

Gerade in Zeiten von Künstlicher Intelligenz ist es wichtig, Wissen gut zu verstehen, um den Umgang damit angemessen zu ermöglichen. Bei einer einseitig nutzenorientierten Betrachtung von Wissen, kann es gesellschaftlich zu Verwerfungen kommen – gerade so, als ob ein Sportler nur den rechten Arm trainieren würde.

Warum ist es so schwierig, Experten-Wissen zu teilen?

In dem Beitrag If HP knew what HP knows, we would be three times as profitable hatte ich schon einmal darauf hingewiesen, dass der Umgang mit Wissen im Allgemeinen in Unternehmen nicht so einfach ist. Betrachten wir speziell noch das Wissen von Experten, also deren Expertise, so wird deutlich, dass es sehr schwierig ist, dieses Experten-Wissen zu teilen, oder sogar zu übertragen. Dazu habe ich folgende Begründung gefunden:

„One set of limitations on sharing expertise is cognitive, that is, the way experts store and process information may make it difficult for them to share that expertise with others regardless of whether or not they are motivated to do so.

Another cognitive problem in transferring knowledge is the challenge of articulating knowledge that is tacit rather than explicit.

Another problem in asking experts to articulate knowledge is that knowledge is embedded and difficult to extract from the particular situation or environment (Brown and Dunguid 1998; Hansen 1999; Lave and Wenger 1991.“

Quelle: Hinds, P. J.; Pfeffer, J. (2003), in: Ackerman, M. S.; Pipek, V.; Wulf, V. (2003) (Eds.).

Auch in Zeiten von Künstlicher Intelligenz sollten wir uns die Frage stellen, welches Experten-Niveau hier erreicht werden kann. Siehe dazu auch

KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie

Wissensmanagement und Expertise (Expertenwissen teilen)

Mass Customization und Quantenmechanik

In verschiedenen Blogbeiträgen habe ich immer wieder darauf hingewiesen, dass wir uns von den in vielen Bereichen diskutierten Dichotomien (Entweder-oder) verabschieden sollten. Im Wissensmanagement beispielsweise haben wir es mit den beiden Polen implizites Wissen oder explizites Wissen zu tun. Zwischen beiden Polen gibt es allerdings ein Kontinuum des „sowohl-als-auch“. Ähnlich sieht es in anderen Bereichen aus.

Im Innovationsmanagement kennen wir die Extreme Closed Innovation oder Open Innovation. Beim Projektmanagement gibt es nicht nur das klassische Projektmanagement oder das agile Projektmanagement, sondern zwischen beiden Polen ein Kontinuum. Ähnlich sieht es bei der Künstlichen Intelligenz aus, wo es von Closed AI Models über Open Weight AI Models bis zu Open Source AI Models auch ein Kontinuum der Möglichkeiten gibt.

Diese Entwicklung deutet schon darauf hin, dass es in vielen Bereichen nicht mehr um ein „entweder-oder“, sondern um ein angemessenes „sowohl-als-auch“ geht. Vor über 30 Jahren hat B. Joseph Pine II schon darauf hingewiesen, und dabei eine Verbindung von der Quantenmechanik zu Mass Customization als hybride Wettbewerbsstrategie hergestellt:

„Today management has much the same problem: We still build most of our models around false dichotomies. To name but a few, we speak of strategy versus operations, cost versus quality, and centralized versus decentralized. The way out of this dilemma for scientist, finally, was to abandon the perspective of irreconcilable opposites, and to embrace interpretations that accept contradictions without trying to resolve them. Quantum mechanics does that in physics, mass customization does that in business“ (Pine 1993).

Die hybriden Möglichkeiten zur Schaffung von Werten für Kunden (User) sind heute (nach mehr als 30 Jahre nach der Veröffentlichung) in vielen Organisationen immer noch nicht bekannt.

Auf der nächsten MCP 2026 – Konferenz, im September in Balatonfüred (Ungarn), haben Sie die Chance, mit führenden Forschern und Praktikern über die Themen Mass Customization, Mass Personalization und Open Innovation zu sprechen.

Als Initiator der Konferenzreihe stehe ich Ihnen gerne für weitere Fragen zur Verfügung.

Wissensarbeit: Bestehen 60% der Gesamtarbeit aus „Arbeit rund um die Arbeit“?

Industriearbeit wurde in der Vergangenheit akribisch (Stichwort: REFA) auf Verschwendungspotenziale untersucht. Ganze Wertstromanalysen wurden beispielsweise betrachtet, um Lean Production oder später Lean Management in der Organisation zu etablieren. Auch das Agile Arbeiten, beispielsweise in Form des Agilen Projektmanagements, hat das Ziel, sich nur auf den Value für den User (Scrum) zu fokussieren. Das Scrum-Framework entstand immerhin aus der Überlegungen, Wissensarbeit besser zu organisieren (Hirotaka Takeuchi und Ikujiro Nonaka).

Es verwundert daher doch etwas, dass aus einer Studie von Asana aus dem Jahr 2023 hervorgeht, dass der Anteil der „Arbeit rund um die Arbeit“ bei Wissensarbeit immer noch erheblich ist. In der genannten Studie wurden fast 10.000 Wissensarbeiter befragt.

Dabei wird der Begriff „Arbeit rund um die Arbeit“ wie folgt beschrieben: „Tätigkeiten, die der wichtigen Arbeit Zeit entziehen, darunter die Kommunikation über die Arbeit, die Suche nach Informationen, das Wechseln zwischen verschiedenen Apps, die Bewältigung wechselnder Prioritäten und die Statusnachverfolgung von Arbeitsvorgängen“ (Asana 2025).

„Laut dem Bericht zur Anatomie der Arbeit von Asana [Anmerkung Robert Freund: aus dem Jahr 2023] werden 60 % der Arbeitszeit einer Person für „Arbeit rund um die Arbeit“ und nicht für Facharbeit aufgewendet“ (ebd.).

Bei Studien sollte man immer etwas kritisch sein, denn Asana ist selbst Anbieter einer Work-Management Plattform mit vielen Apps – möglicherweise tragen diese sogar auch zu dem Verschwendungspotenzial bei.

Künstliche Intelligenz, Wissen und kritisches Denken

Der Wissensbegriff hat sich in den letzten Jahrzehnten verändert, und damit auch erweitert. Arnold hat beispielsweise von einem neuen Wissensbegriff gesprochen und plädiert für eine Art von Wissenskompetenz.

Mit den Möglichkeiten der Künstlichen Intelligenz wird der Umgang mit Wissen noch dynamischer – vormals eher personales Wissen wird immer mehr zu einem öffentlichen Wissen. Dabei ist bemerkenswert, dass die Menschen den Ergebnissen der KI-Modellen durchaus vertrauen, obwohl diese nachweislich fehlerhaft sind. Siehe dazu Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit? Dieses sehr unkritische Verhalten führt zu einer Entwertung des personalen Wissens

„Menschen ziehen sich infolge von KI zunehmend aus der Generierung personalen Wissens zurück und begnügen sich mit der Überwachung und Validierung KI-generierten öffentlichen Wissens. Der Einsatz von KI und ein übermäßiges Vertrauen in die Qualität KI generierter Inhalte reduzieren zudem die Bereitschaft zum kritischen Denken. Mit wachsendem Vertrauen in KI verschlechtert sich kritisches Denken, während Zuversicht in Bezug auf die eigene Expertise kritisches Denken stärkt“ (Reinmann, Preprint. Erscheint in: Dittler, U. & Kreidl, C. (in Druck). Fragen an die Hochschuldidaktik der Zukunft. Schäffer-Poeschel).

Die stärkere Nutzung der KI-Möglichkeiten führt also letztendlich zur Reduzierung des kritischen Denkens, wobei das Vertrauen in die eigene Expertise eher das kritische Denken fördert.

Wir sollten daher nicht „blind“ den Verheißungen der Tech-Industrie hinterherrennen, sondern auf Basis unserer eigenen Expertise durchaus kritisch mit den Ergebnissen der KI umgehen. Siehe dazu beispielsweise Kritisches Denken genauer betrachtet. Darin werden u.a. die affirmative (bestätigende) Wissenskonstruktion und das kritische Denken gegenübergestellt.

Cross Industry Innovation: Ist doch ganz einfach, oder?

Quelle: vgl. Achatz et al. (2012)

Manchmal wundert man sich, warum einzelne Industrien „das Rad neu erfinden“, obwohl es die jeweilige Problemlösung doch schon in anderen Branchen / Industrien gibt. Anhand der Abbildung sind die verschiedenen Möglichkeiten illustriert.

Ist in der Industrie I ein Problem erkannt worden, so kann im ersten Schritt der Abstraktion im Lösungsraum eine Analogie (2. Schritt) zu einer Problemlösung in der Industrie II gefunden werden. Diese findet man in dem Bereich, in denen sich die beiden Lösungsräume von Industrie I und Industrie II überschneiden,. Im dritten Schritt der Adaption (3.) wird die Problemlösung aus der Industrie II für das Problem in Industrie I angewendet. Hört sich einfach an, ist es allerdings nicht immer.

Je kontextabhängiger das für die Problemlösung erforderliche Wissen ist, umso schwieriger ist das Wissen auf einen anderen Kontext (hier: eine andere Industrie) zu übertragen. Es handelt sich dabei um sogenanntes „Träges Wissen“.

Weiterhin benötigt man für eine bestimmte, komplexe Problemlösung (z.B. für Innovationen) oftmals die Expertise bestimmter Personen mit ihrem Erfahrungsschatz. Diese Expertise hängt wiederum mit dem impliziten Wissen zusammen, das nicht so einfach übertragbar ist.

Dennoch ist es natürlich nicht unmöglich, von anderen Industrien für komplexe Problemlösungen zu lernen – es ist allerdings auch nicht so einfach, sobald man die dahinterliegende Wissensperspektive betrachtet.

The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework

Im Projektmanagement ist es heute wichtig, zwischen einfachen, komplizierten und komplexen Projekten zu unterscheiden, um das angemessene Vorgehensmodell zu bestimmen.

Dabei können Organisationen im einfachsten Fall mit der Stacey-Matrix, oder auch mit ausführlicheren Analysemethoden nach Boehm & Turner oder Timinger usw. arbeiten. Siehe dazu Projektmanagement: Das geeignete Vorgehensmodell finden.

Darin wird auch das Cynefin-Framework als geeignetes Instrument erwähnt, das ursprünglich aus dem Wissensmanagement kommt. Siehe dazu Projektmanagement: Das Cynefin-Framework und der Bereich “disorder”. Natürlich kann man sich bei Wikipedia oder auch von KI-Modellen Informationen zum Cynefin-Framework zusammenstellen, doch ist es manchmal auch gut, sich ein Buch anzusehen,.

Brougham, G. (2015): The Cynefin Mini-Book. An Introduction to Complexity and the Cynefin Framework | PDF

Das frei verfügbare Mini-Buch zum Thema ist deshalb wertvoll, da es die verschiedenen Facetten des Cynefin-Frameworks intensiv thematisiert, und dazu auch noch wichtige Quellen angibt.

Wissensarchitektur: Brick or Brain?

Image by Pexels from Pixabay

Dass wir als Gesellschaft immer stärker von Wissen abhängig sind, deutet der Begriff Wissensgesellschaft an. Dabei möchte ich anmerken, dass viele Akteure, Verwaltungen, Unternehmen, einzelne Personen noch immer Wissen mit Daten und Informationen gleichsetzen, und z.B. die implizite Dimension des Wissens vernachlässigen.

In der Industriegesellschaft wurden Gebäude geplant und gebaut, die das arbeitsteilige Prinzip des Taylorismus unterstützten. Dabei wurde großer Wert auf das Trennende gelegt: Hier wurde gearbeitet, dort gelebt. Hier gab es das Schuhgeschäft, dort die Schule und an einem anderen Ort das Altenheim. In Zeiten einer Reflexiven Modernisierung kommt es allerdings seit Jahrzehnten immer mehr zu Entgrenzungen und Vernetzungen von bisher getrennten Bereichen.

Immer mehr hybride Strukturen entstehen – im Management, bei der Raumgestaltung, der Architektur. Eine Architektur, die sich an der Wissensperspektive und an einem vielschichtigen Wissensaustausch orientiert, muss sich zwangsläufig von einer Architektur unterscheiden, die eher industriell geprägt war. Es wundert daher nicht, dass immer mehr offene Räume entstehen (Open Spaces), Räume in denen gearbeitet und gelebt wird usw. usw. All das kann aus der Soziologie (Reflexive Modernisierung) und mit Hilfe der Wissensperspektive erklärt werden.

In dem Artikel Schröder, I. (2014): Wissensarchitektur: Erfahrungen eines Wissenschaftsparks, in Wessels (Hrsg.) (2014) stellt die Autorin das Thema Wissensarchitektur anhand eines Wissenschaftsparks dar. Dabei verweist sie auch auf eine einprägsame Formulierung:

„Der Science Park Manchester hat die zu Grunde liegende Wissensarchitektur-Frage in der Kürze auf den Punkt gebracht, die der englischen Sprache eigen ist:: brick or brain? Die deutsche Übersetzung könnte Gebäude oder Geist lauten“ (ebd.).

Ergänzend würde ich allerdings hier empfehlen von „Brick and Brain “ auszugehen – ganz im sinne einer hybriden Denk- und Handlungsweise.

Siehe dazu auch Tsigkas, A. (2024): Between Theory and Practice in Architectural Design.

GfWM (2025): Wissenstransfer und Onboarding in der öffentlichen Verwaltung

Image by Krissie from Pixabay

Öffentliche Verwaltungen haben vielschichtige Aufgaben zu bewältigen. Aufgrund unzähliger Gesetze, Verordnungen usw. der Europäischen Union, des Bundes, der Länder, der Bezirke, der Landkreise, der Städte und Gemeinden hat sich ein Umfeld ergeben, das den Bürgern, Unternehmen, Organisationen und der öffentlichen Verwaltung selbst, kaum noch Luft zum Atmen lässt.

Die kleinteiligen Regelungen, mit ihren Millionen Schnittstellen, haben wir uns in Deutschland selbst geschaffen. Vielen wird langsam aber sicher klar, dass die öffentliche Verwaltung in manchen Bereichen des gesellschaftlichen Lebens einen Flaschenhals darstellt – Digitalisierung von Akten hin oder her.

Die Veröffentlichung GfWM (2025): Wissenstransfer und Onboarding in der öffentlichen Verwaltung ist eine Empfehlungen der GfWM-Fachgruppe Digitale Transformationsprozesse. In verschiedenen Beiträgen stellen Autoren der Fachgruppe theoretische Grundlagen und erfolgreiche Beispiele dar. Insgesamt sind das alles sehr sinnvolle Beiträge, um in Zukunft Verbesserungen in der öffentlichen Verwaltung anzustoßen.

Ich stelle mir zusätzlich folgende Fragen:

Was ist eigentlich aus den vielen Studien (zum Thema) aus der Vergangenheit (z.B. Studie aus 2013, oder länderspezifische Initiativen) geworden? Dort waren auch schon sehr viele Hilfsmittel bereitgestellt/veröffentlicht worden. Manche Vorlagen erinnern mich an ProWis, obwohl die Seite nicht speziell für die öffentliche Verwaltung ist.

Gehen alle Autoren vom selben Wissensbegriff aus? Wenn ja, von welchem? Arnold schlägt beispielsweise einen „neuen“ Wissensbegriff vor.

Wenn der Wissensbegriff unklar ist, wie soll dann der Umgang mit Wissen, also auch ein Wissenstransfer gelingen?

Ist es möglich, sich auf „Wissenstransfer und Onboarding“ zu konzentrieren, ohne ein geeignetes Wissenssystem mit heute sehr viel verteilten Wissensbeständen zu thematisieren?

Ist die Wissensbilanz (früher: Made in Germany) eine Möglichkeit, geeignete Ansatzpunkte (Projekte) für das jeweilige (kontextspezifische) Wissens-System zu finden, und damit Ressourcen zu sparen?

Siehe dazu auch

Gegenüberstellung: Öffentliche Verwaltung und Erfolgsfaktoren von Projekten

Siehe dazu auch Warum verfehlen viele öffentliche Projekte die ursprünglich geschätzten Kosten?

Stärkere Projektorientierung um den Ineffizienzkreislauf bei öffentlichen Verwaltungen zu durchbrechen

Künstliche Intelligenz: Von der Produktentwicklung wieder (zurück) zur Prozessentwicklung?

Künstliche Intelligenz wird unseren individuellen Alltag, Unternehmen/Organisationen und letztendlich die gesamte Gesellschaft in verschiedenen Anwendungsformen immer stärker beeinflussen.

Dabei deutet sich in den Unternehmen/Organisationen eine interessante Entwicklung an.

Organisationen waren in den letzten 100 Jahren der Industrialisierung darauf fokussiert, ihre Prozesse (oftmals Routineprozesse) immer weiter zu optimieren, effektiver und effizienter zu machen. Diese Prozesslandschaften haben dann zu den bekannten Qualitätsmanagement-Systemen oder auch Projektmanagement-Systemen geführt. Gerade im Projektmanagement hat sich diese Vorgehensweise (Vorgehensmodelle) bei Projekten im Entwicklungsbereichen (Innovationen) zu einer Arbeitsform (Vorgehensmodell) entwickelt, die eher produktorientiert ist. Paradebeispiel dafür ist das Scrum-Framework mit den zu erzielenden Increments am Ende des Sprints oder das Minimum Viable Product (MVP), das wir aus dem Lean Start-up-Ansatz kennen.

Dieser Trend wird aktuell durch Künstliche Intelligenz scheinbar wieder umgekehrt. Wie kommt das?

Schauen wir uns einmal an, wie stark Künstliche Intelligenz den gesamten Lebenszyklus der Software-Entwicklung beeinflusst, so können wir erahnen, dass die Zyklen, in denen ein (Software-)Ergebnis (Increment, MVP) produziert werden kann, immer kürzer werden. Möglicherweise so kurz, dass es sich gar nicht mehr lohnt, den gesamten Scrum-Zyklus mit den vorgesehenen Artefakten und Events durchzuführen, und es zu einem kontinuierlichen Fluss an Ergebnissen (Produkten) kommt. In meinem Beitrag Künstliche Intelligenz: Wird Scrum durch den permanenten Fluss an Produkten zu Kanban? hatte ich das schon einmal angedeutet. Es freut mich daher, dass der Gedanke durchaus auch von anderen Autoren vertreten wird:

„Der Fokus essenzieller Design- und Architekturentscheidungen verschiebt sich in der Digitalisierung genau wie einst in der Industrialisierung von der Produktentwicklung hin zur Prozessentwicklung. Hier schließt sich auch der Kreis zu Scrum, denn zwei der wichtigsten Scrum-Pioniere Hirotaka Takeuchiund Ikujiro Nonaka kamen ursprünglich aus industriellen Produktions- und Innovationskontexten, nicht aus der Softwareentwicklung“ (Immich, T.(2025): KI-Agenten Teil 2: Von der Produktentwicklung zur Prozessoptimierung, in Heise Online vom 27.05.2025).